| /* |
| * (C) Copyright 2004-2008 Texas Instruments, <www.ti.com> |
| * Rohit Choraria <rohitkc@ti.com> |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <asm/errno.h> |
| #include <asm/arch/mem.h> |
| #include <asm/arch/omap_gpmc.h> |
| #include <linux/mtd/nand_ecc.h> |
| #include <nand.h> |
| |
| static uint8_t cs; |
| static struct nand_ecclayout hw_nand_oob = GPMC_NAND_HW_ECC_LAYOUT; |
| |
| /* |
| * omap_nand_hwcontrol - Set the address pointers corretly for the |
| * following address/data/command operation |
| */ |
| static void omap_nand_hwcontrol(struct mtd_info *mtd, int32_t cmd, |
| uint32_t ctrl) |
| { |
| register struct nand_chip *this = mtd->priv; |
| |
| /* |
| * Point the IO_ADDR to DATA and ADDRESS registers instead |
| * of chip address |
| */ |
| switch (ctrl) { |
| case NAND_CTRL_CHANGE | NAND_CTRL_CLE: |
| this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; |
| break; |
| case NAND_CTRL_CHANGE | NAND_CTRL_ALE: |
| this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_adr; |
| break; |
| case NAND_CTRL_CHANGE | NAND_NCE: |
| this->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; |
| break; |
| } |
| |
| if (cmd != NAND_CMD_NONE) |
| writeb(cmd, this->IO_ADDR_W); |
| } |
| |
| #ifdef CONFIG_SPL_BUILD |
| /* Check wait pin as dev ready indicator */ |
| int omap_spl_dev_ready(struct mtd_info *mtd) |
| { |
| return gpmc_cfg->status & (1 << 8); |
| } |
| #endif |
| |
| /* |
| * omap_hwecc_init - Initialize the Hardware ECC for NAND flash in |
| * GPMC controller |
| * @mtd: MTD device structure |
| * |
| */ |
| static void omap_hwecc_init(struct nand_chip *chip) |
| { |
| /* |
| * Init ECC Control Register |
| * Clear all ECC | Enable Reg1 |
| */ |
| writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); |
| writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, &gpmc_cfg->ecc_size_config); |
| } |
| |
| /* |
| * gen_true_ecc - This function will generate true ECC value, which |
| * can be used when correcting data read from NAND flash memory core |
| * |
| * @ecc_buf: buffer to store ecc code |
| * |
| * @return: re-formatted ECC value |
| */ |
| static uint32_t gen_true_ecc(uint8_t *ecc_buf) |
| { |
| return ecc_buf[0] | (ecc_buf[1] << 16) | ((ecc_buf[2] & 0xF0) << 20) | |
| ((ecc_buf[2] & 0x0F) << 8); |
| } |
| |
| /* |
| * omap_correct_data - Compares the ecc read from nand spare area with ECC |
| * registers values and corrects one bit error if it has occured |
| * Further details can be had from OMAP TRM and the following selected links: |
| * http://en.wikipedia.org/wiki/Hamming_code |
| * http://www.cs.utexas.edu/users/plaxton/c/337/05f/slides/ErrorCorrection-4.pdf |
| * |
| * @mtd: MTD device structure |
| * @dat: page data |
| * @read_ecc: ecc read from nand flash |
| * @calc_ecc: ecc read from ECC registers |
| * |
| * @return 0 if data is OK or corrected, else returns -1 |
| */ |
| static int omap_correct_data(struct mtd_info *mtd, uint8_t *dat, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| uint32_t orig_ecc, new_ecc, res, hm; |
| uint16_t parity_bits, byte; |
| uint8_t bit; |
| |
| /* Regenerate the orginal ECC */ |
| orig_ecc = gen_true_ecc(read_ecc); |
| new_ecc = gen_true_ecc(calc_ecc); |
| /* Get the XOR of real ecc */ |
| res = orig_ecc ^ new_ecc; |
| if (res) { |
| /* Get the hamming width */ |
| hm = hweight32(res); |
| /* Single bit errors can be corrected! */ |
| if (hm == 12) { |
| /* Correctable data! */ |
| parity_bits = res >> 16; |
| bit = (parity_bits & 0x7); |
| byte = (parity_bits >> 3) & 0x1FF; |
| /* Flip the bit to correct */ |
| dat[byte] ^= (0x1 << bit); |
| } else if (hm == 1) { |
| printf("Error: Ecc is wrong\n"); |
| /* ECC itself is corrupted */ |
| return 2; |
| } else { |
| /* |
| * hm distance != parity pairs OR one, could mean 2 bit |
| * error OR potentially be on a blank page.. |
| * orig_ecc: contains spare area data from nand flash. |
| * new_ecc: generated ecc while reading data area. |
| * Note: if the ecc = 0, all data bits from which it was |
| * generated are 0xFF. |
| * The 3 byte(24 bits) ecc is generated per 512byte |
| * chunk of a page. If orig_ecc(from spare area) |
| * is 0xFF && new_ecc(computed now from data area)=0x0, |
| * this means that data area is 0xFF and spare area is |
| * 0xFF. A sure sign of a erased page! |
| */ |
| if ((orig_ecc == 0x0FFF0FFF) && (new_ecc == 0x00000000)) |
| return 0; |
| printf("Error: Bad compare! failed\n"); |
| /* detected 2 bit error */ |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| /* |
| * omap_calculate_ecc - Generate non-inverted ECC bytes. |
| * |
| * Using noninverted ECC can be considered ugly since writing a blank |
| * page ie. padding will clear the ECC bytes. This is no problem as |
| * long nobody is trying to write data on the seemingly unused page. |
| * Reading an erased page will produce an ECC mismatch between |
| * generated and read ECC bytes that has to be dealt with separately. |
| * E.g. if page is 0xFF (fresh erased), and if HW ECC engine within GPMC |
| * is used, the result of read will be 0x0 while the ECC offsets of the |
| * spare area will be 0xFF which will result in an ECC mismatch. |
| * @mtd: MTD structure |
| * @dat: unused |
| * @ecc_code: ecc_code buffer |
| */ |
| static int omap_calculate_ecc(struct mtd_info *mtd, const uint8_t *dat, |
| uint8_t *ecc_code) |
| { |
| u_int32_t val; |
| |
| /* Start Reading from HW ECC1_Result = 0x200 */ |
| val = readl(&gpmc_cfg->ecc1_result); |
| |
| ecc_code[0] = val & 0xFF; |
| ecc_code[1] = (val >> 16) & 0xFF; |
| ecc_code[2] = ((val >> 8) & 0x0F) | ((val >> 20) & 0xF0); |
| |
| /* |
| * Stop reading anymore ECC vals and clear old results |
| * enable will be called if more reads are required |
| */ |
| writel(0x000, &gpmc_cfg->ecc_config); |
| |
| return 0; |
| } |
| |
| /* |
| * omap_enable_ecc - This function enables the hardware ecc functionality |
| * @mtd: MTD device structure |
| * @mode: Read/Write mode |
| */ |
| static void omap_enable_hwecc(struct mtd_info *mtd, int32_t mode) |
| { |
| struct nand_chip *chip = mtd->priv; |
| uint32_t val, dev_width = (chip->options & NAND_BUSWIDTH_16) >> 1; |
| |
| switch (mode) { |
| case NAND_ECC_READ: |
| case NAND_ECC_WRITE: |
| /* Clear the ecc result registers, select ecc reg as 1 */ |
| writel(ECCCLEAR | ECCRESULTREG1, &gpmc_cfg->ecc_control); |
| |
| /* |
| * Size 0 = 0xFF, Size1 is 0xFF - both are 512 bytes |
| * tell all regs to generate size0 sized regs |
| * we just have a single ECC engine for all CS |
| */ |
| writel(ECCSIZE1 | ECCSIZE0 | ECCSIZE0SEL, |
| &gpmc_cfg->ecc_size_config); |
| val = (dev_width << 7) | (cs << 1) | (0x1); |
| writel(val, &gpmc_cfg->ecc_config); |
| break; |
| default: |
| printf("Error: Unrecognized Mode[%d]!\n", mode); |
| break; |
| } |
| } |
| |
| #ifndef CONFIG_SPL_BUILD |
| /* |
| * omap_nand_switch_ecc - switch the ECC operation b/w h/w ecc and s/w ecc. |
| * The default is to come up on s/w ecc |
| * |
| * @hardware - 1 -switch to h/w ecc, 0 - s/w ecc |
| * |
| */ |
| void omap_nand_switch_ecc(int32_t hardware) |
| { |
| struct nand_chip *nand; |
| struct mtd_info *mtd; |
| |
| if (nand_curr_device < 0 || |
| nand_curr_device >= CONFIG_SYS_MAX_NAND_DEVICE || |
| !nand_info[nand_curr_device].name) { |
| printf("Error: Can't switch ecc, no devices available\n"); |
| return; |
| } |
| |
| mtd = &nand_info[nand_curr_device]; |
| nand = mtd->priv; |
| |
| nand->options |= NAND_OWN_BUFFERS; |
| |
| /* Reset ecc interface */ |
| nand->ecc.read_page = NULL; |
| nand->ecc.write_page = NULL; |
| nand->ecc.read_oob = NULL; |
| nand->ecc.write_oob = NULL; |
| nand->ecc.hwctl = NULL; |
| nand->ecc.correct = NULL; |
| nand->ecc.calculate = NULL; |
| |
| /* Setup the ecc configurations again */ |
| if (hardware) { |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.layout = &hw_nand_oob; |
| nand->ecc.size = 512; |
| nand->ecc.bytes = 3; |
| nand->ecc.hwctl = omap_enable_hwecc; |
| nand->ecc.correct = omap_correct_data; |
| nand->ecc.calculate = omap_calculate_ecc; |
| omap_hwecc_init(nand); |
| printf("HW ECC selected\n"); |
| } else { |
| nand->ecc.mode = NAND_ECC_SOFT; |
| /* Use mtd default settings */ |
| nand->ecc.layout = NULL; |
| printf("SW ECC selected\n"); |
| } |
| |
| /* Update NAND handling after ECC mode switch */ |
| nand_scan_tail(mtd); |
| |
| nand->options &= ~NAND_OWN_BUFFERS; |
| } |
| #endif /* CONFIG_SPL_BUILD */ |
| |
| /* |
| * Board-specific NAND initialization. The following members of the |
| * argument are board-specific: |
| * - IO_ADDR_R: address to read the 8 I/O lines of the flash device |
| * - IO_ADDR_W: address to write the 8 I/O lines of the flash device |
| * - cmd_ctrl: hardwarespecific function for accesing control-lines |
| * - waitfunc: hardwarespecific function for accesing device ready/busy line |
| * - ecc.hwctl: function to enable (reset) hardware ecc generator |
| * - ecc.mode: mode of ecc, see defines |
| * - chip_delay: chip dependent delay for transfering data from array to |
| * read regs (tR) |
| * - options: various chip options. They can partly be set to inform |
| * nand_scan about special functionality. See the defines for further |
| * explanation |
| */ |
| int board_nand_init(struct nand_chip *nand) |
| { |
| int32_t gpmc_config = 0; |
| cs = 0; |
| |
| /* |
| * xloader/Uboot's gpmc configuration would have configured GPMC for |
| * nand type of memory. The following logic scans and latches on to the |
| * first CS with NAND type memory. |
| * TBD: need to make this logic generic to handle multiple CS NAND |
| * devices. |
| */ |
| while (cs < GPMC_MAX_CS) { |
| /* Check if NAND type is set */ |
| if ((readl(&gpmc_cfg->cs[cs].config1) & 0xC00) == 0x800) { |
| /* Found it!! */ |
| break; |
| } |
| cs++; |
| } |
| if (cs >= GPMC_MAX_CS) { |
| printf("NAND: Unable to find NAND settings in " |
| "GPMC Configuration - quitting\n"); |
| return -ENODEV; |
| } |
| |
| gpmc_config = readl(&gpmc_cfg->config); |
| /* Disable Write protect */ |
| gpmc_config |= 0x10; |
| writel(gpmc_config, &gpmc_cfg->config); |
| |
| nand->IO_ADDR_R = (void __iomem *)&gpmc_cfg->cs[cs].nand_dat; |
| nand->IO_ADDR_W = (void __iomem *)&gpmc_cfg->cs[cs].nand_cmd; |
| |
| nand->cmd_ctrl = omap_nand_hwcontrol; |
| nand->options = NAND_NO_PADDING | NAND_CACHEPRG | NAND_NO_AUTOINCR; |
| /* If we are 16 bit dev, our gpmc config tells us that */ |
| if ((readl(&gpmc_cfg->cs[cs].config1) & 0x3000) == 0x1000) |
| nand->options |= NAND_BUSWIDTH_16; |
| |
| nand->chip_delay = 100; |
| /* Default ECC mode */ |
| #ifndef CONFIG_SPL_BUILD |
| nand->ecc.mode = NAND_ECC_SOFT; |
| #else |
| nand->ecc.mode = NAND_ECC_HW; |
| nand->ecc.layout = &hw_nand_oob; |
| nand->ecc.size = CONFIG_SYS_NAND_ECCSIZE; |
| nand->ecc.bytes = CONFIG_SYS_NAND_ECCBYTES; |
| nand->ecc.hwctl = omap_enable_hwecc; |
| nand->ecc.correct = omap_correct_data; |
| nand->ecc.calculate = omap_calculate_ecc; |
| omap_hwecc_init(nand); |
| |
| if (nand->options & NAND_BUSWIDTH_16) |
| nand->read_buf = nand_read_buf16; |
| else |
| nand->read_buf = nand_read_buf; |
| nand->dev_ready = omap_spl_dev_ready; |
| #endif |
| |
| return 0; |
| } |