| /******************************************************************************/ |
| /* */ |
| /* Broadcom BCM5700 Linux Network Driver, Copyright (c) 2000 Broadcom */ |
| /* Corporation. */ |
| /* All rights reserved. */ |
| /* */ |
| /* This program is free software; you can redistribute it and/or modify */ |
| /* it under the terms of the GNU General Public License as published by */ |
| /* the Free Software Foundation, located in the file LICENSE. */ |
| /* */ |
| /* History: */ |
| /******************************************************************************/ |
| #include <common.h> |
| #include <asm/types.h> |
| |
| #ifdef CONFIG_BMW |
| #include <mpc824x.h> |
| #endif |
| #include <malloc.h> |
| #include <linux/byteorder/big_endian.h> |
| #include "bcm570x_mm.h" |
| |
| #define EMBEDDED 1 |
| /******************************************************************************/ |
| /* Local functions. */ |
| /******************************************************************************/ |
| |
| LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice); |
| LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice); |
| |
| static LM_STATUS LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE |
| RequestedMediaType, |
| PLM_MEDIA_TYPE pMediaType, |
| PLM_LINE_SPEED pLineSpeed, |
| PLM_DUPLEX_MODE pDuplexMode); |
| |
| static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice); |
| |
| __inline static LM_VOID LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice); |
| __inline static LM_VOID LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice); |
| |
| static LM_STATUS LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice, |
| LM_REQUESTED_MEDIA_TYPE |
| RequestedMediaType); |
| static LM_STATUS LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice, |
| LM_REQUESTED_MEDIA_TYPE RequestedMediaType); |
| static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice); |
| STATIC LM_STATUS LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice, |
| LM_UINT32 LocalPhyAd, |
| LM_UINT32 RemotePhyAd); |
| #if INCLUDE_TBI_SUPPORT |
| STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice); |
| STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice); |
| #endif |
| STATIC LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice); |
| STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid, |
| LM_UINT16 Ssid); |
| STATIC LM_STATUS LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt, |
| LM_PHYSICAL_ADDRESS BufferPhy, |
| LM_UINT32 BufferSize); |
| STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number); |
| STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice); |
| STATIC LM_STATUS LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice, |
| PLM_PACKET pPacket, PT3_SND_BD pSendBd); |
| |
| /******************************************************************************/ |
| /* External functions. */ |
| /******************************************************************************/ |
| |
| LM_STATUS LM_LoadRlsFirmware (PLM_DEVICE_BLOCK pDevice); |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_UINT32 LM_RegRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register) |
| { |
| LM_UINT32 Value32; |
| |
| #if PCIX_TARGET_WORKAROUND |
| MM_ACQUIRE_UNDI_LOCK (pDevice); |
| #endif |
| MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register); |
| MM_ReadConfig32 (pDevice, T3_PCI_REG_DATA_REG, &Value32); |
| #if PCIX_TARGET_WORKAROUND |
| MM_RELEASE_UNDI_LOCK (pDevice); |
| #endif |
| |
| return Value32; |
| } /* LM_RegRdInd */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_VOID |
| LM_RegWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Register, LM_UINT32 Value32) |
| { |
| |
| #if PCIX_TARGET_WORKAROUND |
| MM_ACQUIRE_UNDI_LOCK (pDevice); |
| #endif |
| MM_WriteConfig32 (pDevice, T3_PCI_REG_ADDR_REG, Register); |
| MM_WriteConfig32 (pDevice, T3_PCI_REG_DATA_REG, Value32); |
| #if PCIX_TARGET_WORKAROUND |
| MM_RELEASE_UNDI_LOCK (pDevice); |
| #endif |
| } /* LM_RegWrInd */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_UINT32 LM_MemRdInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr) |
| { |
| LM_UINT32 Value32; |
| |
| MM_ACQUIRE_UNDI_LOCK (pDevice); |
| #ifdef BIG_ENDIAN_HOST |
| MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr); |
| Value32 = REG_RD (pDevice, PciCfg.MemWindowData); |
| /* Value32 = REG_RD(pDevice,uIntMem.Mbuf[(MemAddr & 0x7fff)/4]); */ |
| #else |
| MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr); |
| MM_ReadConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, &Value32); |
| #endif |
| MM_RELEASE_UNDI_LOCK (pDevice); |
| |
| return Value32; |
| } /* LM_MemRdInd */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_VOID |
| LM_MemWrInd (PLM_DEVICE_BLOCK pDevice, LM_UINT32 MemAddr, LM_UINT32 Value32) |
| { |
| MM_ACQUIRE_UNDI_LOCK (pDevice); |
| #ifdef BIG_ENDIAN_HOST |
| REG_WR (pDevice, PciCfg.MemWindowBaseAddr, MemAddr); |
| REG_WR (pDevice, uIntMem.Mbuf[(MemAddr & 0x7fff) / 4], Value32); |
| #else |
| MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, MemAddr); |
| MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, Value32); |
| #endif |
| MM_RELEASE_UNDI_LOCK (pDevice); |
| } /* LM_MemWrInd */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS LM_QueueRxPackets (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_STATUS Lmstatus; |
| PLM_PACKET pPacket; |
| PT3_RCV_BD pRcvBd; |
| LM_UINT32 StdBdAdded = 0; |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| LM_UINT32 JumboBdAdded = 0; |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| Lmstatus = LM_STATUS_SUCCESS; |
| |
| pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container); |
| while (pPacket) { |
| switch (pPacket->u.Rx.RcvProdRing) { |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| case T3_JUMBO_RCV_PROD_RING: /* Jumbo Receive Ring. */ |
| /* Initialize the buffer descriptor. */ |
| pRcvBd = |
| &pDevice->pRxJumboBdVirt[pDevice->RxJumboProdIdx]; |
| pRcvBd->Flags = |
| RCV_BD_FLAG_END | RCV_BD_FLAG_JUMBO_RING; |
| pRcvBd->Len = (LM_UINT16) pDevice->RxJumboBufferSize; |
| |
| /* Initialize the receive buffer pointer */ |
| #if 0 /* Jimmy, deleted in new */ |
| pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low; |
| pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High; |
| #endif |
| MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr); |
| |
| /* The opaque field may point to an offset from a fix addr. */ |
| pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) - |
| MM_UINT_PTR (pDevice-> |
| pPacketDescBase)); |
| |
| /* Update the producer index. */ |
| pDevice->RxJumboProdIdx = |
| (pDevice->RxJumboProdIdx + |
| 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK; |
| |
| JumboBdAdded++; |
| break; |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| case T3_STD_RCV_PROD_RING: /* Standard Receive Ring. */ |
| /* Initialize the buffer descriptor. */ |
| pRcvBd = &pDevice->pRxStdBdVirt[pDevice->RxStdProdIdx]; |
| pRcvBd->Flags = RCV_BD_FLAG_END; |
| pRcvBd->Len = MAX_STD_RCV_BUFFER_SIZE; |
| |
| /* Initialize the receive buffer pointer */ |
| #if 0 /* Jimmy, deleted in new replaced with MM_MapRxDma */ |
| pRcvBd->HostAddr.Low = pPacket->u.Rx.RxBufferPhy.Low; |
| pRcvBd->HostAddr.High = pPacket->u.Rx.RxBufferPhy.High; |
| #endif |
| MM_MapRxDma (pDevice, pPacket, &pRcvBd->HostAddr); |
| |
| /* The opaque field may point to an offset from a fix addr. */ |
| pRcvBd->Opaque = (LM_UINT32) (MM_UINT_PTR (pPacket) - |
| MM_UINT_PTR (pDevice-> |
| pPacketDescBase)); |
| |
| /* Update the producer index. */ |
| pDevice->RxStdProdIdx = (pDevice->RxStdProdIdx + 1) & |
| T3_STD_RCV_RCB_ENTRY_COUNT_MASK; |
| |
| StdBdAdded++; |
| break; |
| |
| case T3_UNKNOWN_RCV_PROD_RING: |
| default: |
| Lmstatus = LM_STATUS_FAILURE; |
| break; |
| } /* switch */ |
| |
| /* Bail out if there is any error. */ |
| if (Lmstatus != LM_STATUS_SUCCESS) { |
| break; |
| } |
| |
| pPacket = |
| (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container); |
| } /* while */ |
| |
| wmb (); |
| /* Update the procedure index. */ |
| if (StdBdAdded) { |
| MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low, |
| pDevice->RxStdProdIdx); |
| } |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| if (JumboBdAdded) { |
| MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low, |
| pDevice->RxJumboProdIdx); |
| } |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| return Lmstatus; |
| } /* LM_QueueRxPackets */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| STATIC LM_VOID LM_NvramInit (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_UINT32 Value32; |
| LM_UINT32 j; |
| |
| /* Intialize clock period and state machine. */ |
| Value32 = SEEPROM_ADDR_CLK_PERD (SEEPROM_CLOCK_PERIOD) | |
| SEEPROM_ADDR_FSM_RESET; |
| REG_WR (pDevice, Grc.EepromAddr, Value32); |
| |
| for (j = 0; j < 100; j++) { |
| MM_Wait (10); |
| } |
| |
| /* Serial eeprom access using the Grc.EepromAddr/EepromData registers. */ |
| Value32 = REG_RD (pDevice, Grc.LocalCtrl); |
| REG_WR (pDevice, Grc.LocalCtrl, |
| Value32 | GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM); |
| |
| /* Set the 5701 compatibility mode if we are using EEPROM. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 && |
| T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) { |
| Value32 = REG_RD (pDevice, Nvram.Config1); |
| if ((Value32 & FLASH_INTERFACE_ENABLE) == 0) { |
| /* Use the new interface to read EEPROM. */ |
| Value32 &= ~FLASH_COMPAT_BYPASS; |
| |
| REG_WR (pDevice, Nvram.Config1, Value32); |
| } |
| } |
| } /* LM_NvRamInit */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| STATIC LM_STATUS |
| LM_EepromRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData) |
| { |
| LM_UINT32 Value32; |
| LM_UINT32 Addr; |
| LM_UINT32 Dev; |
| LM_UINT32 j; |
| |
| if (Offset > SEEPROM_CHIP_SIZE) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| Dev = Offset / SEEPROM_CHIP_SIZE; |
| Addr = Offset % SEEPROM_CHIP_SIZE; |
| |
| Value32 = REG_RD (pDevice, Grc.EepromAddr); |
| Value32 &= ~(SEEPROM_ADDR_ADDRESS_MASK | SEEPROM_ADDR_DEV_ID_MASK | |
| SEEPROM_ADDR_RW_MASK); |
| REG_WR (pDevice, Grc.EepromAddr, Value32 | SEEPROM_ADDR_DEV_ID (Dev) | |
| SEEPROM_ADDR_ADDRESS (Addr) | SEEPROM_ADDR_START | |
| SEEPROM_ADDR_READ); |
| |
| for (j = 0; j < 1000; j++) { |
| Value32 = REG_RD (pDevice, Grc.EepromAddr); |
| if (Value32 & SEEPROM_ADDR_COMPLETE) { |
| break; |
| } |
| MM_Wait (10); |
| } |
| |
| if (Value32 & SEEPROM_ADDR_COMPLETE) { |
| Value32 = REG_RD (pDevice, Grc.EepromData); |
| *pData = Value32; |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| return LM_STATUS_FAILURE; |
| } /* LM_EepromRead */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| STATIC LM_STATUS |
| LM_NvramRead (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Offset, LM_UINT32 * pData) |
| { |
| LM_UINT32 Value32; |
| LM_STATUS Status; |
| LM_UINT32 j; |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| Status = LM_EepromRead (pDevice, Offset, pData); |
| } else { |
| /* Determine if we have flash or EEPROM. */ |
| Value32 = REG_RD (pDevice, Nvram.Config1); |
| if (Value32 & FLASH_INTERFACE_ENABLE) { |
| if (Value32 & FLASH_SSRAM_BUFFERRED_MODE) { |
| Offset = ((Offset / BUFFERED_FLASH_PAGE_SIZE) << |
| BUFFERED_FLASH_PAGE_POS) + |
| (Offset % BUFFERED_FLASH_PAGE_SIZE); |
| } |
| } |
| |
| REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1); |
| for (j = 0; j < 1000; j++) { |
| if (REG_RD (pDevice, Nvram.SwArb) & SW_ARB_GNT1) { |
| break; |
| } |
| MM_Wait (20); |
| } |
| if (j == 1000) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| /* Read from flash or EEPROM with the new 5703/02 interface. */ |
| REG_WR (pDevice, Nvram.Addr, Offset & NVRAM_ADDRESS_MASK); |
| |
| REG_WR (pDevice, Nvram.Cmd, NVRAM_CMD_RD | NVRAM_CMD_DO_IT | |
| NVRAM_CMD_FIRST | NVRAM_CMD_LAST | NVRAM_CMD_DONE); |
| |
| /* Wait for the done bit to clear. */ |
| for (j = 0; j < 500; j++) { |
| MM_Wait (10); |
| |
| Value32 = REG_RD (pDevice, Nvram.Cmd); |
| if (!(Value32 & NVRAM_CMD_DONE)) { |
| break; |
| } |
| } |
| |
| /* Wait for the done bit. */ |
| if (!(Value32 & NVRAM_CMD_DONE)) { |
| for (j = 0; j < 500; j++) { |
| MM_Wait (10); |
| |
| Value32 = REG_RD (pDevice, Nvram.Cmd); |
| if (Value32 & NVRAM_CMD_DONE) { |
| MM_Wait (10); |
| |
| *pData = |
| REG_RD (pDevice, Nvram.ReadData); |
| |
| /* Change the endianess. */ |
| *pData = |
| ((*pData & 0xff) << 24) | |
| ((*pData & 0xff00) << 8) | |
| ((*pData & 0xff0000) >> 8) | |
| ((*pData >> 24) & 0xff); |
| |
| break; |
| } |
| } |
| } |
| |
| REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_CLR1); |
| if (Value32 & NVRAM_CMD_DONE) { |
| Status = LM_STATUS_SUCCESS; |
| } else { |
| Status = LM_STATUS_FAILURE; |
| } |
| } |
| |
| return Status; |
| } /* LM_NvramRead */ |
| |
| STATIC void LM_ReadVPD (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_UINT32 Vpd_arr[256 / 4]; |
| LM_UINT8 *Vpd = (LM_UINT8 *) & Vpd_arr[0]; |
| LM_UINT32 *Vpd_dptr = &Vpd_arr[0]; |
| LM_UINT32 Value32; |
| unsigned int j; |
| |
| /* Read PN from VPD */ |
| for (j = 0; j < 256; j += 4, Vpd_dptr++) { |
| if (LM_NvramRead (pDevice, 0x100 + j, &Value32) != |
| LM_STATUS_SUCCESS) { |
| printf ("BCM570x: LM_ReadVPD: VPD read failed" |
| " (no EEPROM onboard)\n"); |
| return; |
| } |
| *Vpd_dptr = cpu_to_le32 (Value32); |
| } |
| for (j = 0; j < 256;) { |
| unsigned int Vpd_r_len; |
| unsigned int Vpd_r_end; |
| |
| if ((Vpd[j] == 0x82) || (Vpd[j] == 0x91)) { |
| j = j + 3 + Vpd[j + 1] + (Vpd[j + 2] << 8); |
| } else if (Vpd[j] == 0x90) { |
| Vpd_r_len = Vpd[j + 1] + (Vpd[j + 2] << 8); |
| j += 3; |
| Vpd_r_end = Vpd_r_len + j; |
| while (j < Vpd_r_end) { |
| if ((Vpd[j] == 'P') && (Vpd[j + 1] == 'N')) { |
| unsigned int len = Vpd[j + 2]; |
| |
| if (len <= 24) { |
| memcpy (pDevice->PartNo, |
| &Vpd[j + 3], len); |
| } |
| break; |
| } else { |
| if (Vpd[j + 2] == 0) { |
| break; |
| } |
| j = j + Vpd[j + 2]; |
| } |
| } |
| break; |
| } else { |
| break; |
| } |
| } |
| } |
| |
| STATIC void LM_ReadBootCodeVersion (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_UINT32 Value32, offset, ver_offset; |
| int i; |
| |
| if (LM_NvramRead (pDevice, 0x0, &Value32) != LM_STATUS_SUCCESS) |
| return; |
| if (Value32 != 0xaa559966) |
| return; |
| if (LM_NvramRead (pDevice, 0xc, &offset) != LM_STATUS_SUCCESS) |
| return; |
| |
| offset = ((offset & 0xff) << 24) | ((offset & 0xff00) << 8) | |
| ((offset & 0xff0000) >> 8) | ((offset >> 24) & 0xff); |
| if (LM_NvramRead (pDevice, offset, &Value32) != LM_STATUS_SUCCESS) |
| return; |
| if ((Value32 == 0x0300000e) && |
| (LM_NvramRead (pDevice, offset + 4, &Value32) == LM_STATUS_SUCCESS) |
| && (Value32 == 0)) { |
| |
| if (LM_NvramRead (pDevice, offset + 8, &ver_offset) != |
| LM_STATUS_SUCCESS) |
| return; |
| ver_offset = ((ver_offset & 0xff0000) >> 8) | |
| ((ver_offset >> 24) & 0xff); |
| for (i = 0; i < 16; i += 4) { |
| if (LM_NvramRead |
| (pDevice, offset + ver_offset + i, |
| &Value32) != LM_STATUS_SUCCESS) { |
| return; |
| } |
| *((LM_UINT32 *) & pDevice->BootCodeVer[i]) = |
| cpu_to_le32 (Value32); |
| } |
| } else { |
| char c; |
| |
| if (LM_NvramRead (pDevice, 0x94, &Value32) != LM_STATUS_SUCCESS) |
| return; |
| |
| i = 0; |
| c = ((Value32 & 0xff0000) >> 16); |
| |
| if (c < 10) { |
| pDevice->BootCodeVer[i++] = c + '0'; |
| } else { |
| pDevice->BootCodeVer[i++] = (c / 10) + '0'; |
| pDevice->BootCodeVer[i++] = (c % 10) + '0'; |
| } |
| pDevice->BootCodeVer[i++] = '.'; |
| c = (Value32 & 0xff000000) >> 24; |
| if (c < 10) { |
| pDevice->BootCodeVer[i++] = c + '0'; |
| } else { |
| pDevice->BootCodeVer[i++] = (c / 10) + '0'; |
| pDevice->BootCodeVer[i++] = (c % 10) + '0'; |
| } |
| pDevice->BootCodeVer[i] = 0; |
| } |
| } |
| |
| STATIC void LM_GetBusSpeed (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_UINT32 PciState = pDevice->PciState; |
| LM_UINT32 ClockCtrl; |
| char *SpeedStr = ""; |
| |
| if (PciState & T3_PCI_STATE_32BIT_PCI_BUS) { |
| strcpy (pDevice->BusSpeedStr, "32-bit "); |
| } else { |
| strcpy (pDevice->BusSpeedStr, "64-bit "); |
| } |
| if (PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) { |
| strcat (pDevice->BusSpeedStr, "PCI "); |
| if (PciState & T3_PCI_STATE_HIGH_BUS_SPEED) { |
| SpeedStr = "66MHz"; |
| } else { |
| SpeedStr = "33MHz"; |
| } |
| } else { |
| strcat (pDevice->BusSpeedStr, "PCIX "); |
| if (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE) { |
| SpeedStr = "133MHz"; |
| } else { |
| ClockCtrl = REG_RD (pDevice, PciCfg.ClockCtrl) & 0x1f; |
| switch (ClockCtrl) { |
| case 0: |
| SpeedStr = "33MHz"; |
| break; |
| |
| case 2: |
| SpeedStr = "50MHz"; |
| break; |
| |
| case 4: |
| SpeedStr = "66MHz"; |
| break; |
| |
| case 6: |
| SpeedStr = "100MHz"; |
| break; |
| |
| case 7: |
| SpeedStr = "133MHz"; |
| break; |
| } |
| } |
| } |
| strcat (pDevice->BusSpeedStr, SpeedStr); |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* This routine initializes default parameters and reads the PCI */ |
| /* configurations. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS LM_GetAdapterInfo (PLM_DEVICE_BLOCK pDevice) |
| { |
| PLM_ADAPTER_INFO pAdapterInfo; |
| LM_UINT32 Value32; |
| LM_STATUS Status; |
| LM_UINT32 j; |
| LM_UINT32 EeSigFound; |
| LM_UINT32 EePhyTypeSerdes = 0; |
| LM_UINT32 EePhyLedMode = 0; |
| LM_UINT32 EePhyId = 0; |
| |
| /* Get Device Id and Vendor Id */ |
| Status = MM_ReadConfig32 (pDevice, PCI_VENDOR_ID_REG, &Value32); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| pDevice->PciVendorId = (LM_UINT16) Value32; |
| pDevice->PciDeviceId = (LM_UINT16) (Value32 >> 16); |
| |
| /* If we are not getting the write adapter, exit. */ |
| if ((Value32 != T3_PCI_ID_BCM5700) && |
| (Value32 != T3_PCI_ID_BCM5701) && |
| (Value32 != T3_PCI_ID_BCM5702) && |
| (Value32 != T3_PCI_ID_BCM5702x) && |
| (Value32 != T3_PCI_ID_BCM5702FE) && |
| (Value32 != T3_PCI_ID_BCM5703) && |
| (Value32 != T3_PCI_ID_BCM5703x) && (Value32 != T3_PCI_ID_BCM5704)) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| Status = MM_ReadConfig32 (pDevice, PCI_REV_ID_REG, &Value32); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| pDevice->PciRevId = (LM_UINT8) Value32; |
| |
| /* Get IRQ. */ |
| Status = MM_ReadConfig32 (pDevice, PCI_INT_LINE_REG, &Value32); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| pDevice->Irq = (LM_UINT8) Value32; |
| |
| /* Get interrupt pin. */ |
| pDevice->IntPin = (LM_UINT8) (Value32 >> 8); |
| |
| /* Get chip revision id. */ |
| Status = MM_ReadConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG, &Value32); |
| pDevice->ChipRevId = Value32 >> 16; |
| |
| /* Get subsystem vendor. */ |
| Status = |
| MM_ReadConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, &Value32); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| pDevice->SubsystemVendorId = (LM_UINT16) Value32; |
| |
| /* Get PCI subsystem id. */ |
| pDevice->SubsystemId = (LM_UINT16) (Value32 >> 16); |
| |
| /* Get the cache line size. */ |
| MM_ReadConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG, &Value32); |
| pDevice->CacheLineSize = (LM_UINT8) Value32; |
| pDevice->SavedCacheLineReg = Value32; |
| |
| if (pDevice->ChipRevId != T3_CHIP_ID_5703_A1 && |
| pDevice->ChipRevId != T3_CHIP_ID_5703_A2 && |
| pDevice->ChipRevId != T3_CHIP_ID_5704_A0) { |
| pDevice->UndiFix = FALSE; |
| } |
| #if !PCIX_TARGET_WORKAROUND |
| pDevice->UndiFix = FALSE; |
| #endif |
| /* Map the memory base to system address space. */ |
| if (!pDevice->UndiFix) { |
| Status = MM_MapMemBase (pDevice); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| /* Initialize the memory view pointer. */ |
| pDevice->pMemView = (PT3_STD_MEM_MAP) pDevice->pMappedMemBase; |
| } |
| #if PCIX_TARGET_WORKAROUND |
| /* store whether we are in PCI are PCI-X mode */ |
| pDevice->EnablePciXFix = FALSE; |
| |
| MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32); |
| if ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0) { |
| /* Enable PCI-X workaround only if we are running on 5700 BX. */ |
| if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) { |
| pDevice->EnablePciXFix = TRUE; |
| } |
| } |
| if (pDevice->UndiFix) { |
| pDevice->EnablePciXFix = TRUE; |
| } |
| #endif |
| /* Bx bug: due to the "byte_enable bug" in PCI-X mode, the power */ |
| /* management register may be clobbered which may cause the */ |
| /* BCM5700 to go into D3 state. While in this state, we will */ |
| /* not have memory mapped register access. As a workaround, we */ |
| /* need to restore the device to D0 state. */ |
| MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &Value32); |
| Value32 |= T3_PM_PME_ASSERTED; |
| Value32 &= ~T3_PM_POWER_STATE_MASK; |
| Value32 |= T3_PM_POWER_STATE_D0; |
| MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, Value32); |
| |
| /* read the current PCI command word */ |
| MM_ReadConfig32 (pDevice, PCI_COMMAND_REG, &Value32); |
| |
| /* Make sure bus-mastering is enabled. */ |
| Value32 |= PCI_BUSMASTER_ENABLE; |
| |
| #if PCIX_TARGET_WORKAROUND |
| /* if we are in PCI-X mode, also make sure mem-mapping and SERR#/PERR# |
| are enabled */ |
| if (pDevice->EnablePciXFix == TRUE) { |
| Value32 |= (PCI_MEM_SPACE_ENABLE | PCI_SYSTEM_ERROR_ENABLE | |
| PCI_PARITY_ERROR_ENABLE); |
| } |
| if (pDevice->UndiFix) { |
| Value32 &= ~PCI_MEM_SPACE_ENABLE; |
| } |
| #endif |
| |
| if (pDevice->EnableMWI) { |
| Value32 |= PCI_MEMORY_WRITE_INVALIDATE; |
| } else { |
| Value32 &= (~PCI_MEMORY_WRITE_INVALIDATE); |
| } |
| |
| /* Error out if mem-mapping is NOT enabled for PCI systems */ |
| if (!(Value32 | PCI_MEM_SPACE_ENABLE)) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| /* save the value we are going to write into the PCI command word */ |
| pDevice->PciCommandStatusWords = Value32; |
| |
| Status = MM_WriteConfig32 (pDevice, PCI_COMMAND_REG, Value32); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| |
| /* Set power state to D0. */ |
| LM_SetPowerState (pDevice, LM_POWER_STATE_D0); |
| |
| #ifdef BIG_ENDIAN_PCI |
| pDevice->MiscHostCtrl = |
| MISC_HOST_CTRL_MASK_PCI_INT | |
| MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS | |
| MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP | |
| MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW; |
| #else /* No CPU Swap modes for PCI IO */ |
| |
| /* Setup the mode registers. */ |
| pDevice->MiscHostCtrl = |
| MISC_HOST_CTRL_MASK_PCI_INT | |
| MISC_HOST_CTRL_ENABLE_ENDIAN_WORD_SWAP | |
| #ifdef BIG_ENDIAN_HOST |
| MISC_HOST_CTRL_ENABLE_ENDIAN_BYTE_SWAP | |
| #endif /* BIG_ENDIAN_HOST */ |
| MISC_HOST_CTRL_ENABLE_INDIRECT_ACCESS | |
| MISC_HOST_CTRL_ENABLE_PCI_STATE_REG_RW; |
| #endif /* !BIG_ENDIAN_PCI */ |
| |
| /* write to PCI misc host ctr first in order to enable indirect accesses */ |
| MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG, |
| pDevice->MiscHostCtrl); |
| |
| REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl); |
| |
| #ifdef BIG_ENDIAN_PCI |
| Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA; |
| #else |
| /* No CPU Swap modes for PCI IO */ |
| #ifdef BIG_ENDIAN_HOST |
| Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | |
| GRC_MODE_WORD_SWAP_NON_FRAME_DATA; |
| #else |
| Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA; |
| #endif |
| #endif /* !BIG_ENDIAN_PCI */ |
| |
| REG_WR (pDevice, Grc.Mode, Value32); |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| REG_WR (pDevice, Grc.LocalCtrl, |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE1); |
| } |
| MM_Wait (40); |
| |
| /* Enable indirect memory access */ |
| REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE); |
| |
| if (REG_RD (pDevice, PciCfg.ClockCtrl) & T3_PCI_44MHZ_CORE_CLOCK) { |
| REG_WR (pDevice, PciCfg.ClockCtrl, T3_PCI_44MHZ_CORE_CLOCK | |
| T3_PCI_SELECT_ALTERNATE_CLOCK); |
| REG_WR (pDevice, PciCfg.ClockCtrl, |
| T3_PCI_SELECT_ALTERNATE_CLOCK); |
| MM_Wait (40); /* required delay is 27usec */ |
| } |
| REG_WR (pDevice, PciCfg.ClockCtrl, 0); |
| REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0); |
| |
| #if PCIX_TARGET_WORKAROUND |
| MM_ReadConfig32 (pDevice, T3_PCI_STATE_REG, &Value32); |
| if ((pDevice->EnablePciXFix == FALSE) && |
| ((Value32 & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) == 0)) { |
| if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_B0 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_B2 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_B5) { |
| __raw_writel (0, |
| &(pDevice->pMemView->uIntMem. |
| MemBlock32K[0x300])); |
| __raw_writel (0, |
| &(pDevice->pMemView->uIntMem. |
| MemBlock32K[0x301])); |
| __raw_writel (0xffffffff, |
| &(pDevice->pMemView->uIntMem. |
| MemBlock32K[0x301])); |
| if (__raw_readl |
| (&(pDevice->pMemView->uIntMem.MemBlock32K[0x300]))) |
| { |
| pDevice->EnablePciXFix = TRUE; |
| } |
| } |
| } |
| #endif |
| #if 1 |
| /* |
| * This code was at the beginning of else block below, but that's |
| * a bug if node address in shared memory. |
| */ |
| MM_Wait (50); |
| LM_NvramInit (pDevice); |
| #endif |
| /* Get the node address. First try to get in from the shared memory. */ |
| /* If the signature is not present, then get it from the NVRAM. */ |
| Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_HIGH_MAILBOX); |
| if ((Value32 >> 16) == 0x484b) { |
| |
| pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 8); |
| pDevice->NodeAddress[1] = (LM_UINT8) Value32; |
| |
| Value32 = MEM_RD_OFFSET (pDevice, T3_MAC_ADDR_LOW_MAILBOX); |
| |
| pDevice->NodeAddress[2] = (LM_UINT8) (Value32 >> 24); |
| pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 16); |
| pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 8); |
| pDevice->NodeAddress[5] = (LM_UINT8) Value32; |
| |
| Status = LM_STATUS_SUCCESS; |
| } else { |
| Status = LM_NvramRead (pDevice, 0x7c, &Value32); |
| if (Status == LM_STATUS_SUCCESS) { |
| pDevice->NodeAddress[0] = (LM_UINT8) (Value32 >> 16); |
| pDevice->NodeAddress[1] = (LM_UINT8) (Value32 >> 24); |
| |
| Status = LM_NvramRead (pDevice, 0x80, &Value32); |
| |
| pDevice->NodeAddress[2] = (LM_UINT8) Value32; |
| pDevice->NodeAddress[3] = (LM_UINT8) (Value32 >> 8); |
| pDevice->NodeAddress[4] = (LM_UINT8) (Value32 >> 16); |
| pDevice->NodeAddress[5] = (LM_UINT8) (Value32 >> 24); |
| } |
| } |
| |
| /* Assign a default address. */ |
| if (Status != LM_STATUS_SUCCESS) { |
| #ifndef EMBEDDED |
| printk (KERN_ERR |
| "Cannot get MAC addr from NVRAM. Using default.\n"); |
| #endif |
| pDevice->NodeAddress[0] = 0x00; |
| pDevice->NodeAddress[1] = 0x10; |
| pDevice->NodeAddress[2] = 0x18; |
| pDevice->NodeAddress[3] = 0x68; |
| pDevice->NodeAddress[4] = 0x61; |
| pDevice->NodeAddress[5] = 0x76; |
| } |
| |
| pDevice->PermanentNodeAddress[0] = pDevice->NodeAddress[0]; |
| pDevice->PermanentNodeAddress[1] = pDevice->NodeAddress[1]; |
| pDevice->PermanentNodeAddress[2] = pDevice->NodeAddress[2]; |
| pDevice->PermanentNodeAddress[3] = pDevice->NodeAddress[3]; |
| pDevice->PermanentNodeAddress[4] = pDevice->NodeAddress[4]; |
| pDevice->PermanentNodeAddress[5] = pDevice->NodeAddress[5]; |
| |
| /* Initialize the default values. */ |
| pDevice->NoTxPseudoHdrChksum = FALSE; |
| pDevice->NoRxPseudoHdrChksum = FALSE; |
| pDevice->NicSendBd = FALSE; |
| pDevice->TxPacketDescCnt = DEFAULT_TX_PACKET_DESC_COUNT; |
| pDevice->RxStdDescCnt = DEFAULT_STD_RCV_DESC_COUNT; |
| pDevice->RxCoalescingTicks = DEFAULT_RX_COALESCING_TICKS; |
| pDevice->TxCoalescingTicks = DEFAULT_TX_COALESCING_TICKS; |
| pDevice->RxMaxCoalescedFrames = DEFAULT_RX_MAX_COALESCED_FRAMES; |
| pDevice->TxMaxCoalescedFrames = DEFAULT_TX_MAX_COALESCED_FRAMES; |
| pDevice->RxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE; |
| pDevice->TxCoalescingTicksDuringInt = BAD_DEFAULT_VALUE; |
| pDevice->RxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE; |
| pDevice->TxMaxCoalescedFramesDuringInt = BAD_DEFAULT_VALUE; |
| pDevice->StatsCoalescingTicks = DEFAULT_STATS_COALESCING_TICKS; |
| pDevice->EnableMWI = FALSE; |
| pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| pDevice->DisableAutoNeg = FALSE; |
| pDevice->PhyIntMode = T3_PHY_INT_MODE_AUTO; |
| pDevice->LinkChngMode = T3_LINK_CHNG_MODE_AUTO; |
| pDevice->LedMode = LED_MODE_AUTO; |
| pDevice->ResetPhyOnInit = TRUE; |
| pDevice->DelayPciGrant = TRUE; |
| pDevice->UseTaggedStatus = FALSE; |
| pDevice->OneDmaAtOnce = BAD_DEFAULT_VALUE; |
| |
| pDevice->DmaMbufLowMark = T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO; |
| pDevice->RxMacMbufLowMark = T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO; |
| pDevice->MbufHighMark = T3_DEF_MBUF_HIGH_WMARK_JUMBO; |
| |
| pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_AUTO; |
| pDevice->TaskOffloadCap = LM_TASK_OFFLOAD_NONE; |
| pDevice->FlowControlCap = LM_FLOW_CONTROL_AUTO_PAUSE; |
| pDevice->EnableTbi = FALSE; |
| #if INCLUDE_TBI_SUPPORT |
| pDevice->PollTbiLink = BAD_DEFAULT_VALUE; |
| #endif |
| |
| switch (T3_ASIC_REV (pDevice->ChipRevId)) { |
| case T3_ASIC_REV_5704: |
| pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR; |
| pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE64; |
| break; |
| default: |
| pDevice->MbufBase = T3_NIC_MBUF_POOL_ADDR; |
| pDevice->MbufSize = T3_NIC_MBUF_POOL_SIZE96; |
| break; |
| } |
| |
| pDevice->LinkStatus = LM_STATUS_LINK_DOWN; |
| pDevice->QueueRxPackets = TRUE; |
| |
| pDevice->EnableWireSpeed = TRUE; |
| |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| pDevice->RxJumboDescCnt = DEFAULT_JUMBO_RCV_DESC_COUNT; |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| /* Make this is a known adapter. */ |
| pAdapterInfo = LM_GetAdapterInfoBySsid (pDevice->SubsystemVendorId, |
| pDevice->SubsystemId); |
| |
| pDevice->BondId = REG_RD (pDevice, Grc.MiscCfg) & GRC_MISC_BD_ID_MASK; |
| if (pDevice->BondId != GRC_MISC_BD_ID_5700 && |
| pDevice->BondId != GRC_MISC_BD_ID_5701 && |
| pDevice->BondId != GRC_MISC_BD_ID_5702FE && |
| pDevice->BondId != GRC_MISC_BD_ID_5703 && |
| pDevice->BondId != GRC_MISC_BD_ID_5703S && |
| pDevice->BondId != GRC_MISC_BD_ID_5704 && |
| pDevice->BondId != GRC_MISC_BD_ID_5704CIOBE) { |
| return LM_STATUS_UNKNOWN_ADAPTER; |
| } |
| |
| pDevice->SplitModeEnable = SPLIT_MODE_DISABLE; |
| if ((pDevice->ChipRevId == T3_CHIP_ID_5704_A0) && |
| (pDevice->BondId == GRC_MISC_BD_ID_5704CIOBE)) { |
| pDevice->SplitModeEnable = SPLIT_MODE_ENABLE; |
| pDevice->SplitModeMaxReq = SPLIT_MODE_5704_MAX_REQ; |
| } |
| |
| /* Get Eeprom info. */ |
| Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_SIG_ADDR); |
| if (Value32 == T3_NIC_DATA_SIG) { |
| EeSigFound = TRUE; |
| Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_NIC_CFG_ADDR); |
| |
| /* Determine PHY type. */ |
| switch (Value32 & T3_NIC_CFG_PHY_TYPE_MASK) { |
| case T3_NIC_CFG_PHY_TYPE_COPPER: |
| EePhyTypeSerdes = FALSE; |
| break; |
| |
| case T3_NIC_CFG_PHY_TYPE_FIBER: |
| EePhyTypeSerdes = TRUE; |
| break; |
| |
| default: |
| EePhyTypeSerdes = FALSE; |
| break; |
| } |
| |
| /* Determine PHY led mode. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) { |
| case T3_NIC_CFG_LED_MODE_TRIPLE_SPEED: |
| EePhyLedMode = LED_MODE_THREE_LINK; |
| break; |
| |
| case T3_NIC_CFG_LED_MODE_LINK_SPEED: |
| EePhyLedMode = LED_MODE_LINK10; |
| break; |
| |
| default: |
| EePhyLedMode = LED_MODE_AUTO; |
| break; |
| } |
| } else { |
| switch (Value32 & T3_NIC_CFG_LED_MODE_MASK) { |
| case T3_NIC_CFG_LED_MODE_OPEN_DRAIN: |
| EePhyLedMode = LED_MODE_OPEN_DRAIN; |
| break; |
| |
| case T3_NIC_CFG_LED_MODE_OUTPUT: |
| EePhyLedMode = LED_MODE_OUTPUT; |
| break; |
| |
| default: |
| EePhyLedMode = LED_MODE_AUTO; |
| break; |
| } |
| } |
| if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 || |
| pDevice->ChipRevId == T3_CHIP_ID_5703_A2) { |
| /* Enable EEPROM write protection. */ |
| if (Value32 & T3_NIC_EEPROM_WP) { |
| pDevice->EepromWp = TRUE; |
| } |
| } |
| |
| /* Get the PHY Id. */ |
| Value32 = MEM_RD_OFFSET (pDevice, T3_NIC_DATA_PHY_ID_ADDR); |
| if (Value32) { |
| EePhyId = (((Value32 & T3_NIC_PHY_ID1_MASK) >> 16) & |
| PHY_ID1_OUI_MASK) << 10; |
| |
| Value32 = Value32 & T3_NIC_PHY_ID2_MASK; |
| |
| EePhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) | |
| (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & |
| PHY_ID2_REV_MASK); |
| } else { |
| EePhyId = 0; |
| } |
| } else { |
| EeSigFound = FALSE; |
| } |
| |
| /* Set the PHY address. */ |
| pDevice->PhyAddr = PHY_DEVICE_ID; |
| |
| /* Disable auto polling. */ |
| pDevice->MiMode = 0xc0000; |
| REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| MM_Wait (40); |
| |
| /* Get the PHY id. */ |
| LM_ReadPhy (pDevice, PHY_ID1_REG, &Value32); |
| pDevice->PhyId = (Value32 & PHY_ID1_OUI_MASK) << 10; |
| |
| LM_ReadPhy (pDevice, PHY_ID2_REG, &Value32); |
| pDevice->PhyId |= ((Value32 & PHY_ID2_OUI_MASK) << 16) | |
| (Value32 & PHY_ID2_MODEL_MASK) | (Value32 & PHY_ID2_REV_MASK); |
| |
| /* Set the EnableTbi flag to false if we have a copper PHY. */ |
| switch (pDevice->PhyId & PHY_ID_MASK) { |
| case PHY_BCM5400_PHY_ID: |
| pDevice->EnableTbi = FALSE; |
| break; |
| |
| case PHY_BCM5401_PHY_ID: |
| pDevice->EnableTbi = FALSE; |
| break; |
| |
| case PHY_BCM5411_PHY_ID: |
| pDevice->EnableTbi = FALSE; |
| break; |
| |
| case PHY_BCM5701_PHY_ID: |
| pDevice->EnableTbi = FALSE; |
| break; |
| |
| case PHY_BCM5703_PHY_ID: |
| pDevice->EnableTbi = FALSE; |
| break; |
| |
| case PHY_BCM5704_PHY_ID: |
| pDevice->EnableTbi = FALSE; |
| break; |
| |
| case PHY_BCM8002_PHY_ID: |
| pDevice->EnableTbi = TRUE; |
| break; |
| |
| default: |
| |
| if (pAdapterInfo) { |
| pDevice->PhyId = pAdapterInfo->PhyId; |
| pDevice->EnableTbi = pAdapterInfo->Serdes; |
| } else if (EeSigFound) { |
| pDevice->PhyId = EePhyId; |
| pDevice->EnableTbi = EePhyTypeSerdes; |
| } |
| break; |
| } |
| |
| /* Bail out if we don't know the copper PHY id. */ |
| if (UNKNOWN_PHY_ID (pDevice->PhyId) && !pDevice->EnableTbi) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) { |
| if ((pDevice->SavedCacheLineReg & 0xff00) < 0x4000) { |
| pDevice->SavedCacheLineReg &= 0xffff00ff; |
| pDevice->SavedCacheLineReg |= 0x4000; |
| } |
| } |
| /* Change driver parameters. */ |
| Status = MM_GetConfig (pDevice); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| #if INCLUDE_5701_AX_FIX |
| if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_B0) { |
| pDevice->ResetPhyOnInit = TRUE; |
| } |
| #endif |
| |
| /* Save the current phy link status. */ |
| if (!pDevice->EnableTbi) { |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| |
| /* If we don't have link reset the PHY. */ |
| if (!(Value32 & PHY_STATUS_LINK_PASS) |
| || pDevice->ResetPhyOnInit) { |
| |
| LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_PHY_RESET); |
| |
| for (j = 0; j < 100; j++) { |
| MM_Wait (10); |
| |
| LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32); |
| if (Value32 && !(Value32 & PHY_CTRL_PHY_RESET)) { |
| MM_Wait (40); |
| break; |
| } |
| } |
| |
| #if INCLUDE_5701_AX_FIX |
| /* 5701_AX_BX bug: only advertises 10mb speed. */ |
| if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_B0) { |
| |
| Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD | |
| PHY_AN_AD_10BASET_HALF | |
| PHY_AN_AD_10BASET_FULL | |
| PHY_AN_AD_100BASETX_FULL | |
| PHY_AN_AD_100BASETX_HALF; |
| Value32 |= GetPhyAdFlowCntrlSettings (pDevice); |
| LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32); |
| pDevice->advertising = Value32; |
| |
| Value32 = BCM540X_AN_AD_1000BASET_HALF | |
| BCM540X_AN_AD_1000BASET_FULL | |
| BCM540X_CONFIG_AS_MASTER | |
| BCM540X_ENABLE_CONFIG_AS_MASTER; |
| LM_WritePhy (pDevice, |
| BCM540X_1000BASET_CTRL_REG, |
| Value32); |
| pDevice->advertising1000 = Value32; |
| |
| LM_WritePhy (pDevice, PHY_CTRL_REG, |
| PHY_CTRL_AUTO_NEG_ENABLE | |
| PHY_CTRL_RESTART_AUTO_NEG); |
| } |
| #endif |
| if (T3_ASIC_REV (pDevice->ChipRevId) == |
| T3_ASIC_REV_5703) { |
| LM_WritePhy (pDevice, 0x18, 0x0c00); |
| LM_WritePhy (pDevice, 0x17, 0x201f); |
| LM_WritePhy (pDevice, 0x15, 0x2aaa); |
| } |
| if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) { |
| LM_WritePhy (pDevice, 0x1c, 0x8d68); |
| LM_WritePhy (pDevice, 0x1c, 0x8d68); |
| } |
| /* Enable Ethernet@WireSpeed. */ |
| if (pDevice->EnableWireSpeed) { |
| LM_WritePhy (pDevice, 0x18, 0x7007); |
| LM_ReadPhy (pDevice, 0x18, &Value32); |
| LM_WritePhy (pDevice, 0x18, |
| Value32 | BIT_15 | BIT_4); |
| } |
| } |
| } |
| |
| /* Turn off tap power management. */ |
| if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) { |
| LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20); |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804); |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204); |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132); |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232); |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20); |
| |
| MM_Wait (40); |
| } |
| #if INCLUDE_TBI_SUPPORT |
| pDevice->IgnoreTbiLinkChange = FALSE; |
| |
| if (pDevice->EnableTbi) { |
| pDevice->WakeUpModeCap = LM_WAKE_UP_MODE_NONE; |
| pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY; |
| if ((pDevice->PollTbiLink == BAD_DEFAULT_VALUE) || |
| pDevice->DisableAutoNeg) { |
| pDevice->PollTbiLink = FALSE; |
| } |
| } else { |
| pDevice->PollTbiLink = FALSE; |
| } |
| #endif /* INCLUDE_TBI_SUPPORT */ |
| |
| /* UseTaggedStatus is only valid for 5701 and later. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| pDevice->UseTaggedStatus = FALSE; |
| |
| pDevice->CoalesceMode = 0; |
| } else { |
| pDevice->CoalesceMode = |
| HOST_COALESCE_CLEAR_TICKS_ON_RX_BD_EVENT | |
| HOST_COALESCE_CLEAR_TICKS_ON_TX_BD_EVENT; |
| } |
| |
| /* Set the status block size. */ |
| if (T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_AX && |
| T3_CHIP_REV (pDevice->ChipRevId) != T3_CHIP_REV_5700_BX) { |
| pDevice->CoalesceMode |= HOST_COALESCE_32_BYTE_STATUS_MODE; |
| } |
| |
| /* Check the DURING_INT coalescing ticks parameters. */ |
| if (pDevice->UseTaggedStatus) { |
| if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) { |
| pDevice->RxCoalescingTicksDuringInt = |
| DEFAULT_RX_COALESCING_TICKS_DURING_INT; |
| } |
| |
| if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) { |
| pDevice->TxCoalescingTicksDuringInt = |
| DEFAULT_TX_COALESCING_TICKS_DURING_INT; |
| } |
| |
| if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) { |
| pDevice->RxMaxCoalescedFramesDuringInt = |
| DEFAULT_RX_MAX_COALESCED_FRAMES_DURING_INT; |
| } |
| |
| if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) { |
| pDevice->TxMaxCoalescedFramesDuringInt = |
| DEFAULT_TX_MAX_COALESCED_FRAMES_DURING_INT; |
| } |
| } else { |
| if (pDevice->RxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) { |
| pDevice->RxCoalescingTicksDuringInt = 0; |
| } |
| |
| if (pDevice->TxCoalescingTicksDuringInt == BAD_DEFAULT_VALUE) { |
| pDevice->TxCoalescingTicksDuringInt = 0; |
| } |
| |
| if (pDevice->RxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) { |
| pDevice->RxMaxCoalescedFramesDuringInt = 0; |
| } |
| |
| if (pDevice->TxMaxCoalescedFramesDuringInt == BAD_DEFAULT_VALUE) { |
| pDevice->TxMaxCoalescedFramesDuringInt = 0; |
| } |
| } |
| |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| if (pDevice->RxMtu <= (MAX_STD_RCV_BUFFER_SIZE - 8 /* CRC */ )) { |
| pDevice->RxJumboDescCnt = 0; |
| if (pDevice->RxMtu <= MAX_ETHERNET_PACKET_SIZE_NO_CRC) { |
| pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| } |
| } else { |
| pDevice->RxJumboBufferSize = |
| (pDevice->RxMtu + 8 /* CRC + VLAN */ + |
| COMMON_CACHE_LINE_SIZE - 1) & ~COMMON_CACHE_LINE_MASK; |
| |
| if (pDevice->RxJumboBufferSize > MAX_JUMBO_RCV_BUFFER_SIZE) { |
| pDevice->RxJumboBufferSize = |
| DEFAULT_JUMBO_RCV_BUFFER_SIZE; |
| pDevice->RxMtu = |
| pDevice->RxJumboBufferSize - 8 /* CRC + VLAN */ ; |
| } |
| pDevice->TxMtu = pDevice->RxMtu; |
| |
| } |
| #else |
| pDevice->RxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| pDevice->RxPacketDescCnt = |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| pDevice->RxJumboDescCnt + |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| pDevice->RxStdDescCnt; |
| |
| if (pDevice->TxMtu < MAX_ETHERNET_PACKET_SIZE_NO_CRC) { |
| pDevice->TxMtu = MAX_ETHERNET_PACKET_SIZE_NO_CRC; |
| } |
| |
| if (pDevice->TxMtu > MAX_JUMBO_TX_BUFFER_SIZE) { |
| pDevice->TxMtu = MAX_JUMBO_TX_BUFFER_SIZE; |
| } |
| |
| /* Configure the proper ways to get link change interrupt. */ |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO) { |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT; |
| } else { |
| pDevice->PhyIntMode = T3_PHY_INT_MODE_LINK_READY; |
| } |
| } else if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) { |
| /* Auto-polling does not work on 5700_AX and 5700_BX. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| pDevice->PhyIntMode = T3_PHY_INT_MODE_MI_INTERRUPT; |
| } |
| } |
| |
| /* Determine the method to get link change status. */ |
| if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_AUTO) { |
| /* The link status bit in the status block does not work on 5700_AX */ |
| /* and 5700_BX chips. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| pDevice->LinkChngMode = |
| T3_LINK_CHNG_MODE_USE_STATUS_REG; |
| } else { |
| pDevice->LinkChngMode = |
| T3_LINK_CHNG_MODE_USE_STATUS_BLOCK; |
| } |
| } |
| |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| pDevice->LinkChngMode = T3_LINK_CHNG_MODE_USE_STATUS_REG; |
| } |
| |
| /* Configure PHY led mode. */ |
| if (pDevice->LedMode == LED_MODE_AUTO) { |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| if (pDevice->SubsystemVendorId == T3_SVID_DELL) { |
| pDevice->LedMode = LED_MODE_LINK10; |
| } else { |
| pDevice->LedMode = LED_MODE_THREE_LINK; |
| |
| if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) { |
| pDevice->LedMode = EePhyLedMode; |
| } |
| } |
| |
| /* bug? 5701 in LINK10 mode does not seem to work when */ |
| /* PhyIntMode is LINK_READY. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 |
| && |
| #if INCLUDE_TBI_SUPPORT |
| pDevice->EnableTbi == FALSE && |
| #endif |
| pDevice->LedMode == LED_MODE_LINK10) { |
| pDevice->PhyIntMode = |
| T3_PHY_INT_MODE_MI_INTERRUPT; |
| pDevice->LinkChngMode = |
| T3_LINK_CHNG_MODE_USE_STATUS_REG; |
| } |
| |
| if (pDevice->EnableTbi) { |
| pDevice->LedMode = LED_MODE_THREE_LINK; |
| } |
| } else { |
| if (EeSigFound && EePhyLedMode != LED_MODE_AUTO) { |
| pDevice->LedMode = EePhyLedMode; |
| } else { |
| pDevice->LedMode = LED_MODE_OPEN_DRAIN; |
| } |
| } |
| } |
| |
| /* Enable OneDmaAtOnce. */ |
| if (pDevice->OneDmaAtOnce == BAD_DEFAULT_VALUE) { |
| pDevice->OneDmaAtOnce = FALSE; |
| } |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_B0 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_B2) { |
| pDevice->WolSpeed = WOL_SPEED_10MB; |
| } else { |
| pDevice->WolSpeed = WOL_SPEED_100MB; |
| } |
| |
| /* Offloadings. */ |
| pDevice->TaskToOffload = LM_TASK_OFFLOAD_NONE; |
| |
| /* Turn off task offloading on Ax. */ |
| if (pDevice->ChipRevId == T3_CHIP_ID_5700_B0) { |
| pDevice->TaskOffloadCap &= ~(LM_TASK_OFFLOAD_TX_TCP_CHECKSUM | |
| LM_TASK_OFFLOAD_TX_UDP_CHECKSUM); |
| } |
| pDevice->PciState = REG_RD (pDevice, PciCfg.PciState); |
| LM_ReadVPD (pDevice); |
| LM_ReadBootCodeVersion (pDevice); |
| LM_GetBusSpeed (pDevice); |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_GetAdapterInfo */ |
| |
| STATIC PLM_ADAPTER_INFO LM_GetAdapterInfoBySsid (LM_UINT16 Svid, LM_UINT16 Ssid) |
| { |
| static LM_ADAPTER_INFO AdapterArr[] = { |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A6, |
| PHY_BCM5401_PHY_ID, 0}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A5, |
| PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700T6, |
| PHY_BCM8002_PHY_ID, 1}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95700A9, 0, 1}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T1, |
| PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701T8, |
| PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A7, 0, 1}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A10, |
| PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95701A12, |
| PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax1, |
| PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_BROADCOM, T3_SSID_BROADCOM_BCM95703Ax2, |
| PHY_BCM5701_PHY_ID, 0}, |
| |
| {T3_SVID_3COM, T3_SSID_3COM_3C996T, PHY_BCM5401_PHY_ID, 0}, |
| {T3_SVID_3COM, T3_SSID_3COM_3C996BT, PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_3COM, T3_SSID_3COM_3C996SX, 0, 1}, |
| {T3_SVID_3COM, T3_SSID_3COM_3C1000T, PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_3COM, T3_SSID_3COM_3C940BR01, PHY_BCM5701_PHY_ID, 0}, |
| |
| {T3_SVID_DELL, T3_SSID_DELL_VIPER, PHY_BCM5401_PHY_ID, 0}, |
| {T3_SVID_DELL, T3_SSID_DELL_JAGUAR, PHY_BCM5401_PHY_ID, 0}, |
| {T3_SVID_DELL, T3_SSID_DELL_MERLOT, PHY_BCM5411_PHY_ID, 0}, |
| {T3_SVID_DELL, T3_SSID_DELL_SLIM_MERLOT, PHY_BCM5411_PHY_ID, 0}, |
| |
| {T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE, PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_COMPAQ, T3_SSID_COMPAQ_BANSHEE_2, PHY_BCM5701_PHY_ID, |
| 0}, |
| {T3_SVID_COMPAQ, T3_SSID_COMPAQ_CHANGELING, 0, 1}, |
| {T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780, PHY_BCM5701_PHY_ID, 0}, |
| {T3_SVID_COMPAQ, T3_SSID_COMPAQ_NC7780_2, PHY_BCM5701_PHY_ID, |
| 0}, |
| |
| }; |
| LM_UINT32 j; |
| |
| for (j = 0; j < sizeof (AdapterArr) / sizeof (LM_ADAPTER_INFO); j++) { |
| if (AdapterArr[j].Svid == Svid && AdapterArr[j].Ssid == Ssid) { |
| return &AdapterArr[j]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* This routine sets up receive/transmit buffer descriptions queues. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS LM_InitializeAdapter (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_PHYSICAL_ADDRESS MemPhy; |
| PLM_UINT8 pMemVirt; |
| PLM_PACKET pPacket; |
| LM_STATUS Status; |
| LM_UINT32 Size; |
| LM_UINT32 j; |
| |
| /* Set power state to D0. */ |
| LM_SetPowerState (pDevice, LM_POWER_STATE_D0); |
| |
| /* Intialize the queues. */ |
| QQ_InitQueue (&pDevice->RxPacketReceivedQ.Container, |
| MAX_RX_PACKET_DESC_COUNT); |
| QQ_InitQueue (&pDevice->RxPacketFreeQ.Container, |
| MAX_RX_PACKET_DESC_COUNT); |
| |
| QQ_InitQueue (&pDevice->TxPacketFreeQ.Container, |
| MAX_TX_PACKET_DESC_COUNT); |
| QQ_InitQueue (&pDevice->TxPacketActiveQ.Container, |
| MAX_TX_PACKET_DESC_COUNT); |
| QQ_InitQueue (&pDevice->TxPacketXmittedQ.Container, |
| MAX_TX_PACKET_DESC_COUNT); |
| |
| /* Allocate shared memory for: status block, the buffers for receive */ |
| /* rings -- standard, mini, jumbo, and return rings. */ |
| Size = T3_STATUS_BLOCK_SIZE + sizeof (T3_STATS_BLOCK) + |
| T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) + |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD) + |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD); |
| |
| /* Memory for host based Send BD. */ |
| if (pDevice->NicSendBd == FALSE) { |
| Size += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT; |
| } |
| |
| /* Allocate the memory block. */ |
| Status = |
| MM_AllocateSharedMemory (pDevice, Size, (PLM_VOID) & pMemVirt, |
| &MemPhy, FALSE); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| |
| /* Program DMA Read/Write */ |
| if (pDevice->PciState & T3_PCI_STATE_NOT_PCI_X_BUS) { |
| pDevice->DmaReadWriteCtrl = 0x763f000f; |
| } else { |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5704) { |
| pDevice->DmaReadWriteCtrl = 0x761f0000; |
| } else { |
| pDevice->DmaReadWriteCtrl = 0x761b000f; |
| } |
| if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1 || |
| pDevice->ChipRevId == T3_CHIP_ID_5703_A2) { |
| pDevice->OneDmaAtOnce = TRUE; |
| } |
| } |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5703) { |
| pDevice->DmaReadWriteCtrl &= 0xfffffff0; |
| } |
| |
| if (pDevice->OneDmaAtOnce) { |
| pDevice->DmaReadWriteCtrl |= DMA_CTRL_WRITE_ONE_DMA_AT_ONCE; |
| } |
| REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl); |
| |
| if (LM_DmaTest (pDevice, pMemVirt, MemPhy, 0x400) != LM_STATUS_SUCCESS) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| /* Status block. */ |
| pDevice->pStatusBlkVirt = (PT3_STATUS_BLOCK) pMemVirt; |
| pDevice->StatusBlkPhy = MemPhy; |
| pMemVirt += T3_STATUS_BLOCK_SIZE; |
| LM_INC_PHYSICAL_ADDRESS (&MemPhy, T3_STATUS_BLOCK_SIZE); |
| |
| /* Statistics block. */ |
| pDevice->pStatsBlkVirt = (PT3_STATS_BLOCK) pMemVirt; |
| pDevice->StatsBlkPhy = MemPhy; |
| pMemVirt += sizeof (T3_STATS_BLOCK); |
| LM_INC_PHYSICAL_ADDRESS (&MemPhy, sizeof (T3_STATS_BLOCK)); |
| |
| /* Receive standard BD buffer. */ |
| pDevice->pRxStdBdVirt = (PT3_RCV_BD) pMemVirt; |
| pDevice->RxStdBdPhy = MemPhy; |
| |
| pMemVirt += T3_STD_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD); |
| LM_INC_PHYSICAL_ADDRESS (&MemPhy, |
| T3_STD_RCV_RCB_ENTRY_COUNT * |
| sizeof (T3_RCV_BD)); |
| |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| /* Receive jumbo BD buffer. */ |
| pDevice->pRxJumboBdVirt = (PT3_RCV_BD) pMemVirt; |
| pDevice->RxJumboBdPhy = MemPhy; |
| |
| pMemVirt += T3_JUMBO_RCV_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD); |
| LM_INC_PHYSICAL_ADDRESS (&MemPhy, |
| T3_JUMBO_RCV_RCB_ENTRY_COUNT * |
| sizeof (T3_RCV_BD)); |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| /* Receive return BD buffer. */ |
| pDevice->pRcvRetBdVirt = (PT3_RCV_BD) pMemVirt; |
| pDevice->RcvRetBdPhy = MemPhy; |
| |
| pMemVirt += T3_RCV_RETURN_RCB_ENTRY_COUNT * sizeof (T3_RCV_BD); |
| LM_INC_PHYSICAL_ADDRESS (&MemPhy, |
| T3_RCV_RETURN_RCB_ENTRY_COUNT * |
| sizeof (T3_RCV_BD)); |
| |
| /* Set up Send BD. */ |
| if (pDevice->NicSendBd == FALSE) { |
| pDevice->pSendBdVirt = (PT3_SND_BD) pMemVirt; |
| pDevice->SendBdPhy = MemPhy; |
| |
| pMemVirt += sizeof (T3_SND_BD) * T3_SEND_RCB_ENTRY_COUNT; |
| LM_INC_PHYSICAL_ADDRESS (&MemPhy, |
| sizeof (T3_SND_BD) * |
| T3_SEND_RCB_ENTRY_COUNT); |
| } else { |
| pDevice->pSendBdVirt = (PT3_SND_BD) |
| pDevice->pMemView->uIntMem.First32k.BufferDesc; |
| pDevice->SendBdPhy.High = 0; |
| pDevice->SendBdPhy.Low = T3_NIC_SND_BUFFER_DESC_ADDR; |
| } |
| |
| /* Allocate memory for packet descriptors. */ |
| Size = (pDevice->RxPacketDescCnt + |
| pDevice->TxPacketDescCnt) * MM_PACKET_DESC_SIZE; |
| Status = MM_AllocateMemory (pDevice, Size, (PLM_VOID *) & pPacket); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| pDevice->pPacketDescBase = (PLM_VOID) pPacket; |
| |
| /* Create transmit packet descriptors from the memory block and add them */ |
| /* to the TxPacketFreeQ for each send ring. */ |
| for (j = 0; j < pDevice->TxPacketDescCnt; j++) { |
| /* Ring index. */ |
| pPacket->Flags = 0; |
| |
| /* Queue the descriptor in the TxPacketFreeQ of the 'k' ring. */ |
| QQ_PushTail (&pDevice->TxPacketFreeQ.Container, pPacket); |
| |
| /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */ |
| /* is the total size of the packet descriptor including the */ |
| /* os-specific extensions in the UM_PACKET structure. */ |
| pPacket = |
| (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE); |
| } /* for(j.. */ |
| |
| /* Create receive packet descriptors from the memory block and add them */ |
| /* to the RxPacketFreeQ. Create the Standard packet descriptors. */ |
| for (j = 0; j < pDevice->RxStdDescCnt; j++) { |
| /* Receive producer ring. */ |
| pPacket->u.Rx.RcvProdRing = T3_STD_RCV_PROD_RING; |
| |
| /* Receive buffer size. */ |
| pPacket->u.Rx.RxBufferSize = MAX_STD_RCV_BUFFER_SIZE; |
| |
| /* Add the descriptor to RxPacketFreeQ. */ |
| QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket); |
| |
| /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */ |
| /* is the total size of the packet descriptor including the */ |
| /* os-specific extensions in the UM_PACKET structure. */ |
| pPacket = |
| (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE); |
| } /* for */ |
| |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| /* Create the Jumbo packet descriptors. */ |
| for (j = 0; j < pDevice->RxJumboDescCnt; j++) { |
| /* Receive producer ring. */ |
| pPacket->u.Rx.RcvProdRing = T3_JUMBO_RCV_PROD_RING; |
| |
| /* Receive buffer size. */ |
| pPacket->u.Rx.RxBufferSize = pDevice->RxJumboBufferSize; |
| |
| /* Add the descriptor to RxPacketFreeQ. */ |
| QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket); |
| |
| /* Get the pointer to the next descriptor. MM_PACKET_DESC_SIZE */ |
| /* is the total size of the packet descriptor including the */ |
| /* os-specific extensions in the UM_PACKET structure. */ |
| pPacket = |
| (PLM_PACKET) ((PLM_UINT8) pPacket + MM_PACKET_DESC_SIZE); |
| } /* for */ |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| /* Initialize the rest of the packet descriptors. */ |
| Status = MM_InitializeUmPackets (pDevice); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| |
| /* if */ |
| /* Default receive mask. */ |
| pDevice->ReceiveMask = LM_ACCEPT_MULTICAST | LM_ACCEPT_BROADCAST | |
| LM_ACCEPT_UNICAST; |
| |
| /* Make sure we are in the first 32k memory window or NicSendBd. */ |
| REG_WR (pDevice, PciCfg.MemWindowBaseAddr, 0); |
| |
| /* Initialize the hardware. */ |
| Status = LM_ResetAdapter (pDevice); |
| if (Status != LM_STATUS_SUCCESS) { |
| return Status; |
| } |
| |
| /* We are done with initialization. */ |
| pDevice->InitDone = TRUE; |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_InitializeAdapter */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* This function Enables/Disables a given block. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS |
| LM_CntrlBlock (PLM_DEVICE_BLOCK pDevice, LM_UINT32 mask, LM_UINT32 cntrl) |
| { |
| LM_UINT32 j, i, data; |
| LM_UINT32 MaxWaitCnt; |
| |
| MaxWaitCnt = 2; |
| j = 0; |
| |
| for (i = 0; i < 32; i++) { |
| if (!(mask & (1 << i))) |
| continue; |
| |
| switch (1 << i) { |
| case T3_BLOCK_DMA_RD: |
| data = REG_RD (pDevice, DmaRead.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~DMA_READ_MODE_ENABLE; |
| REG_WR (pDevice, DmaRead.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, DmaRead.Mode) & |
| DMA_READ_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, DmaRead.Mode, |
| data | DMA_READ_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_DMA_COMP: |
| data = REG_RD (pDevice, DmaComp.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~DMA_COMP_MODE_ENABLE; |
| REG_WR (pDevice, DmaComp.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, DmaComp.Mode) & |
| DMA_COMP_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, DmaComp.Mode, |
| data | DMA_COMP_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_RX_BD_INITIATOR: |
| data = REG_RD (pDevice, RcvBdIn.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~RCV_BD_IN_MODE_ENABLE; |
| REG_WR (pDevice, RcvBdIn.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, RcvBdIn.Mode) & |
| RCV_BD_IN_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, RcvBdIn.Mode, |
| data | RCV_BD_IN_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_RX_BD_COMP: |
| data = REG_RD (pDevice, RcvBdComp.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~RCV_BD_COMP_MODE_ENABLE; |
| REG_WR (pDevice, RcvBdComp.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, RcvBdComp.Mode) & |
| RCV_BD_COMP_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, RcvBdComp.Mode, |
| data | RCV_BD_COMP_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_DMA_WR: |
| data = REG_RD (pDevice, DmaWrite.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~DMA_WRITE_MODE_ENABLE; |
| REG_WR (pDevice, DmaWrite.Mode, data); |
| |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, DmaWrite.Mode) & |
| DMA_WRITE_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, DmaWrite.Mode, |
| data | DMA_WRITE_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_MSI_HANDLER: |
| data = REG_RD (pDevice, Msi.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~MSI_MODE_ENABLE; |
| REG_WR (pDevice, Msi.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, Msi.Mode) & |
| MSI_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, Msi.Mode, |
| data | MSI_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_RX_LIST_PLMT: |
| data = REG_RD (pDevice, RcvListPlmt.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~RCV_LIST_PLMT_MODE_ENABLE; |
| REG_WR (pDevice, RcvListPlmt.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, RcvListPlmt.Mode) |
| & RCV_LIST_PLMT_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, RcvListPlmt.Mode, |
| data | RCV_LIST_PLMT_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_RX_LIST_SELECTOR: |
| data = REG_RD (pDevice, RcvListSel.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~RCV_LIST_SEL_MODE_ENABLE; |
| REG_WR (pDevice, RcvListSel.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, RcvListSel.Mode) & |
| RCV_LIST_SEL_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, RcvListSel.Mode, |
| data | RCV_LIST_SEL_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_RX_DATA_INITIATOR: |
| data = REG_RD (pDevice, RcvDataBdIn.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~RCV_DATA_BD_IN_MODE_ENABLE; |
| REG_WR (pDevice, RcvDataBdIn.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, RcvDataBdIn.Mode) |
| & RCV_DATA_BD_IN_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, RcvDataBdIn.Mode, |
| data | RCV_DATA_BD_IN_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_RX_DATA_COMP: |
| data = REG_RD (pDevice, RcvDataComp.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~RCV_DATA_COMP_MODE_ENABLE; |
| REG_WR (pDevice, RcvDataComp.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, RcvDataBdIn.Mode) |
| & RCV_DATA_COMP_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, RcvDataComp.Mode, |
| data | RCV_DATA_COMP_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_HOST_COALESING: |
| data = REG_RD (pDevice, HostCoalesce.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~HOST_COALESCE_ENABLE; |
| REG_WR (pDevice, HostCoalesce.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, SndBdIn.Mode) & |
| HOST_COALESCE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, HostCoalesce.Mode, |
| data | HOST_COALESCE_ENABLE); |
| break; |
| |
| case T3_BLOCK_MAC_RX_ENGINE: |
| if (cntrl == LM_DISABLE) { |
| pDevice->RxMode &= ~RX_MODE_ENABLE; |
| REG_WR (pDevice, MacCtrl.RxMode, |
| pDevice->RxMode); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, MacCtrl.RxMode) & |
| RX_MODE_ENABLE)) { |
| break; |
| } |
| MM_Wait (10); |
| } |
| } else { |
| pDevice->RxMode |= RX_MODE_ENABLE; |
| REG_WR (pDevice, MacCtrl.RxMode, |
| pDevice->RxMode); |
| } |
| break; |
| |
| case T3_BLOCK_MBUF_CLUSTER_FREE: |
| data = REG_RD (pDevice, MbufClusterFree.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~MBUF_CLUSTER_FREE_MODE_ENABLE; |
| REG_WR (pDevice, MbufClusterFree.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD |
| (pDevice, |
| MbufClusterFree. |
| Mode) & |
| MBUF_CLUSTER_FREE_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, MbufClusterFree.Mode, |
| data | MBUF_CLUSTER_FREE_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_SEND_BD_INITIATOR: |
| data = REG_RD (pDevice, SndBdIn.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~SND_BD_IN_MODE_ENABLE; |
| REG_WR (pDevice, SndBdIn.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, SndBdIn.Mode) & |
| SND_BD_IN_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, SndBdIn.Mode, |
| data | SND_BD_IN_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_SEND_BD_COMP: |
| data = REG_RD (pDevice, SndBdComp.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~SND_BD_COMP_MODE_ENABLE; |
| REG_WR (pDevice, SndBdComp.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, SndBdComp.Mode) & |
| SND_BD_COMP_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, SndBdComp.Mode, |
| data | SND_BD_COMP_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_SEND_BD_SELECTOR: |
| data = REG_RD (pDevice, SndBdSel.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~SND_BD_SEL_MODE_ENABLE; |
| REG_WR (pDevice, SndBdSel.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, SndBdSel.Mode) & |
| SND_BD_SEL_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, SndBdSel.Mode, |
| data | SND_BD_SEL_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_SEND_DATA_INITIATOR: |
| data = REG_RD (pDevice, SndDataIn.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~T3_SND_DATA_IN_MODE_ENABLE; |
| REG_WR (pDevice, SndDataIn.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, SndDataIn.Mode) & |
| T3_SND_DATA_IN_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, SndDataIn.Mode, |
| data | T3_SND_DATA_IN_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_SEND_DATA_COMP: |
| data = REG_RD (pDevice, SndDataComp.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~SND_DATA_COMP_MODE_ENABLE; |
| REG_WR (pDevice, SndDataComp.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, SndDataComp.Mode) |
| & SND_DATA_COMP_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, SndDataComp.Mode, |
| data | SND_DATA_COMP_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_MAC_TX_ENGINE: |
| if (cntrl == LM_DISABLE) { |
| pDevice->TxMode &= ~TX_MODE_ENABLE; |
| REG_WR (pDevice, MacCtrl.TxMode, |
| pDevice->TxMode); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, MacCtrl.TxMode) & |
| TX_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else { |
| pDevice->TxMode |= TX_MODE_ENABLE; |
| REG_WR (pDevice, MacCtrl.TxMode, |
| pDevice->TxMode); |
| } |
| break; |
| |
| case T3_BLOCK_MEM_ARBITOR: |
| data = REG_RD (pDevice, MemArbiter.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~T3_MEM_ARBITER_MODE_ENABLE; |
| REG_WR (pDevice, MemArbiter.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, MemArbiter.Mode) & |
| T3_MEM_ARBITER_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, MemArbiter.Mode, |
| data | T3_MEM_ARBITER_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_MBUF_MANAGER: |
| data = REG_RD (pDevice, BufMgr.Mode); |
| if (cntrl == LM_DISABLE) { |
| data &= ~BUFMGR_MODE_ENABLE; |
| REG_WR (pDevice, BufMgr.Mode, data); |
| for (j = 0; j < MaxWaitCnt; j++) { |
| if (! |
| (REG_RD (pDevice, BufMgr.Mode) & |
| BUFMGR_MODE_ENABLE)) |
| break; |
| MM_Wait (10); |
| } |
| } else |
| REG_WR (pDevice, BufMgr.Mode, |
| data | BUFMGR_MODE_ENABLE); |
| break; |
| |
| case T3_BLOCK_MAC_GLOBAL: |
| if (cntrl == LM_DISABLE) { |
| pDevice->MacMode &= ~(MAC_MODE_ENABLE_TDE | |
| MAC_MODE_ENABLE_RDE | |
| MAC_MODE_ENABLE_FHDE); |
| } else { |
| pDevice->MacMode |= (MAC_MODE_ENABLE_TDE | |
| MAC_MODE_ENABLE_RDE | |
| MAC_MODE_ENABLE_FHDE); |
| } |
| REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode); |
| break; |
| |
| default: |
| return LM_STATUS_FAILURE; |
| } /* switch */ |
| |
| if (j >= MaxWaitCnt) { |
| return LM_STATUS_FAILURE; |
| } |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* This function reinitializes the adapter. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS LM_ResetAdapter (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_UINT32 Value32; |
| LM_UINT16 Value16; |
| LM_UINT32 j, k; |
| |
| /* Disable interrupt. */ |
| LM_DisableInterrupt (pDevice); |
| |
| /* May get a spurious interrupt */ |
| pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED; |
| |
| /* Disable transmit and receive DMA engines. Abort all pending requests. */ |
| if (pDevice->InitDone) { |
| LM_Abort (pDevice); |
| } |
| |
| pDevice->ShuttingDown = FALSE; |
| |
| LM_ResetChip (pDevice); |
| |
| /* Bug: Athlon fix for B3 silicon only. This bit does not do anything */ |
| /* in other chip revisions. */ |
| if (pDevice->DelayPciGrant) { |
| Value32 = REG_RD (pDevice, PciCfg.ClockCtrl); |
| REG_WR (pDevice, PciCfg.ClockCtrl, Value32 | BIT_31); |
| } |
| |
| if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) { |
| if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) { |
| Value32 = REG_RD (pDevice, PciCfg.PciState); |
| Value32 |= T3_PCI_STATE_RETRY_SAME_DMA; |
| REG_WR (pDevice, PciCfg.PciState, Value32); |
| } |
| } |
| |
| /* Enable TaggedStatus mode. */ |
| if (pDevice->UseTaggedStatus) { |
| pDevice->MiscHostCtrl |= |
| MISC_HOST_CTRL_ENABLE_TAGGED_STATUS_MODE; |
| } |
| |
| /* Restore PCI configuration registers. */ |
| MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG, |
| pDevice->SavedCacheLineReg); |
| MM_WriteConfig32 (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, |
| (pDevice->SubsystemId << 16) | pDevice-> |
| SubsystemVendorId); |
| |
| /* Clear the statistics block. */ |
| for (j = 0x0300; j < 0x0b00; j++) { |
| MEM_WR_OFFSET (pDevice, j, 0); |
| } |
| |
| /* Initialize the statistis Block */ |
| pDevice->pStatusBlkVirt->Status = 0; |
| pDevice->pStatusBlkVirt->RcvStdConIdx = 0; |
| pDevice->pStatusBlkVirt->RcvJumboConIdx = 0; |
| pDevice->pStatusBlkVirt->RcvMiniConIdx = 0; |
| |
| for (j = 0; j < 16; j++) { |
| pDevice->pStatusBlkVirt->Idx[j].RcvProdIdx = 0; |
| pDevice->pStatusBlkVirt->Idx[j].SendConIdx = 0; |
| } |
| |
| for (k = 0; k < T3_STD_RCV_RCB_ENTRY_COUNT; k++) { |
| pDevice->pRxStdBdVirt[k].HostAddr.High = 0; |
| pDevice->pRxStdBdVirt[k].HostAddr.Low = 0; |
| } |
| |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| /* Receive jumbo BD buffer. */ |
| for (k = 0; k < T3_JUMBO_RCV_RCB_ENTRY_COUNT; k++) { |
| pDevice->pRxJumboBdVirt[k].HostAddr.High = 0; |
| pDevice->pRxJumboBdVirt[k].HostAddr.Low = 0; |
| } |
| #endif |
| |
| REG_WR (pDevice, PciCfg.DmaReadWriteCtrl, pDevice->DmaReadWriteCtrl); |
| |
| /* GRC mode control register. */ |
| #ifdef BIG_ENDIAN_PCI /* Jimmy, this ifdef block deleted in new code! */ |
| Value32 = |
| GRC_MODE_WORD_SWAP_DATA | |
| GRC_MODE_WORD_SWAP_NON_FRAME_DATA | |
| GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP; |
| #else |
| /* No CPU Swap modes for PCI IO */ |
| Value32 = |
| #ifdef BIG_ENDIAN_HOST |
| GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | |
| GRC_MODE_WORD_SWAP_NON_FRAME_DATA | |
| GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA | |
| #else |
| GRC_MODE_WORD_SWAP_NON_FRAME_DATA | |
| GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA | |
| #endif |
| GRC_MODE_INT_ON_MAC_ATTN | GRC_MODE_HOST_STACK_UP; |
| #endif /* !BIG_ENDIAN_PCI */ |
| |
| /* Configure send BD mode. */ |
| if (pDevice->NicSendBd == FALSE) { |
| Value32 |= GRC_MODE_HOST_SEND_BDS; |
| } else { |
| Value32 |= GRC_MODE_4X_NIC_BASED_SEND_RINGS; |
| } |
| |
| /* Configure pseudo checksum mode. */ |
| if (pDevice->NoTxPseudoHdrChksum) { |
| Value32 |= GRC_MODE_TX_NO_PSEUDO_HEADER_CHKSUM; |
| } |
| |
| if (pDevice->NoRxPseudoHdrChksum) { |
| Value32 |= GRC_MODE_RX_NO_PSEUDO_HEADER_CHKSUM; |
| } |
| |
| REG_WR (pDevice, Grc.Mode, Value32); |
| |
| /* Setup the timer prescalar register. */ |
| REG_WR (pDevice, Grc.MiscCfg, 65 << 1); /* Clock is alwasy 66MHz. */ |
| |
| /* Set up the MBUF pool base address and size. */ |
| REG_WR (pDevice, BufMgr.MbufPoolAddr, pDevice->MbufBase); |
| REG_WR (pDevice, BufMgr.MbufPoolSize, pDevice->MbufSize); |
| |
| /* Set up the DMA descriptor pool base address and size. */ |
| REG_WR (pDevice, BufMgr.DmaDescPoolAddr, T3_NIC_DMA_DESC_POOL_ADDR); |
| REG_WR (pDevice, BufMgr.DmaDescPoolSize, T3_NIC_DMA_DESC_POOL_SIZE); |
| |
| /* Configure MBUF and Threshold watermarks */ |
| /* Configure the DMA read MBUF low water mark. */ |
| if (pDevice->DmaMbufLowMark) { |
| REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark, |
| pDevice->DmaMbufLowMark); |
| } else { |
| if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) { |
| REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark, |
| T3_DEF_DMA_MBUF_LOW_WMARK); |
| } else { |
| REG_WR (pDevice, BufMgr.MbufReadDmaLowWaterMark, |
| T3_DEF_DMA_MBUF_LOW_WMARK_JUMBO); |
| } |
| } |
| |
| /* Configure the MAC Rx MBUF low water mark. */ |
| if (pDevice->RxMacMbufLowMark) { |
| REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark, |
| pDevice->RxMacMbufLowMark); |
| } else { |
| if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) { |
| REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark, |
| T3_DEF_RX_MAC_MBUF_LOW_WMARK); |
| } else { |
| REG_WR (pDevice, BufMgr.MbufMacRxLowWaterMark, |
| T3_DEF_RX_MAC_MBUF_LOW_WMARK_JUMBO); |
| } |
| } |
| |
| /* Configure the MBUF high water mark. */ |
| if (pDevice->MbufHighMark) { |
| REG_WR (pDevice, BufMgr.MbufHighWaterMark, |
| pDevice->MbufHighMark); |
| } else { |
| if (pDevice->TxMtu < MAX_ETHERNET_PACKET_BUFFER_SIZE) { |
| REG_WR (pDevice, BufMgr.MbufHighWaterMark, |
| T3_DEF_MBUF_HIGH_WMARK); |
| } else { |
| REG_WR (pDevice, BufMgr.MbufHighWaterMark, |
| T3_DEF_MBUF_HIGH_WMARK_JUMBO); |
| } |
| } |
| |
| REG_WR (pDevice, BufMgr.DmaLowWaterMark, T3_DEF_DMA_DESC_LOW_WMARK); |
| REG_WR (pDevice, BufMgr.DmaHighWaterMark, T3_DEF_DMA_DESC_HIGH_WMARK); |
| |
| /* Enable buffer manager. */ |
| REG_WR (pDevice, BufMgr.Mode, |
| BUFMGR_MODE_ENABLE | BUFMGR_MODE_ATTN_ENABLE); |
| |
| for (j = 0; j < 2000; j++) { |
| if (REG_RD (pDevice, BufMgr.Mode) & BUFMGR_MODE_ENABLE) |
| break; |
| MM_Wait (10); |
| } |
| |
| if (j >= 2000) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| /* Enable the FTQs. */ |
| REG_WR (pDevice, Ftq.Reset, 0xffffffff); |
| REG_WR (pDevice, Ftq.Reset, 0); |
| |
| /* Wait until FTQ is ready */ |
| for (j = 0; j < 2000; j++) { |
| if (REG_RD (pDevice, Ftq.Reset) == 0) |
| break; |
| MM_Wait (10); |
| } |
| |
| if (j >= 2000) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| /* Initialize the Standard Receive RCB. */ |
| REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.High, |
| pDevice->RxStdBdPhy.High); |
| REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.HostRingAddr.Low, |
| pDevice->RxStdBdPhy.Low); |
| REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.u.MaxLen_Flags, |
| MAX_STD_RCV_BUFFER_SIZE << 16); |
| |
| /* Initialize the Jumbo Receive RCB. */ |
| REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, |
| T3_RCB_FLAG_RING_DISABLED); |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.High, |
| pDevice->RxJumboBdPhy.High); |
| REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.HostRingAddr.Low, |
| pDevice->RxJumboBdPhy.Low); |
| |
| REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.u.MaxLen_Flags, 0); |
| |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| /* Initialize the Mini Receive RCB. */ |
| REG_WR (pDevice, RcvDataBdIn.MiniRcvRcb.u.MaxLen_Flags, |
| T3_RCB_FLAG_RING_DISABLED); |
| |
| { |
| REG_WR (pDevice, RcvDataBdIn.StdRcvRcb.NicRingAddr, |
| (LM_UINT32) T3_NIC_STD_RCV_BUFFER_DESC_ADDR); |
| REG_WR (pDevice, RcvDataBdIn.JumboRcvRcb.NicRingAddr, |
| (LM_UINT32) T3_NIC_JUMBO_RCV_BUFFER_DESC_ADDR); |
| } |
| |
| /* Receive BD Ring replenish threshold. */ |
| REG_WR (pDevice, RcvBdIn.StdRcvThreshold, pDevice->RxStdDescCnt / 8); |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| REG_WR (pDevice, RcvBdIn.JumboRcvThreshold, |
| pDevice->RxJumboDescCnt / 8); |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| /* Disable all the unused rings. */ |
| for (j = 0; j < T3_MAX_SEND_RCB_COUNT; j++) { |
| MEM_WR (pDevice, SendRcb[j].u.MaxLen_Flags, |
| T3_RCB_FLAG_RING_DISABLED); |
| } /* for */ |
| |
| /* Initialize the indices. */ |
| pDevice->SendProdIdx = 0; |
| pDevice->SendConIdx = 0; |
| |
| MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, 0); |
| MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, 0); |
| |
| /* Set up host or NIC based send RCB. */ |
| if (pDevice->NicSendBd == FALSE) { |
| MEM_WR (pDevice, SendRcb[0].HostRingAddr.High, |
| pDevice->SendBdPhy.High); |
| MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low, |
| pDevice->SendBdPhy.Low); |
| |
| /* Set up the NIC ring address in the RCB. */ |
| MEM_WR (pDevice, SendRcb[0].NicRingAddr, |
| T3_NIC_SND_BUFFER_DESC_ADDR); |
| |
| /* Setup the RCB. */ |
| MEM_WR (pDevice, SendRcb[0].u.MaxLen_Flags, |
| T3_SEND_RCB_ENTRY_COUNT << 16); |
| |
| for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) { |
| pDevice->pSendBdVirt[k].HostAddr.High = 0; |
| pDevice->pSendBdVirt[k].HostAddr.Low = 0; |
| } |
| } else { |
| MEM_WR (pDevice, SendRcb[0].HostRingAddr.High, 0); |
| MEM_WR (pDevice, SendRcb[0].HostRingAddr.Low, 0); |
| MEM_WR (pDevice, SendRcb[0].NicRingAddr, |
| pDevice->SendBdPhy.Low); |
| |
| for (k = 0; k < T3_SEND_RCB_ENTRY_COUNT; k++) { |
| __raw_writel (0, |
| &(pDevice->pSendBdVirt[k].HostAddr.High)); |
| __raw_writel (0, |
| &(pDevice->pSendBdVirt[k].HostAddr.Low)); |
| __raw_writel (0, |
| &(pDevice->pSendBdVirt[k].u1.Len_Flags)); |
| pDevice->ShadowSendBd[k].HostAddr.High = 0; |
| pDevice->ShadowSendBd[k].u1.Len_Flags = 0; |
| } |
| } |
| atomic_set (&pDevice->SendBdLeft, T3_SEND_RCB_ENTRY_COUNT - 1); |
| |
| /* Configure the receive return rings. */ |
| for (j = 0; j < T3_MAX_RCV_RETURN_RCB_COUNT; j++) { |
| MEM_WR (pDevice, RcvRetRcb[j].u.MaxLen_Flags, |
| T3_RCB_FLAG_RING_DISABLED); |
| } |
| |
| pDevice->RcvRetConIdx = 0; |
| |
| MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.High, |
| pDevice->RcvRetBdPhy.High); |
| MEM_WR (pDevice, RcvRetRcb[0].HostRingAddr.Low, |
| pDevice->RcvRetBdPhy.Low); |
| |
| /* Set up the NIC ring address in the RCB. */ |
| /* Not very clear from the spec. I am guessing that for Receive */ |
| /* Return Ring, NicRingAddr is not used. */ |
| MEM_WR (pDevice, RcvRetRcb[0].NicRingAddr, 0); |
| |
| /* Setup the RCB. */ |
| MEM_WR (pDevice, RcvRetRcb[0].u.MaxLen_Flags, |
| T3_RCV_RETURN_RCB_ENTRY_COUNT << 16); |
| |
| /* Reinitialize RX ring producer index */ |
| MB_REG_WR (pDevice, Mailbox.RcvStdProdIdx.Low, 0); |
| MB_REG_WR (pDevice, Mailbox.RcvJumboProdIdx.Low, 0); |
| MB_REG_WR (pDevice, Mailbox.RcvMiniProdIdx.Low, 0); |
| |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| pDevice->RxJumboProdIdx = 0; |
| pDevice->RxJumboQueuedCnt = 0; |
| #endif |
| |
| /* Reinitialize our copy of the indices. */ |
| pDevice->RxStdProdIdx = 0; |
| pDevice->RxStdQueuedCnt = 0; |
| |
| #if T3_JUMBO_RCV_ENTRY_COUNT |
| pDevice->RxJumboProdIdx = 0; |
| #endif /* T3_JUMBO_RCV_ENTRY_COUNT */ |
| |
| /* Configure the MAC address. */ |
| LM_SetMacAddress (pDevice, pDevice->NodeAddress); |
| |
| /* Initialize the transmit random backoff seed. */ |
| Value32 = (pDevice->NodeAddress[0] + pDevice->NodeAddress[1] + |
| pDevice->NodeAddress[2] + pDevice->NodeAddress[3] + |
| pDevice->NodeAddress[4] + pDevice->NodeAddress[5]) & |
| MAC_TX_BACKOFF_SEED_MASK; |
| REG_WR (pDevice, MacCtrl.TxBackoffSeed, Value32); |
| |
| /* Receive MTU. Frames larger than the MTU is marked as oversized. */ |
| REG_WR (pDevice, MacCtrl.MtuSize, pDevice->RxMtu + 8); /* CRC + VLAN. */ |
| |
| /* Configure Time slot/IPG per 802.3 */ |
| REG_WR (pDevice, MacCtrl.TxLengths, 0x2620); |
| |
| /* |
| * Configure Receive Rules so that packets don't match |
| * Programmble rule will be queued to Return Ring 1 |
| */ |
| REG_WR (pDevice, MacCtrl.RcvRuleCfg, RX_RULE_DEFAULT_CLASS); |
| |
| /* |
| * Configure to have 16 Classes of Services (COS) and one |
| * queue per class. Bad frames are queued to RRR#1. |
| * And frames don't match rules are also queued to COS#1. |
| */ |
| REG_WR (pDevice, RcvListPlmt.Config, 0x181); |
| |
| /* Enable Receive Placement Statistics */ |
| REG_WR (pDevice, RcvListPlmt.StatsEnableMask, 0xffffff); |
| REG_WR (pDevice, RcvListPlmt.StatsCtrl, RCV_LIST_STATS_ENABLE); |
| |
| /* Enable Send Data Initator Statistics */ |
| REG_WR (pDevice, SndDataIn.StatsEnableMask, 0xffffff); |
| REG_WR (pDevice, SndDataIn.StatsCtrl, |
| T3_SND_DATA_IN_STATS_CTRL_ENABLE | |
| T3_SND_DATA_IN_STATS_CTRL_FASTER_UPDATE); |
| |
| /* Disable the host coalescing state machine before configuring it's */ |
| /* parameters. */ |
| REG_WR (pDevice, HostCoalesce.Mode, 0); |
| for (j = 0; j < 2000; j++) { |
| Value32 = REG_RD (pDevice, HostCoalesce.Mode); |
| if (!(Value32 & HOST_COALESCE_ENABLE)) { |
| break; |
| } |
| MM_Wait (10); |
| } |
| |
| /* Host coalescing configurations. */ |
| REG_WR (pDevice, HostCoalesce.RxCoalescingTicks, |
| pDevice->RxCoalescingTicks); |
| REG_WR (pDevice, HostCoalesce.TxCoalescingTicks, |
| pDevice->TxCoalescingTicks); |
| REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFrames, |
| pDevice->RxMaxCoalescedFrames); |
| REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFrames, |
| pDevice->TxMaxCoalescedFrames); |
| REG_WR (pDevice, HostCoalesce.RxCoalescedTickDuringInt, |
| pDevice->RxCoalescingTicksDuringInt); |
| REG_WR (pDevice, HostCoalesce.TxCoalescedTickDuringInt, |
| pDevice->TxCoalescingTicksDuringInt); |
| REG_WR (pDevice, HostCoalesce.RxMaxCoalescedFramesDuringInt, |
| pDevice->RxMaxCoalescedFramesDuringInt); |
| REG_WR (pDevice, HostCoalesce.TxMaxCoalescedFramesDuringInt, |
| pDevice->TxMaxCoalescedFramesDuringInt); |
| |
| /* Initialize the address of the status block. The NIC will DMA */ |
| /* the status block to this memory which resides on the host. */ |
| REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.High, |
| pDevice->StatusBlkPhy.High); |
| REG_WR (pDevice, HostCoalesce.StatusBlkHostAddr.Low, |
| pDevice->StatusBlkPhy.Low); |
| |
| /* Initialize the address of the statistics block. The NIC will DMA */ |
| /* the statistics to this block of memory. */ |
| REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.High, |
| pDevice->StatsBlkPhy.High); |
| REG_WR (pDevice, HostCoalesce.StatsBlkHostAddr.Low, |
| pDevice->StatsBlkPhy.Low); |
| |
| REG_WR (pDevice, HostCoalesce.StatsCoalescingTicks, |
| pDevice->StatsCoalescingTicks); |
| |
| REG_WR (pDevice, HostCoalesce.StatsBlkNicAddr, 0x300); |
| REG_WR (pDevice, HostCoalesce.StatusBlkNicAddr, 0xb00); |
| |
| /* Enable Host Coalesing state machine */ |
| REG_WR (pDevice, HostCoalesce.Mode, HOST_COALESCE_ENABLE | |
| pDevice->CoalesceMode); |
| |
| /* Enable the Receive BD Completion state machine. */ |
| REG_WR (pDevice, RcvBdComp.Mode, RCV_BD_COMP_MODE_ENABLE | |
| RCV_BD_COMP_MODE_ATTN_ENABLE); |
| |
| /* Enable the Receive List Placement state machine. */ |
| REG_WR (pDevice, RcvListPlmt.Mode, RCV_LIST_PLMT_MODE_ENABLE); |
| |
| /* Enable the Receive List Selector state machine. */ |
| REG_WR (pDevice, RcvListSel.Mode, RCV_LIST_SEL_MODE_ENABLE | |
| RCV_LIST_SEL_MODE_ATTN_ENABLE); |
| |
| /* Enable transmit DMA, clear statistics. */ |
| pDevice->MacMode = MAC_MODE_ENABLE_TX_STATISTICS | |
| MAC_MODE_ENABLE_RX_STATISTICS | MAC_MODE_ENABLE_TDE | |
| MAC_MODE_ENABLE_RDE | MAC_MODE_ENABLE_FHDE; |
| REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode | |
| MAC_MODE_CLEAR_RX_STATISTICS | MAC_MODE_CLEAR_TX_STATISTICS); |
| |
| /* GRC miscellaneous local control register. */ |
| pDevice->GrcLocalCtrl = GRC_MISC_LOCAL_CTRL_INT_ON_ATTN | |
| GRC_MISC_LOCAL_CTRL_AUTO_SEEPROM; |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| pDevice->GrcLocalCtrl |= GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1; |
| } |
| |
| REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl); |
| MM_Wait (40); |
| |
| /* Reset RX counters. */ |
| for (j = 0; j < sizeof (LM_RX_COUNTERS); j++) { |
| ((PLM_UINT8) & pDevice->RxCounters)[j] = 0; |
| } |
| |
| /* Reset TX counters. */ |
| for (j = 0; j < sizeof (LM_TX_COUNTERS); j++) { |
| ((PLM_UINT8) & pDevice->TxCounters)[j] = 0; |
| } |
| |
| MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0); |
| |
| /* Enable the DMA Completion state machine. */ |
| REG_WR (pDevice, DmaComp.Mode, DMA_COMP_MODE_ENABLE); |
| |
| /* Enable the DMA Write state machine. */ |
| Value32 = DMA_WRITE_MODE_ENABLE | |
| DMA_WRITE_MODE_TARGET_ABORT_ATTN_ENABLE | |
| DMA_WRITE_MODE_MASTER_ABORT_ATTN_ENABLE | |
| DMA_WRITE_MODE_PARITY_ERROR_ATTN_ENABLE | |
| DMA_WRITE_MODE_ADDR_OVERFLOW_ATTN_ENABLE | |
| DMA_WRITE_MODE_FIFO_OVERRUN_ATTN_ENABLE | |
| DMA_WRITE_MODE_FIFO_UNDERRUN_ATTN_ENABLE | |
| DMA_WRITE_MODE_FIFO_OVERREAD_ATTN_ENABLE | |
| DMA_WRITE_MODE_LONG_READ_ATTN_ENABLE; |
| REG_WR (pDevice, DmaWrite.Mode, Value32); |
| |
| if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) { |
| if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) { |
| Value16 = REG_RD (pDevice, PciCfg.PciXCommand); |
| Value16 &= |
| ~(PCIX_CMD_MAX_SPLIT_MASK | |
| PCIX_CMD_MAX_BURST_MASK); |
| Value16 |= |
| ((PCIX_CMD_MAX_BURST_CPIOB << |
| PCIX_CMD_MAX_BURST_SHL) & |
| PCIX_CMD_MAX_BURST_MASK); |
| if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) { |
| Value16 |= |
| (pDevice-> |
| SplitModeMaxReq << PCIX_CMD_MAX_SPLIT_SHL) |
| & PCIX_CMD_MAX_SPLIT_MASK; |
| } |
| REG_WR (pDevice, PciCfg.PciXCommand, Value16); |
| } |
| } |
| |
| /* Enable the Read DMA state machine. */ |
| Value32 = DMA_READ_MODE_ENABLE | |
| DMA_READ_MODE_TARGET_ABORT_ATTN_ENABLE | |
| DMA_READ_MODE_MASTER_ABORT_ATTN_ENABLE | |
| DMA_READ_MODE_PARITY_ERROR_ATTN_ENABLE | |
| DMA_READ_MODE_ADDR_OVERFLOW_ATTN_ENABLE | |
| DMA_READ_MODE_FIFO_OVERRUN_ATTN_ENABLE | |
| DMA_READ_MODE_FIFO_UNDERRUN_ATTN_ENABLE | |
| DMA_READ_MODE_FIFO_OVERREAD_ATTN_ENABLE | |
| DMA_READ_MODE_LONG_READ_ATTN_ENABLE; |
| |
| if (pDevice->SplitModeEnable == SPLIT_MODE_ENABLE) { |
| Value32 |= DMA_READ_MODE_SPLIT_ENABLE; |
| } |
| REG_WR (pDevice, DmaRead.Mode, Value32); |
| |
| /* Enable the Receive Data Completion state machine. */ |
| REG_WR (pDevice, RcvDataComp.Mode, RCV_DATA_COMP_MODE_ENABLE | |
| RCV_DATA_COMP_MODE_ATTN_ENABLE); |
| |
| /* Enable the Mbuf Cluster Free state machine. */ |
| REG_WR (pDevice, MbufClusterFree.Mode, MBUF_CLUSTER_FREE_MODE_ENABLE); |
| |
| /* Enable the Send Data Completion state machine. */ |
| REG_WR (pDevice, SndDataComp.Mode, SND_DATA_COMP_MODE_ENABLE); |
| |
| /* Enable the Send BD Completion state machine. */ |
| REG_WR (pDevice, SndBdComp.Mode, SND_BD_COMP_MODE_ENABLE | |
| SND_BD_COMP_MODE_ATTN_ENABLE); |
| |
| /* Enable the Receive BD Initiator state machine. */ |
| REG_WR (pDevice, RcvBdIn.Mode, RCV_BD_IN_MODE_ENABLE | |
| RCV_BD_IN_MODE_BD_IN_DIABLED_RCB_ATTN_ENABLE); |
| |
| /* Enable the Receive Data and Receive BD Initiator state machine. */ |
| REG_WR (pDevice, RcvDataBdIn.Mode, RCV_DATA_BD_IN_MODE_ENABLE | |
| RCV_DATA_BD_IN_MODE_INVALID_RING_SIZE); |
| |
| /* Enable the Send Data Initiator state machine. */ |
| REG_WR (pDevice, SndDataIn.Mode, T3_SND_DATA_IN_MODE_ENABLE); |
| |
| /* Enable the Send BD Initiator state machine. */ |
| REG_WR (pDevice, SndBdIn.Mode, SND_BD_IN_MODE_ENABLE | |
| SND_BD_IN_MODE_ATTN_ENABLE); |
| |
| /* Enable the Send BD Selector state machine. */ |
| REG_WR (pDevice, SndBdSel.Mode, SND_BD_SEL_MODE_ENABLE | |
| SND_BD_SEL_MODE_ATTN_ENABLE); |
| |
| #if INCLUDE_5701_AX_FIX |
| /* Load the firmware for the 5701_A0 workaround. */ |
| if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0) { |
| LM_LoadRlsFirmware (pDevice); |
| } |
| #endif |
| |
| /* Enable the transmitter. */ |
| pDevice->TxMode = TX_MODE_ENABLE; |
| REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode); |
| |
| /* Enable the receiver. */ |
| pDevice->RxMode = RX_MODE_ENABLE; |
| REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode); |
| |
| if (pDevice->RestoreOnWakeUp) { |
| pDevice->RestoreOnWakeUp = FALSE; |
| pDevice->DisableAutoNeg = pDevice->WakeUpDisableAutoNeg; |
| pDevice->RequestedMediaType = pDevice->WakeUpRequestedMediaType; |
| } |
| |
| /* Disable auto polling. */ |
| pDevice->MiMode = 0xc0000; |
| REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| Value32 = LED_CTRL_PHY_MODE_1; |
| } else { |
| if (pDevice->LedMode == LED_MODE_OUTPUT) { |
| Value32 = LED_CTRL_PHY_MODE_2; |
| } else { |
| Value32 = LED_CTRL_PHY_MODE_1; |
| } |
| } |
| REG_WR (pDevice, MacCtrl.LedCtrl, Value32); |
| |
| /* Activate Link to enable MAC state machine */ |
| REG_WR (pDevice, MacCtrl.MiStatus, MI_STATUS_ENABLE_LINK_STATUS_ATTN); |
| |
| if (pDevice->EnableTbi) { |
| REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_RESET); |
| MM_Wait (10); |
| REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode); |
| if (pDevice->ChipRevId == T3_CHIP_ID_5703_A1) { |
| REG_WR (pDevice, MacCtrl.SerdesCfg, 0x616000); |
| } |
| } |
| /* Setup the phy chip. */ |
| LM_SetupPhy (pDevice); |
| |
| if (!pDevice->EnableTbi) { |
| /* Clear CRC stats */ |
| LM_ReadPhy (pDevice, 0x1e, &Value32); |
| LM_WritePhy (pDevice, 0x1e, Value32 | 0x8000); |
| LM_ReadPhy (pDevice, 0x14, &Value32); |
| } |
| |
| /* Set up the receive mask. */ |
| LM_SetReceiveMask (pDevice, pDevice->ReceiveMask); |
| |
| /* Queue Rx packet buffers. */ |
| if (pDevice->QueueRxPackets) { |
| LM_QueueRxPackets (pDevice); |
| } |
| |
| /* Enable interrupt to the host. */ |
| if (pDevice->InitDone) { |
| LM_EnableInterrupt (pDevice); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_ResetAdapter */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* This routine disables the adapter from generating interrupts. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS LM_DisableInterrupt (PLM_DEVICE_BLOCK pDevice) |
| { |
| REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl | |
| MISC_HOST_CTRL_MASK_PCI_INT); |
| MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 1); |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* This routine enables the adapter to generate interrupts. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS LM_EnableInterrupt (PLM_DEVICE_BLOCK pDevice) |
| { |
| REG_WR (pDevice, PciCfg.MiscHostCtrl, pDevice->MiscHostCtrl & |
| ~MISC_HOST_CTRL_MASK_PCI_INT); |
| MB_REG_WR (pDevice, Mailbox.Interrupt[0].Low, 0); |
| |
| if (pDevice->pStatusBlkVirt->Status & STATUS_BLOCK_UPDATED) { |
| REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| GRC_MISC_LOCAL_CTRL_SET_INT); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* This routine puts a packet on the wire if there is a transmit DMA */ |
| /* descriptor available; otherwise the packet is queued for later */ |
| /* transmission. If the second argue is NULL, this routine will put */ |
| /* the queued packet on the wire if possible. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| #if 0 |
| LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket) |
| { |
| LM_UINT32 FragCount; |
| PT3_SND_BD pSendBd; |
| PT3_SND_BD pShadowSendBd; |
| LM_UINT32 Value32, Len; |
| LM_UINT32 Idx; |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| return LM_5700SendPacket (pDevice, pPacket); |
| } |
| |
| /* Update the SendBdLeft count. */ |
| atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft); |
| |
| /* Initalize the send buffer descriptors. */ |
| Idx = pDevice->SendProdIdx; |
| |
| pSendBd = &pDevice->pSendBdVirt[Idx]; |
| |
| /* Next producer index. */ |
| if (pDevice->NicSendBd == TRUE) { |
| T3_64BIT_HOST_ADDR paddr; |
| |
| pShadowSendBd = &pDevice->ShadowSendBd[Idx]; |
| for (FragCount = 0;;) { |
| MM_MapTxDma (pDevice, pPacket, &paddr, &Len, FragCount); |
| /* Initialize the pointer to the send buffer fragment. */ |
| if (paddr.High != pShadowSendBd->HostAddr.High) { |
| __raw_writel (paddr.High, |
| &(pSendBd->HostAddr.High)); |
| pShadowSendBd->HostAddr.High = paddr.High; |
| } |
| __raw_writel (paddr.Low, &(pSendBd->HostAddr.Low)); |
| |
| /* Setup the control flags and send buffer size. */ |
| Value32 = (Len << 16) | pPacket->Flags; |
| |
| Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK; |
| |
| FragCount++; |
| if (FragCount >= pPacket->u.Tx.FragCount) { |
| Value32 |= SND_BD_FLAG_END; |
| if (Value32 != pShadowSendBd->u1.Len_Flags) { |
| __raw_writel (Value32, |
| &(pSendBd->u1.Len_Flags)); |
| pShadowSendBd->u1.Len_Flags = Value32; |
| } |
| if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) { |
| __raw_writel (pPacket->VlanTag, |
| &(pSendBd->u2.VlanTag)); |
| } |
| break; |
| } else { |
| if (Value32 != pShadowSendBd->u1.Len_Flags) { |
| __raw_writel (Value32, |
| &(pSendBd->u1.Len_Flags)); |
| pShadowSendBd->u1.Len_Flags = Value32; |
| } |
| if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) { |
| __raw_writel (pPacket->VlanTag, |
| &(pSendBd->u2.VlanTag)); |
| } |
| } |
| |
| pSendBd++; |
| pShadowSendBd++; |
| if (Idx == 0) { |
| pSendBd = &pDevice->pSendBdVirt[0]; |
| pShadowSendBd = &pDevice->ShadowSendBd[0]; |
| } |
| } /* for */ |
| |
| /* Put the packet descriptor in the ActiveQ. */ |
| QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket); |
| |
| wmb (); |
| MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx); |
| |
| } else { |
| for (FragCount = 0;;) { |
| /* Initialize the pointer to the send buffer fragment. */ |
| MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len, |
| FragCount); |
| |
| pSendBd->u2.VlanTag = pPacket->VlanTag; |
| |
| /* Setup the control flags and send buffer size. */ |
| Value32 = (Len << 16) | pPacket->Flags; |
| |
| Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK; |
| |
| FragCount++; |
| if (FragCount >= pPacket->u.Tx.FragCount) { |
| pSendBd->u1.Len_Flags = |
| Value32 | SND_BD_FLAG_END; |
| break; |
| } else { |
| pSendBd->u1.Len_Flags = Value32; |
| } |
| pSendBd++; |
| if (Idx == 0) { |
| pSendBd = &pDevice->pSendBdVirt[0]; |
| } |
| } /* for */ |
| |
| /* Put the packet descriptor in the ActiveQ. */ |
| QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket); |
| |
| wmb (); |
| MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx); |
| |
| } |
| |
| /* Update the producer index. */ |
| pDevice->SendProdIdx = Idx; |
| |
| return LM_STATUS_SUCCESS; |
| } |
| #endif |
| |
| LM_STATUS LM_SendPacket (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket) |
| { |
| LM_UINT32 FragCount; |
| PT3_SND_BD pSendBd, pTmpSendBd, pShadowSendBd; |
| T3_SND_BD NicSendBdArr[MAX_FRAGMENT_COUNT]; |
| LM_UINT32 StartIdx, Idx; |
| |
| while (1) { |
| /* Initalize the send buffer descriptors. */ |
| StartIdx = Idx = pDevice->SendProdIdx; |
| |
| if (pDevice->NicSendBd) { |
| pTmpSendBd = pSendBd = &NicSendBdArr[0]; |
| } else { |
| pTmpSendBd = pSendBd = &pDevice->pSendBdVirt[Idx]; |
| } |
| |
| /* Next producer index. */ |
| for (FragCount = 0;;) { |
| LM_UINT32 Value32, Len; |
| |
| /* Initialize the pointer to the send buffer fragment. */ |
| MM_MapTxDma (pDevice, pPacket, &pSendBd->HostAddr, &Len, |
| FragCount); |
| |
| pSendBd->u2.VlanTag = pPacket->VlanTag; |
| |
| /* Setup the control flags and send buffer size. */ |
| Value32 = (Len << 16) | pPacket->Flags; |
| |
| Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK; |
| |
| FragCount++; |
| if (FragCount >= pPacket->u.Tx.FragCount) { |
| pSendBd->u1.Len_Flags = |
| Value32 | SND_BD_FLAG_END; |
| break; |
| } else { |
| pSendBd->u1.Len_Flags = Value32; |
| } |
| pSendBd++; |
| if ((Idx == 0) && !pDevice->NicSendBd) { |
| pSendBd = &pDevice->pSendBdVirt[0]; |
| } |
| } /* for */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| if (LM_Test4GBoundary (pDevice, pPacket, pTmpSendBd) == |
| LM_STATUS_SUCCESS) { |
| if (MM_CoalesceTxBuffer (pDevice, pPacket) != |
| LM_STATUS_SUCCESS) { |
| QQ_PushHead (&pDevice->TxPacketFreeQ. |
| Container, pPacket); |
| return LM_STATUS_FAILURE; |
| } |
| continue; |
| } |
| } |
| break; |
| } |
| /* Put the packet descriptor in the ActiveQ. */ |
| QQ_PushTail (&pDevice->TxPacketActiveQ.Container, pPacket); |
| |
| if (pDevice->NicSendBd) { |
| pSendBd = &pDevice->pSendBdVirt[StartIdx]; |
| pShadowSendBd = &pDevice->ShadowSendBd[StartIdx]; |
| |
| while (StartIdx != Idx) { |
| LM_UINT32 Value32; |
| |
| if ((Value32 = pTmpSendBd->HostAddr.High) != |
| pShadowSendBd->HostAddr.High) { |
| __raw_writel (Value32, |
| &(pSendBd->HostAddr.High)); |
| pShadowSendBd->HostAddr.High = Value32; |
| } |
| |
| __raw_writel (pTmpSendBd->HostAddr.Low, |
| &(pSendBd->HostAddr.Low)); |
| |
| if ((Value32 = pTmpSendBd->u1.Len_Flags) != |
| pShadowSendBd->u1.Len_Flags) { |
| __raw_writel (Value32, |
| &(pSendBd->u1.Len_Flags)); |
| pShadowSendBd->u1.Len_Flags = Value32; |
| } |
| |
| if (pPacket->Flags & SND_BD_FLAG_VLAN_TAG) { |
| __raw_writel (pTmpSendBd->u2.VlanTag, |
| &(pSendBd->u2.VlanTag)); |
| } |
| |
| StartIdx = |
| (StartIdx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK; |
| if (StartIdx == 0) |
| pSendBd = &pDevice->pSendBdVirt[0]; |
| else |
| pSendBd++; |
| pTmpSendBd++; |
| } |
| wmb (); |
| MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx); |
| |
| if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) { |
| MB_REG_WR (pDevice, Mailbox.SendNicProdIdx[0].Low, Idx); |
| } |
| } else { |
| wmb (); |
| MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, Idx); |
| |
| if (T3_CHIP_REV (pDevice->ChipRevId) == T3_CHIP_REV_5700_BX) { |
| MB_REG_WR (pDevice, Mailbox.SendHostProdIdx[0].Low, |
| Idx); |
| } |
| } |
| |
| /* Update the SendBdLeft count. */ |
| atomic_sub (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft); |
| |
| /* Update the producer index. */ |
| pDevice->SendProdIdx = Idx; |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| STATIC LM_STATUS |
| LM_Test4GBoundary (PLM_DEVICE_BLOCK pDevice, PLM_PACKET pPacket, |
| PT3_SND_BD pSendBd) |
| { |
| int FragCount; |
| LM_UINT32 Idx, Base, Len; |
| |
| Idx = pDevice->SendProdIdx; |
| for (FragCount = 0;;) { |
| Len = pSendBd->u1.Len_Flags >> 16; |
| if (((Base = pSendBd->HostAddr.Low) > 0xffffdcc0) && |
| (pSendBd->HostAddr.High == 0) && |
| ((Base + 8 + Len) < Base)) { |
| return LM_STATUS_SUCCESS; |
| } |
| FragCount++; |
| if (FragCount >= pPacket->u.Tx.FragCount) { |
| break; |
| } |
| pSendBd++; |
| if (!pDevice->NicSendBd) { |
| Idx = (Idx + 1) & T3_SEND_RCB_ENTRY_COUNT_MASK; |
| if (Idx == 0) { |
| pSendBd = &pDevice->pSendBdVirt[0]; |
| } |
| } |
| } |
| return LM_STATUS_FAILURE; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| __inline static unsigned long |
| ComputeCrc32 (unsigned char *pBuffer, unsigned long BufferSize) |
| { |
| unsigned long Reg; |
| unsigned long Tmp; |
| unsigned long j, k; |
| |
| Reg = 0xffffffff; |
| |
| for (j = 0; j < BufferSize; j++) { |
| Reg ^= pBuffer[j]; |
| |
| for (k = 0; k < 8; k++) { |
| Tmp = Reg & 0x01; |
| |
| Reg >>= 1; |
| |
| if (Tmp) { |
| Reg ^= 0xedb88320; |
| } |
| } |
| } |
| |
| return ~Reg; |
| } /* ComputeCrc32 */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* This routine sets the receive control register according to ReceiveMask */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS LM_SetReceiveMask (PLM_DEVICE_BLOCK pDevice, LM_UINT32 Mask) |
| { |
| LM_UINT32 ReceiveMask; |
| LM_UINT32 RxMode; |
| LM_UINT32 j, k; |
| |
| ReceiveMask = Mask; |
| |
| RxMode = pDevice->RxMode; |
| |
| if (Mask & LM_ACCEPT_UNICAST) { |
| Mask &= ~LM_ACCEPT_UNICAST; |
| } |
| |
| if (Mask & LM_ACCEPT_MULTICAST) { |
| Mask &= ~LM_ACCEPT_MULTICAST; |
| } |
| |
| if (Mask & LM_ACCEPT_ALL_MULTICAST) { |
| Mask &= ~LM_ACCEPT_ALL_MULTICAST; |
| } |
| |
| if (Mask & LM_ACCEPT_BROADCAST) { |
| Mask &= ~LM_ACCEPT_BROADCAST; |
| } |
| |
| RxMode &= ~RX_MODE_PROMISCUOUS_MODE; |
| if (Mask & LM_PROMISCUOUS_MODE) { |
| RxMode |= RX_MODE_PROMISCUOUS_MODE; |
| Mask &= ~LM_PROMISCUOUS_MODE; |
| } |
| |
| RxMode &= ~(RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED); |
| if (Mask & LM_ACCEPT_ERROR_PACKET) { |
| RxMode |= RX_MODE_ACCEPT_RUNTS | RX_MODE_ACCEPT_OVERSIZED; |
| Mask &= ~LM_ACCEPT_ERROR_PACKET; |
| } |
| |
| /* Make sure all the bits are valid before committing changes. */ |
| if (Mask) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| /* Commit the new filter. */ |
| pDevice->RxMode = RxMode; |
| REG_WR (pDevice, MacCtrl.RxMode, RxMode); |
| |
| pDevice->ReceiveMask = ReceiveMask; |
| |
| /* Set up the MC hash table. */ |
| if (ReceiveMask & LM_ACCEPT_ALL_MULTICAST) { |
| for (k = 0; k < 4; k++) { |
| REG_WR (pDevice, MacCtrl.HashReg[k], 0xffffffff); |
| } |
| } else if (ReceiveMask & LM_ACCEPT_MULTICAST) { |
| LM_UINT32 HashReg[4]; |
| |
| HashReg[0] = 0; |
| HashReg[1] = 0; |
| HashReg[2] = 0; |
| HashReg[3] = 0; |
| for (j = 0; j < pDevice->McEntryCount; j++) { |
| LM_UINT32 RegIndex; |
| LM_UINT32 Bitpos; |
| LM_UINT32 Crc32; |
| |
| Crc32 = |
| ComputeCrc32 (pDevice->McTable[j], |
| ETHERNET_ADDRESS_SIZE); |
| |
| /* The most significant 7 bits of the CRC32 (no inversion), */ |
| /* are used to index into one of the possible 128 bit positions. */ |
| Bitpos = ~Crc32 & 0x7f; |
| |
| /* Hash register index. */ |
| RegIndex = (Bitpos & 0x60) >> 5; |
| |
| /* Bit to turn on within a hash register. */ |
| Bitpos &= 0x1f; |
| |
| /* Enable the multicast bit. */ |
| HashReg[RegIndex] |= (1 << Bitpos); |
| } |
| |
| /* REV_AX has problem with multicast filtering where it uses both */ |
| /* DA and SA to perform hashing. */ |
| for (k = 0; k < 4; k++) { |
| REG_WR (pDevice, MacCtrl.HashReg[k], HashReg[k]); |
| } |
| } else { |
| /* Reject all multicast frames. */ |
| for (j = 0; j < 4; j++) { |
| REG_WR (pDevice, MacCtrl.HashReg[j], 0); |
| } |
| } |
| |
| /* By default, Tigon3 will accept broadcast frames. We need to setup */ |
| if (ReceiveMask & LM_ACCEPT_BROADCAST) { |
| REG_WR (pDevice, |
| MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule, |
| REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK); |
| REG_WR (pDevice, |
| MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value, |
| REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK); |
| REG_WR (pDevice, |
| MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule, |
| REJECT_BROADCAST_RULE1_RULE & RCV_DISABLE_RULE_MASK); |
| REG_WR (pDevice, |
| MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value, |
| REJECT_BROADCAST_RULE1_VALUE & RCV_DISABLE_RULE_MASK); |
| } else { |
| REG_WR (pDevice, |
| MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Rule, |
| REJECT_BROADCAST_RULE1_RULE); |
| REG_WR (pDevice, |
| MacCtrl.RcvRules[RCV_RULE1_REJECT_BROADCAST_IDX].Value, |
| REJECT_BROADCAST_RULE1_VALUE); |
| REG_WR (pDevice, |
| MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Rule, |
| REJECT_BROADCAST_RULE2_RULE); |
| REG_WR (pDevice, |
| MacCtrl.RcvRules[RCV_RULE2_REJECT_BROADCAST_IDX].Value, |
| REJECT_BROADCAST_RULE2_VALUE); |
| } |
| |
| /* disable the rest of the rules. */ |
| for (j = RCV_LAST_RULE_IDX; j < 16; j++) { |
| REG_WR (pDevice, MacCtrl.RcvRules[j].Rule, 0); |
| REG_WR (pDevice, MacCtrl.RcvRules[j].Value, 0); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_SetReceiveMask */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* Disable the interrupt and put the transmitter and receiver engines in */ |
| /* an idle state. Also aborts all pending send requests and receive */ |
| /* buffers. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS LM_Abort (PLM_DEVICE_BLOCK pDevice) |
| { |
| PLM_PACKET pPacket; |
| LM_UINT Idx; |
| |
| LM_DisableInterrupt (pDevice); |
| |
| /* Disable all the state machines. */ |
| LM_CntrlBlock (pDevice, T3_BLOCK_MAC_RX_ENGINE, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_INITIATOR, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_PLMT, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_RX_LIST_SELECTOR, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_INITIATOR, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_RX_DATA_COMP, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_RX_BD_COMP, LM_DISABLE); |
| |
| LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_SELECTOR, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_INITIATOR, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_INITIATOR, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_DMA_RD, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_SEND_DATA_COMP, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_DMA_COMP, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_SEND_BD_COMP, LM_DISABLE); |
| |
| /* Clear TDE bit */ |
| pDevice->MacMode &= ~MAC_MODE_ENABLE_TDE; |
| REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode); |
| |
| LM_CntrlBlock (pDevice, T3_BLOCK_MAC_TX_ENGINE, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_HOST_COALESING, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_DMA_WR, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_CLUSTER_FREE, LM_DISABLE); |
| |
| /* Reset all FTQs */ |
| REG_WR (pDevice, Ftq.Reset, 0xffffffff); |
| REG_WR (pDevice, Ftq.Reset, 0x0); |
| |
| LM_CntrlBlock (pDevice, T3_BLOCK_MBUF_MANAGER, LM_DISABLE); |
| LM_CntrlBlock (pDevice, T3_BLOCK_MEM_ARBITOR, LM_DISABLE); |
| |
| MM_ACQUIRE_INT_LOCK (pDevice); |
| |
| /* Abort packets that have already queued to go out. */ |
| pPacket = (PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ.Container); |
| while (pPacket) { |
| |
| pPacket->PacketStatus = LM_STATUS_TRANSMIT_ABORTED; |
| pDevice->TxCounters.TxPacketAbortedCnt++; |
| |
| atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft); |
| |
| QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket); |
| |
| pPacket = (PLM_PACKET) |
| QQ_PopHead (&pDevice->TxPacketActiveQ.Container); |
| } |
| |
| /* Cleanup the receive return rings. */ |
| LM_ServiceRxInterrupt (pDevice); |
| |
| /* Don't want to indicate rx packets in Ndis miniport shutdown context. */ |
| /* Doing so may cause system crash. */ |
| if (!pDevice->ShuttingDown) { |
| /* Indicate packets to the protocol. */ |
| MM_IndicateTxPackets (pDevice); |
| |
| /* Indicate received packets to the protocols. */ |
| MM_IndicateRxPackets (pDevice); |
| } else { |
| /* Move the receive packet descriptors in the ReceivedQ to the */ |
| /* free queue. */ |
| for (;;) { |
| pPacket = |
| (PLM_PACKET) QQ_PopHead (&pDevice-> |
| RxPacketReceivedQ. |
| Container); |
| if (pPacket == NULL) { |
| break; |
| } |
| QQ_PushTail (&pDevice->RxPacketFreeQ.Container, |
| pPacket); |
| } |
| } |
| |
| /* Clean up the Std Receive Producer ring. */ |
| Idx = pDevice->pStatusBlkVirt->RcvStdConIdx; |
| |
| while (Idx != pDevice->RxStdProdIdx) { |
| pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) + |
| MM_UINT_PTR (pDevice->pRxStdBdVirt[Idx]. |
| Opaque)); |
| |
| QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket); |
| |
| Idx = (Idx + 1) & T3_STD_RCV_RCB_ENTRY_COUNT_MASK; |
| } /* while */ |
| |
| /* Reinitialize our copy of the indices. */ |
| pDevice->RxStdProdIdx = 0; |
| |
| #if T3_JUMBO_RCV_RCB_ENTRY_COUNT |
| /* Clean up the Jumbo Receive Producer ring. */ |
| Idx = pDevice->pStatusBlkVirt->RcvJumboConIdx; |
| |
| while (Idx != pDevice->RxJumboProdIdx) { |
| pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) + |
| MM_UINT_PTR (pDevice-> |
| pRxJumboBdVirt[Idx]. |
| Opaque)); |
| |
| QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket); |
| |
| Idx = (Idx + 1) & T3_JUMBO_RCV_RCB_ENTRY_COUNT_MASK; |
| } /* while */ |
| |
| /* Reinitialize our copy of the indices. */ |
| pDevice->RxJumboProdIdx = 0; |
| #endif /* T3_JUMBO_RCV_RCB_ENTRY_COUNT */ |
| |
| MM_RELEASE_INT_LOCK (pDevice); |
| |
| /* Initialize the statistis Block */ |
| pDevice->pStatusBlkVirt->Status = 0; |
| pDevice->pStatusBlkVirt->RcvStdConIdx = 0; |
| pDevice->pStatusBlkVirt->RcvJumboConIdx = 0; |
| pDevice->pStatusBlkVirt->RcvMiniConIdx = 0; |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_Abort */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* Disable the interrupt and put the transmitter and receiver engines in */ |
| /* an idle state. Aborts all pending send requests and receive buffers. */ |
| /* Also free all the receive buffers. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS LM_Halt (PLM_DEVICE_BLOCK pDevice) |
| { |
| PLM_PACKET pPacket; |
| LM_UINT32 EntryCnt; |
| |
| LM_Abort (pDevice); |
| |
| /* Get the number of entries in the queue. */ |
| EntryCnt = QQ_GetEntryCnt (&pDevice->RxPacketFreeQ.Container); |
| |
| /* Make sure all the packets have been accounted for. */ |
| for (EntryCnt = 0; EntryCnt < pDevice->RxPacketDescCnt; EntryCnt++) { |
| pPacket = |
| (PLM_PACKET) QQ_PopHead (&pDevice->RxPacketFreeQ.Container); |
| if (pPacket == 0) |
| break; |
| |
| MM_FreeRxBuffer (pDevice, pPacket); |
| |
| QQ_PushTail (&pDevice->RxPacketFreeQ.Container, pPacket); |
| } |
| |
| LM_ResetChip (pDevice); |
| |
| /* Restore PCI configuration registers. */ |
| MM_WriteConfig32 (pDevice, PCI_CACHE_LINE_SIZE_REG, |
| pDevice->SavedCacheLineReg); |
| LM_RegWrInd (pDevice, PCI_SUBSYSTEM_VENDOR_ID_REG, |
| (pDevice->SubsystemId << 16) | pDevice->SubsystemVendorId); |
| |
| /* Reprogram the MAC address. */ |
| LM_SetMacAddress (pDevice, pDevice->NodeAddress); |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_Halt */ |
| |
| STATIC LM_STATUS LM_ResetChip (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_UINT32 Value32; |
| LM_UINT32 j; |
| |
| /* Wait for access to the nvram interface before resetting. This is */ |
| /* a workaround to prevent EEPROM corruption. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 && |
| T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) { |
| /* Request access to the flash interface. */ |
| REG_WR (pDevice, Nvram.SwArb, SW_ARB_REQ_SET1); |
| |
| for (j = 0; j < 100000; j++) { |
| Value32 = REG_RD (pDevice, Nvram.SwArb); |
| if (Value32 & SW_ARB_GNT1) { |
| break; |
| } |
| MM_Wait (10); |
| } |
| } |
| |
| /* Global reset. */ |
| REG_WR (pDevice, Grc.MiscCfg, GRC_MISC_CFG_CORE_CLOCK_RESET); |
| MM_Wait (40); |
| MM_Wait (40); |
| MM_Wait (40); |
| |
| /* make sure we re-enable indirect accesses */ |
| MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG, |
| pDevice->MiscHostCtrl); |
| |
| /* Set MAX PCI retry to zero. */ |
| Value32 = |
| T3_PCI_STATE_PCI_ROM_ENABLE | T3_PCI_STATE_PCI_ROM_RETRY_ENABLE; |
| if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) { |
| if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) { |
| Value32 |= T3_PCI_STATE_RETRY_SAME_DMA; |
| } |
| } |
| MM_WriteConfig32 (pDevice, T3_PCI_STATE_REG, Value32); |
| |
| /* Restore PCI command register. */ |
| MM_WriteConfig32 (pDevice, PCI_COMMAND_REG, |
| pDevice->PciCommandStatusWords); |
| |
| /* Disable PCI-X relaxed ordering bit. */ |
| MM_ReadConfig32 (pDevice, PCIX_CAP_REG, &Value32); |
| Value32 &= ~PCIX_ENABLE_RELAXED_ORDERING; |
| MM_WriteConfig32 (pDevice, PCIX_CAP_REG, Value32); |
| |
| /* Enable memory arbiter. */ |
| REG_WR (pDevice, MemArbiter.Mode, T3_MEM_ARBITER_MODE_ENABLE); |
| |
| #ifdef BIG_ENDIAN_PCI /* This from jfd */ |
| Value32 = GRC_MODE_WORD_SWAP_DATA | GRC_MODE_WORD_SWAP_NON_FRAME_DATA; |
| #else |
| #ifdef BIG_ENDIAN_HOST |
| /* Reconfigure the mode register. */ |
| Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | |
| GRC_MODE_WORD_SWAP_NON_FRAME_DATA | |
| GRC_MODE_BYTE_SWAP_DATA | GRC_MODE_WORD_SWAP_DATA; |
| #else |
| /* Reconfigure the mode register. */ |
| Value32 = GRC_MODE_BYTE_SWAP_NON_FRAME_DATA | GRC_MODE_BYTE_SWAP_DATA; |
| #endif |
| #endif |
| REG_WR (pDevice, Grc.Mode, Value32); |
| |
| /* Prevent PXE from restarting. */ |
| MEM_WR_OFFSET (pDevice, 0x0b50, T3_MAGIC_NUM); |
| |
| if (pDevice->EnableTbi) { |
| pDevice->MacMode = MAC_MODE_PORT_MODE_TBI; |
| REG_WR (pDevice, MacCtrl.Mode, MAC_MODE_PORT_MODE_TBI); |
| } else { |
| REG_WR (pDevice, MacCtrl.Mode, 0); |
| } |
| |
| /* Wait for the firmware to finish initialization. */ |
| for (j = 0; j < 100000; j++) { |
| MM_Wait (10); |
| |
| Value32 = MEM_RD_OFFSET (pDevice, 0x0b50); |
| if (Value32 == ~T3_MAGIC_NUM) { |
| break; |
| } |
| } |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| __inline static void LM_ServiceTxInterrupt (PLM_DEVICE_BLOCK pDevice) |
| { |
| PLM_PACKET pPacket; |
| LM_UINT32 HwConIdx; |
| LM_UINT32 SwConIdx; |
| |
| HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx; |
| |
| /* Get our copy of the consumer index. The buffer descriptors */ |
| /* that are in between the consumer indices are freed. */ |
| SwConIdx = pDevice->SendConIdx; |
| |
| /* Move the packets from the TxPacketActiveQ that are sent out to */ |
| /* the TxPacketXmittedQ. Packets that are sent use the */ |
| /* descriptors that are between SwConIdx and HwConIdx. */ |
| while (SwConIdx != HwConIdx) { |
| /* Get the packet that was sent from the TxPacketActiveQ. */ |
| pPacket = |
| (PLM_PACKET) QQ_PopHead (&pDevice->TxPacketActiveQ. |
| Container); |
| |
| /* Set the return status. */ |
| pPacket->PacketStatus = LM_STATUS_SUCCESS; |
| |
| /* Put the packet in the TxPacketXmittedQ for indication later. */ |
| QQ_PushTail (&pDevice->TxPacketXmittedQ.Container, pPacket); |
| |
| /* Move to the next packet's BD. */ |
| SwConIdx = (SwConIdx + pPacket->u.Tx.FragCount) & |
| T3_SEND_RCB_ENTRY_COUNT_MASK; |
| |
| /* Update the number of unused BDs. */ |
| atomic_add (pPacket->u.Tx.FragCount, &pDevice->SendBdLeft); |
| |
| /* Get the new updated HwConIdx. */ |
| HwConIdx = pDevice->pStatusBlkVirt->Idx[0].SendConIdx; |
| } /* while */ |
| |
| /* Save the new SwConIdx. */ |
| pDevice->SendConIdx = SwConIdx; |
| |
| } /* LM_ServiceTxInterrupt */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| __inline static void LM_ServiceRxInterrupt (PLM_DEVICE_BLOCK pDevice) |
| { |
| PLM_PACKET pPacket; |
| PT3_RCV_BD pRcvBd; |
| LM_UINT32 HwRcvRetProdIdx; |
| LM_UINT32 SwRcvRetConIdx; |
| |
| /* Loop thru the receive return rings for received packets. */ |
| HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx; |
| |
| SwRcvRetConIdx = pDevice->RcvRetConIdx; |
| while (SwRcvRetConIdx != HwRcvRetProdIdx) { |
| pRcvBd = &pDevice->pRcvRetBdVirt[SwRcvRetConIdx]; |
| |
| /* Get the received packet descriptor. */ |
| pPacket = (PLM_PACKET) (MM_UINT_PTR (pDevice->pPacketDescBase) + |
| MM_UINT_PTR (pRcvBd->Opaque)); |
| |
| /* Check the error flag. */ |
| if (pRcvBd->ErrorFlag && |
| pRcvBd->ErrorFlag != RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) { |
| pPacket->PacketStatus = LM_STATUS_FAILURE; |
| |
| pDevice->RxCounters.RxPacketErrCnt++; |
| |
| if (pRcvBd->ErrorFlag & RCV_BD_ERR_BAD_CRC) { |
| pDevice->RxCounters.RxErrCrcCnt++; |
| } |
| |
| if (pRcvBd->ErrorFlag & RCV_BD_ERR_COLL_DETECT) { |
| pDevice->RxCounters.RxErrCollCnt++; |
| } |
| |
| if (pRcvBd->ErrorFlag & RCV_BD_ERR_LINK_LOST_DURING_PKT) { |
| pDevice->RxCounters.RxErrLinkLostCnt++; |
| } |
| |
| if (pRcvBd->ErrorFlag & RCV_BD_ERR_PHY_DECODE_ERR) { |
| pDevice->RxCounters.RxErrPhyDecodeCnt++; |
| } |
| |
| if (pRcvBd->ErrorFlag & RCV_BD_ERR_ODD_NIBBLED_RCVD_MII) { |
| pDevice->RxCounters.RxErrOddNibbleCnt++; |
| } |
| |
| if (pRcvBd->ErrorFlag & RCV_BD_ERR_MAC_ABORT) { |
| pDevice->RxCounters.RxErrMacAbortCnt++; |
| } |
| |
| if (pRcvBd->ErrorFlag & RCV_BD_ERR_LEN_LT_64) { |
| pDevice->RxCounters.RxErrShortPacketCnt++; |
| } |
| |
| if (pRcvBd->ErrorFlag & RCV_BD_ERR_TRUNC_NO_RESOURCES) { |
| pDevice->RxCounters.RxErrNoResourceCnt++; |
| } |
| |
| if (pRcvBd->ErrorFlag & RCV_BD_ERR_GIANT_FRAME_RCVD) { |
| pDevice->RxCounters.RxErrLargePacketCnt++; |
| } |
| } else { |
| pPacket->PacketStatus = LM_STATUS_SUCCESS; |
| pPacket->PacketSize = pRcvBd->Len - 4; |
| |
| pPacket->Flags = pRcvBd->Flags; |
| if (pRcvBd->Flags & RCV_BD_FLAG_VLAN_TAG) { |
| pPacket->VlanTag = pRcvBd->VlanTag; |
| } |
| |
| pPacket->u.Rx.TcpUdpChecksum = pRcvBd->TcpUdpCksum; |
| } |
| |
| /* Put the packet descriptor containing the received packet */ |
| /* buffer in the RxPacketReceivedQ for indication later. */ |
| QQ_PushTail (&pDevice->RxPacketReceivedQ.Container, pPacket); |
| |
| /* Go to the next buffer descriptor. */ |
| SwRcvRetConIdx = (SwRcvRetConIdx + 1) & |
| T3_RCV_RETURN_RCB_ENTRY_COUNT_MASK; |
| |
| /* Get the updated HwRcvRetProdIdx. */ |
| HwRcvRetProdIdx = pDevice->pStatusBlkVirt->Idx[0].RcvProdIdx; |
| } /* while */ |
| |
| pDevice->RcvRetConIdx = SwRcvRetConIdx; |
| |
| /* Update the receive return ring consumer index. */ |
| MB_REG_WR (pDevice, Mailbox.RcvRetConIdx[0].Low, SwRcvRetConIdx); |
| } /* LM_ServiceRxInterrupt */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* This is the interrupt event handler routine. It acknowledges all */ |
| /* pending interrupts and process all pending events. */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_SUCCESS */ |
| /******************************************************************************/ |
| LM_STATUS LM_ServiceInterrupts (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_UINT32 Value32; |
| int ServicePhyInt = FALSE; |
| |
| /* Setup the phy chip whenever the link status changes. */ |
| if (pDevice->LinkChngMode == T3_LINK_CHNG_MODE_USE_STATUS_REG) { |
| Value32 = REG_RD (pDevice, MacCtrl.Status); |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) { |
| if (Value32 & MAC_STATUS_MI_INTERRUPT) { |
| ServicePhyInt = TRUE; |
| } |
| } else if (Value32 & MAC_STATUS_LINK_STATE_CHANGED) { |
| ServicePhyInt = TRUE; |
| } |
| } else { |
| if (pDevice->pStatusBlkVirt-> |
| Status & STATUS_BLOCK_LINK_CHANGED_STATUS) { |
| pDevice->pStatusBlkVirt->Status = |
| STATUS_BLOCK_UPDATED | (pDevice->pStatusBlkVirt-> |
| Status & |
| ~STATUS_BLOCK_LINK_CHANGED_STATUS); |
| ServicePhyInt = TRUE; |
| } |
| } |
| #if INCLUDE_TBI_SUPPORT |
| if (pDevice->IgnoreTbiLinkChange == TRUE) { |
| ServicePhyInt = FALSE; |
| } |
| #endif |
| if (ServicePhyInt == TRUE) { |
| LM_SetupPhy (pDevice); |
| } |
| |
| /* Service receive and transmit interrupts. */ |
| LM_ServiceRxInterrupt (pDevice); |
| LM_ServiceTxInterrupt (pDevice); |
| |
| /* No spinlock for this queue since this routine is serialized. */ |
| if (!QQ_Empty (&pDevice->RxPacketReceivedQ.Container)) { |
| /* Indicate receive packets. */ |
| MM_IndicateRxPackets (pDevice); |
| /* LM_QueueRxPackets(pDevice); */ |
| } |
| |
| /* No spinlock for this queue since this routine is serialized. */ |
| if (!QQ_Empty (&pDevice->TxPacketXmittedQ.Container)) { |
| MM_IndicateTxPackets (pDevice); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_ServiceInterrupts */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS LM_MulticastAdd (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress) |
| { |
| PLM_UINT8 pEntry; |
| LM_UINT32 j; |
| |
| pEntry = pDevice->McTable[0]; |
| for (j = 0; j < pDevice->McEntryCount; j++) { |
| if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) { |
| /* Found a match, increment the instance count. */ |
| pEntry[LM_MC_INSTANCE_COUNT_INDEX] += 1; |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| pEntry += LM_MC_ENTRY_SIZE; |
| } |
| |
| if (pDevice->McEntryCount >= LM_MAX_MC_TABLE_SIZE) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| pEntry = pDevice->McTable[pDevice->McEntryCount]; |
| |
| COPY_ETH_ADDRESS (pMcAddress, pEntry); |
| pEntry[LM_MC_INSTANCE_COUNT_INDEX] = 1; |
| |
| pDevice->McEntryCount++; |
| |
| LM_SetReceiveMask (pDevice, pDevice->ReceiveMask | LM_ACCEPT_MULTICAST); |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_MulticastAdd */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS LM_MulticastDel (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMcAddress) |
| { |
| PLM_UINT8 pEntry; |
| LM_UINT32 j; |
| |
| pEntry = pDevice->McTable[0]; |
| for (j = 0; j < pDevice->McEntryCount; j++) { |
| if (IS_ETH_ADDRESS_EQUAL (pEntry, pMcAddress)) { |
| /* Found a match, decrement the instance count. */ |
| pEntry[LM_MC_INSTANCE_COUNT_INDEX] -= 1; |
| |
| /* No more instance left, remove the address from the table. */ |
| /* Move the last entry in the table to the delete slot. */ |
| if (pEntry[LM_MC_INSTANCE_COUNT_INDEX] == 0 && |
| pDevice->McEntryCount > 1) { |
| |
| COPY_ETH_ADDRESS (pDevice-> |
| McTable[pDevice-> |
| McEntryCount - 1], |
| pEntry); |
| pEntry[LM_MC_INSTANCE_COUNT_INDEX] = |
| pDevice->McTable[pDevice->McEntryCount - 1] |
| [LM_MC_INSTANCE_COUNT_INDEX]; |
| } |
| pDevice->McEntryCount--; |
| |
| /* Update the receive mask if the table is empty. */ |
| if (pDevice->McEntryCount == 0) { |
| LM_SetReceiveMask (pDevice, |
| pDevice-> |
| ReceiveMask & |
| ~LM_ACCEPT_MULTICAST); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| pEntry += LM_MC_ENTRY_SIZE; |
| } |
| |
| return LM_STATUS_FAILURE; |
| } /* LM_MulticastDel */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS LM_MulticastClear (PLM_DEVICE_BLOCK pDevice) |
| { |
| pDevice->McEntryCount = 0; |
| |
| LM_SetReceiveMask (pDevice, |
| pDevice->ReceiveMask & ~LM_ACCEPT_MULTICAST); |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_MulticastClear */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS LM_SetMacAddress (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pMacAddress) |
| { |
| LM_UINT32 j; |
| |
| for (j = 0; j < 4; j++) { |
| REG_WR (pDevice, MacCtrl.MacAddr[j].High, |
| (pMacAddress[0] << 8) | pMacAddress[1]); |
| REG_WR (pDevice, MacCtrl.MacAddr[j].Low, |
| (pMacAddress[2] << 24) | (pMacAddress[3] << 16) | |
| (pMacAddress[4] << 8) | pMacAddress[5]); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* Sets up the default line speed, and duplex modes based on the requested */ |
| /* media type. */ |
| /* */ |
| /* Return: */ |
| /* None. */ |
| /******************************************************************************/ |
| static LM_STATUS |
| LM_TranslateRequestedMediaType (LM_REQUESTED_MEDIA_TYPE RequestedMediaType, |
| PLM_MEDIA_TYPE pMediaType, |
| PLM_LINE_SPEED pLineSpeed, |
| PLM_DUPLEX_MODE pDuplexMode) |
| { |
| *pMediaType = LM_MEDIA_TYPE_AUTO; |
| *pLineSpeed = LM_LINE_SPEED_UNKNOWN; |
| *pDuplexMode = LM_DUPLEX_MODE_UNKNOWN; |
| |
| /* determine media type */ |
| switch (RequestedMediaType) { |
| case LM_REQUESTED_MEDIA_TYPE_BNC: |
| *pMediaType = LM_MEDIA_TYPE_BNC; |
| *pLineSpeed = LM_LINE_SPEED_10MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_HALF; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_UTP_AUTO: |
| *pMediaType = LM_MEDIA_TYPE_UTP; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS: |
| *pMediaType = LM_MEDIA_TYPE_UTP; |
| *pLineSpeed = LM_LINE_SPEED_10MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_HALF; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS_FULL_DUPLEX: |
| *pMediaType = LM_MEDIA_TYPE_UTP; |
| *pLineSpeed = LM_LINE_SPEED_10MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_FULL; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS: |
| *pMediaType = LM_MEDIA_TYPE_UTP; |
| *pLineSpeed = LM_LINE_SPEED_100MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_HALF; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_UTP_100MBPS_FULL_DUPLEX: |
| *pMediaType = LM_MEDIA_TYPE_UTP; |
| *pLineSpeed = LM_LINE_SPEED_100MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_FULL; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS: |
| *pMediaType = LM_MEDIA_TYPE_UTP; |
| *pLineSpeed = LM_LINE_SPEED_1000MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_HALF; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_UTP_1000MBPS_FULL_DUPLEX: |
| *pMediaType = LM_MEDIA_TYPE_UTP; |
| *pLineSpeed = LM_LINE_SPEED_1000MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_FULL; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS: |
| *pMediaType = LM_MEDIA_TYPE_FIBER; |
| *pLineSpeed = LM_LINE_SPEED_100MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_HALF; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_FIBER_100MBPS_FULL_DUPLEX: |
| *pMediaType = LM_MEDIA_TYPE_FIBER; |
| *pLineSpeed = LM_LINE_SPEED_100MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_FULL; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS: |
| *pMediaType = LM_MEDIA_TYPE_FIBER; |
| *pLineSpeed = LM_LINE_SPEED_1000MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_HALF; |
| break; |
| |
| case LM_REQUESTED_MEDIA_TYPE_FIBER_1000MBPS_FULL_DUPLEX: |
| *pMediaType = LM_MEDIA_TYPE_FIBER; |
| *pLineSpeed = LM_LINE_SPEED_1000MBPS; |
| *pDuplexMode = LM_DUPLEX_MODE_FULL; |
| break; |
| |
| default: |
| break; |
| } /* switch */ |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_TranslateRequestedMediaType */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_LINK_ACTIVE */ |
| /* LM_STATUS_LINK_DOWN */ |
| /******************************************************************************/ |
| static LM_STATUS LM_InitBcm540xPhy (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_LINE_SPEED CurrentLineSpeed; |
| LM_DUPLEX_MODE CurrentDuplexMode; |
| LM_STATUS CurrentLinkStatus; |
| LM_UINT32 Value32; |
| LM_UINT32 j; |
| |
| #if 1 /* jmb: bugfix -- moved here, out of code that sets initial pwr state */ |
| LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x2); |
| #endif |
| if ((pDevice->PhyId & PHY_ID_MASK) == PHY_BCM5401_PHY_ID) { |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| |
| if (!pDevice->InitDone) { |
| Value32 = 0; |
| } |
| |
| if (!(Value32 & PHY_STATUS_LINK_PASS)) { |
| LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x0c20); |
| |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0012); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1804); |
| |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x0013); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x1204); |
| |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0132); |
| |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x8006); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0232); |
| |
| LM_WritePhy (pDevice, BCM540X_DSP_ADDRESS_REG, 0x201f); |
| LM_WritePhy (pDevice, BCM540X_DSP_RW_PORT, 0x0a20); |
| |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| for (j = 0; j < 1000; j++) { |
| MM_Wait (10); |
| |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| if (Value32 & PHY_STATUS_LINK_PASS) { |
| MM_Wait (40); |
| break; |
| } |
| } |
| |
| if ((pDevice->PhyId & PHY_ID_REV_MASK) == |
| PHY_BCM5401_B0_REV) { |
| if (!(Value32 & PHY_STATUS_LINK_PASS) |
| && (pDevice->OldLineSpeed == |
| LM_LINE_SPEED_1000MBPS)) { |
| LM_WritePhy (pDevice, PHY_CTRL_REG, |
| PHY_CTRL_PHY_RESET); |
| for (j = 0; j < 100; j++) { |
| MM_Wait (10); |
| |
| LM_ReadPhy (pDevice, |
| PHY_CTRL_REG, |
| &Value32); |
| if (! |
| (Value32 & |
| PHY_CTRL_PHY_RESET)) { |
| MM_Wait (40); |
| break; |
| } |
| } |
| |
| LM_WritePhy (pDevice, BCM5401_AUX_CTRL, |
| 0x0c20); |
| |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_ADDRESS_REG, |
| 0x0012); |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_RW_PORT, |
| 0x1804); |
| |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_ADDRESS_REG, |
| 0x0013); |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_RW_PORT, |
| 0x1204); |
| |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_ADDRESS_REG, |
| 0x8006); |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_RW_PORT, |
| 0x0132); |
| |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_ADDRESS_REG, |
| 0x8006); |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_RW_PORT, |
| 0x0232); |
| |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_ADDRESS_REG, |
| 0x201f); |
| LM_WritePhy (pDevice, |
| BCM540X_DSP_RW_PORT, |
| 0x0a20); |
| } |
| } |
| } |
| } else if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_B0) { |
| /* Bug: 5701 A0, B0 TX CRC workaround. */ |
| LM_WritePhy (pDevice, 0x15, 0x0a75); |
| LM_WritePhy (pDevice, 0x1c, 0x8c68); |
| LM_WritePhy (pDevice, 0x1c, 0x8d68); |
| LM_WritePhy (pDevice, 0x1c, 0x8c68); |
| } |
| |
| /* Acknowledge interrupts. */ |
| LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32); |
| LM_ReadPhy (pDevice, BCM540X_INT_STATUS_REG, &Value32); |
| |
| /* Configure the interrupt mask. */ |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) { |
| LM_WritePhy (pDevice, BCM540X_INT_MASK_REG, |
| ~BCM540X_INT_LINK_CHANGE); |
| } |
| |
| /* Configure PHY led mode. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701 || |
| (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700)) { |
| if (pDevice->LedMode == LED_MODE_THREE_LINK) { |
| LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG, |
| BCM540X_EXT_CTRL_LINK3_LED_MODE); |
| } else { |
| LM_WritePhy (pDevice, BCM540X_EXT_CTRL_REG, 0); |
| } |
| } |
| |
| CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| |
| /* Get current link and duplex mode. */ |
| for (j = 0; j < 100; j++) { |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| |
| if (Value32 & PHY_STATUS_LINK_PASS) { |
| break; |
| } |
| MM_Wait (40); |
| } |
| |
| if (Value32 & PHY_STATUS_LINK_PASS) { |
| |
| /* Determine the current line and duplex settings. */ |
| LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32); |
| for (j = 0; j < 2000; j++) { |
| MM_Wait (10); |
| |
| LM_ReadPhy (pDevice, BCM540X_AUX_STATUS_REG, &Value32); |
| if (Value32) { |
| break; |
| } |
| } |
| |
| switch (Value32 & BCM540X_AUX_SPEED_MASK) { |
| case BCM540X_AUX_10BASET_HD: |
| CurrentLineSpeed = LM_LINE_SPEED_10MBPS; |
| CurrentDuplexMode = LM_DUPLEX_MODE_HALF; |
| break; |
| |
| case BCM540X_AUX_10BASET_FD: |
| CurrentLineSpeed = LM_LINE_SPEED_10MBPS; |
| CurrentDuplexMode = LM_DUPLEX_MODE_FULL; |
| break; |
| |
| case BCM540X_AUX_100BASETX_HD: |
| CurrentLineSpeed = LM_LINE_SPEED_100MBPS; |
| CurrentDuplexMode = LM_DUPLEX_MODE_HALF; |
| break; |
| |
| case BCM540X_AUX_100BASETX_FD: |
| CurrentLineSpeed = LM_LINE_SPEED_100MBPS; |
| CurrentDuplexMode = LM_DUPLEX_MODE_FULL; |
| break; |
| |
| case BCM540X_AUX_100BASET_HD: |
| CurrentLineSpeed = LM_LINE_SPEED_1000MBPS; |
| CurrentDuplexMode = LM_DUPLEX_MODE_HALF; |
| break; |
| |
| case BCM540X_AUX_100BASET_FD: |
| CurrentLineSpeed = LM_LINE_SPEED_1000MBPS; |
| CurrentDuplexMode = LM_DUPLEX_MODE_FULL; |
| break; |
| |
| default: |
| |
| CurrentLineSpeed = LM_LINE_SPEED_UNKNOWN; |
| CurrentDuplexMode = LM_DUPLEX_MODE_UNKNOWN; |
| break; |
| } |
| |
| /* Make sure we are in auto-neg mode. */ |
| for (j = 0; j < 200; j++) { |
| LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32); |
| if (Value32 && Value32 != 0x7fff) { |
| break; |
| } |
| |
| if (Value32 == 0 && pDevice->RequestedMediaType == |
| LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS) { |
| break; |
| } |
| |
| MM_Wait (10); |
| } |
| |
| /* Use the current line settings for "auto" mode. */ |
| if (pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO |
| || pDevice->RequestedMediaType == |
| LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) { |
| if (Value32 & PHY_CTRL_AUTO_NEG_ENABLE) { |
| CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| |
| /* We may be exiting low power mode and the link is in */ |
| /* 10mb. In this case, we need to restart autoneg. */ |
| LM_ReadPhy (pDevice, BCM540X_1000BASET_CTRL_REG, |
| &Value32); |
| pDevice->advertising1000 = Value32; |
| /* 5702FE supports 10/100Mb only. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) != |
| T3_ASIC_REV_5703 |
| || pDevice->BondId != |
| GRC_MISC_BD_ID_5702FE) { |
| if (! |
| (Value32 & |
| (BCM540X_AN_AD_1000BASET_HALF | |
| BCM540X_AN_AD_1000BASET_FULL))) { |
| CurrentLinkStatus = |
| LM_STATUS_LINK_SETTING_MISMATCH; |
| } |
| } |
| } else { |
| CurrentLinkStatus = |
| LM_STATUS_LINK_SETTING_MISMATCH; |
| } |
| } else { |
| /* Force line settings. */ |
| /* Use the current setting if it matches the user's requested */ |
| /* setting. */ |
| LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32); |
| if ((pDevice->LineSpeed == CurrentLineSpeed) && |
| (pDevice->DuplexMode == CurrentDuplexMode)) { |
| if ((pDevice->DisableAutoNeg && |
| !(Value32 & PHY_CTRL_AUTO_NEG_ENABLE)) || |
| (!pDevice->DisableAutoNeg && |
| (Value32 & PHY_CTRL_AUTO_NEG_ENABLE))) { |
| CurrentLinkStatus = |
| LM_STATUS_LINK_ACTIVE; |
| } else { |
| CurrentLinkStatus = |
| LM_STATUS_LINK_SETTING_MISMATCH; |
| } |
| } else { |
| CurrentLinkStatus = |
| LM_STATUS_LINK_SETTING_MISMATCH; |
| } |
| } |
| |
| /* Save line settings. */ |
| pDevice->LineSpeed = CurrentLineSpeed; |
| pDevice->DuplexMode = CurrentDuplexMode; |
| pDevice->MediaType = LM_MEDIA_TYPE_UTP; |
| } |
| |
| return CurrentLinkStatus; |
| } /* LM_InitBcm540xPhy */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS |
| LM_SetFlowControl (PLM_DEVICE_BLOCK pDevice, |
| LM_UINT32 LocalPhyAd, LM_UINT32 RemotePhyAd) |
| { |
| LM_FLOW_CONTROL FlowCap; |
| |
| /* Resolve flow control. */ |
| FlowCap = LM_FLOW_CONTROL_NONE; |
| |
| /* See Table 28B-3 of 802.3ab-1999 spec. */ |
| if (pDevice->FlowControlCap & LM_FLOW_CONTROL_AUTO_PAUSE) { |
| if (LocalPhyAd & PHY_AN_AD_PAUSE_CAPABLE) { |
| if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) { |
| if (RemotePhyAd & |
| PHY_LINK_PARTNER_PAUSE_CAPABLE) { |
| FlowCap = |
| LM_FLOW_CONTROL_TRANSMIT_PAUSE | |
| LM_FLOW_CONTROL_RECEIVE_PAUSE; |
| } else if (RemotePhyAd & |
| PHY_LINK_PARTNER_ASYM_PAUSE) { |
| FlowCap = LM_FLOW_CONTROL_RECEIVE_PAUSE; |
| } |
| } else { |
| if (RemotePhyAd & |
| PHY_LINK_PARTNER_PAUSE_CAPABLE) { |
| FlowCap = |
| LM_FLOW_CONTROL_TRANSMIT_PAUSE | |
| LM_FLOW_CONTROL_RECEIVE_PAUSE; |
| } |
| } |
| } else if (LocalPhyAd & PHY_AN_AD_ASYM_PAUSE) { |
| if ((RemotePhyAd & PHY_LINK_PARTNER_PAUSE_CAPABLE) && |
| (RemotePhyAd & PHY_LINK_PARTNER_ASYM_PAUSE)) { |
| FlowCap = LM_FLOW_CONTROL_TRANSMIT_PAUSE; |
| } |
| } |
| } else { |
| FlowCap = pDevice->FlowControlCap; |
| } |
| |
| /* Enable/disable rx PAUSE. */ |
| pDevice->RxMode &= ~RX_MODE_ENABLE_FLOW_CONTROL; |
| if (FlowCap & LM_FLOW_CONTROL_RECEIVE_PAUSE && |
| (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE || |
| pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE)) { |
| pDevice->FlowControl |= LM_FLOW_CONTROL_RECEIVE_PAUSE; |
| pDevice->RxMode |= RX_MODE_ENABLE_FLOW_CONTROL; |
| |
| } |
| REG_WR (pDevice, MacCtrl.RxMode, pDevice->RxMode); |
| |
| /* Enable/disable tx PAUSE. */ |
| pDevice->TxMode &= ~TX_MODE_ENABLE_FLOW_CONTROL; |
| if (FlowCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE && |
| (pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE || |
| pDevice->FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE)) { |
| pDevice->FlowControl |= LM_FLOW_CONTROL_TRANSMIT_PAUSE; |
| pDevice->TxMode |= TX_MODE_ENABLE_FLOW_CONTROL; |
| |
| } |
| REG_WR (pDevice, MacCtrl.TxMode, pDevice->TxMode); |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| #if INCLUDE_TBI_SUPPORT |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| STATIC LM_STATUS LM_InitBcm800xPhy (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_UINT32 Value32; |
| LM_UINT32 j; |
| |
| Value32 = REG_RD (pDevice, MacCtrl.Status); |
| |
| /* Reset the SERDES during init and when we have link. */ |
| if (!pDevice->InitDone || Value32 & MAC_STATUS_PCS_SYNCED) { |
| /* Set PLL lock range. */ |
| LM_WritePhy (pDevice, 0x16, 0x8007); |
| |
| /* Software reset. */ |
| LM_WritePhy (pDevice, 0x00, 0x8000); |
| |
| /* Wait for reset to complete. */ |
| for (j = 0; j < 500; j++) { |
| MM_Wait (10); |
| } |
| |
| /* Config mode; seletct PMA/Ch 1 regs. */ |
| LM_WritePhy (pDevice, 0x10, 0x8411); |
| |
| /* Enable auto-lock and comdet, select txclk for tx. */ |
| LM_WritePhy (pDevice, 0x11, 0x0a10); |
| |
| LM_WritePhy (pDevice, 0x18, 0x00a0); |
| LM_WritePhy (pDevice, 0x16, 0x41ff); |
| |
| /* Assert and deassert POR. */ |
| LM_WritePhy (pDevice, 0x13, 0x0400); |
| MM_Wait (40); |
| LM_WritePhy (pDevice, 0x13, 0x0000); |
| |
| LM_WritePhy (pDevice, 0x11, 0x0a50); |
| MM_Wait (40); |
| LM_WritePhy (pDevice, 0x11, 0x0a10); |
| |
| /* Delay for signal to stabilize. */ |
| for (j = 0; j < 15000; j++) { |
| MM_Wait (10); |
| } |
| |
| /* Deselect the channel register so we can read the PHY id later. */ |
| LM_WritePhy (pDevice, 0x10, 0x8011); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| STATIC LM_STATUS LM_SetupFiberPhy (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_STATUS CurrentLinkStatus; |
| AUTONEG_STATUS AnStatus = 0; |
| LM_UINT32 Value32; |
| LM_UINT32 Cnt; |
| LM_UINT32 j, k; |
| |
| pDevice->MacMode &= ~(MAC_MODE_HALF_DUPLEX | MAC_MODE_PORT_MODE_MASK); |
| |
| /* Initialize the send_config register. */ |
| REG_WR (pDevice, MacCtrl.TxAutoNeg, 0); |
| |
| /* Enable TBI and full duplex mode. */ |
| pDevice->MacMode |= MAC_MODE_PORT_MODE_TBI; |
| REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode); |
| |
| /* Initialize the BCM8002 SERDES PHY. */ |
| switch (pDevice->PhyId & PHY_ID_MASK) { |
| case PHY_BCM8002_PHY_ID: |
| LM_InitBcm800xPhy (pDevice); |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Enable link change interrupt. */ |
| REG_WR (pDevice, MacCtrl.MacEvent, |
| MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN); |
| |
| /* Default to link down. */ |
| CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| |
| /* Get the link status. */ |
| Value32 = REG_RD (pDevice, MacCtrl.Status); |
| if (Value32 & MAC_STATUS_PCS_SYNCED) { |
| if ((pDevice->RequestedMediaType == |
| LM_REQUESTED_MEDIA_TYPE_AUTO) |
| || (pDevice->DisableAutoNeg == FALSE)) { |
| /* auto-negotiation mode. */ |
| /* Initialize the autoneg default capaiblities. */ |
| AutonegInit (&pDevice->AnInfo); |
| |
| /* Set the context pointer to point to the main device structure. */ |
| pDevice->AnInfo.pContext = pDevice; |
| |
| /* Setup flow control advertisement register. */ |
| Value32 = GetPhyAdFlowCntrlSettings (pDevice); |
| if (Value32 & PHY_AN_AD_PAUSE_CAPABLE) { |
| pDevice->AnInfo.mr_adv_sym_pause = 1; |
| } else { |
| pDevice->AnInfo.mr_adv_sym_pause = 0; |
| } |
| |
| if (Value32 & PHY_AN_AD_ASYM_PAUSE) { |
| pDevice->AnInfo.mr_adv_asym_pause = 1; |
| } else { |
| pDevice->AnInfo.mr_adv_asym_pause = 0; |
| } |
| |
| /* Try to autoneg up to six times. */ |
| if (pDevice->IgnoreTbiLinkChange) { |
| Cnt = 1; |
| } else { |
| Cnt = 6; |
| } |
| for (j = 0; j < Cnt; j++) { |
| REG_WR (pDevice, MacCtrl.TxAutoNeg, 0); |
| |
| Value32 = |
| pDevice->MacMode & ~MAC_MODE_PORT_MODE_MASK; |
| REG_WR (pDevice, MacCtrl.Mode, Value32); |
| MM_Wait (20); |
| |
| REG_WR (pDevice, MacCtrl.Mode, |
| pDevice-> |
| MacMode | MAC_MODE_SEND_CONFIGS); |
| |
| MM_Wait (20); |
| |
| pDevice->AnInfo.State = AN_STATE_UNKNOWN; |
| pDevice->AnInfo.CurrentTime_us = 0; |
| |
| REG_WR (pDevice, Grc.Timer, 0); |
| for (k = 0; |
| (pDevice->AnInfo.CurrentTime_us < 75000) |
| && (k < 75000); k++) { |
| AnStatus = |
| Autoneg8023z (&pDevice->AnInfo); |
| |
| if ((AnStatus == AUTONEG_STATUS_DONE) || |
| (AnStatus == AUTONEG_STATUS_FAILED)) |
| { |
| break; |
| } |
| |
| pDevice->AnInfo.CurrentTime_us = |
| REG_RD (pDevice, Grc.Timer); |
| |
| } |
| if ((AnStatus == AUTONEG_STATUS_DONE) || |
| (AnStatus == AUTONEG_STATUS_FAILED)) { |
| break; |
| } |
| if (j >= 1) { |
| if (!(REG_RD (pDevice, MacCtrl.Status) & |
| MAC_STATUS_PCS_SYNCED)) { |
| break; |
| } |
| } |
| } |
| |
| /* Stop sending configs. */ |
| MM_AnTxIdle (&pDevice->AnInfo); |
| |
| /* Resolve flow control settings. */ |
| if ((AnStatus == AUTONEG_STATUS_DONE) && |
| pDevice->AnInfo.mr_an_complete |
| && pDevice->AnInfo.mr_link_ok |
| && pDevice->AnInfo.mr_lp_adv_full_duplex) { |
| LM_UINT32 RemotePhyAd; |
| LM_UINT32 LocalPhyAd; |
| |
| LocalPhyAd = 0; |
| if (pDevice->AnInfo.mr_adv_sym_pause) { |
| LocalPhyAd |= PHY_AN_AD_PAUSE_CAPABLE; |
| } |
| |
| if (pDevice->AnInfo.mr_adv_asym_pause) { |
| LocalPhyAd |= PHY_AN_AD_ASYM_PAUSE; |
| } |
| |
| RemotePhyAd = 0; |
| if (pDevice->AnInfo.mr_lp_adv_sym_pause) { |
| RemotePhyAd |= |
| PHY_LINK_PARTNER_PAUSE_CAPABLE; |
| } |
| |
| if (pDevice->AnInfo.mr_lp_adv_asym_pause) { |
| RemotePhyAd |= |
| PHY_LINK_PARTNER_ASYM_PAUSE; |
| } |
| |
| LM_SetFlowControl (pDevice, LocalPhyAd, |
| RemotePhyAd); |
| |
| CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| } |
| for (j = 0; j < 30; j++) { |
| MM_Wait (20); |
| REG_WR (pDevice, MacCtrl.Status, |
| MAC_STATUS_SYNC_CHANGED | |
| MAC_STATUS_CFG_CHANGED); |
| MM_Wait (20); |
| if ((REG_RD (pDevice, MacCtrl.Status) & |
| (MAC_STATUS_SYNC_CHANGED | |
| MAC_STATUS_CFG_CHANGED)) == 0) |
| break; |
| } |
| if (pDevice->PollTbiLink) { |
| Value32 = REG_RD (pDevice, MacCtrl.Status); |
| if (Value32 & MAC_STATUS_RECEIVING_CFG) { |
| pDevice->IgnoreTbiLinkChange = TRUE; |
| } else { |
| pDevice->IgnoreTbiLinkChange = FALSE; |
| } |
| } |
| Value32 = REG_RD (pDevice, MacCtrl.Status); |
| if (CurrentLinkStatus == LM_STATUS_LINK_DOWN && |
| (Value32 & MAC_STATUS_PCS_SYNCED) && |
| ((Value32 & MAC_STATUS_RECEIVING_CFG) == 0)) { |
| CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| } |
| } else { |
| /* We are forcing line speed. */ |
| pDevice->FlowControlCap &= ~LM_FLOW_CONTROL_AUTO_PAUSE; |
| LM_SetFlowControl (pDevice, 0, 0); |
| |
| CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode | |
| MAC_MODE_SEND_CONFIGS); |
| } |
| } |
| /* Set the link polarity bit. */ |
| pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY; |
| REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode); |
| |
| pDevice->pStatusBlkVirt->Status = STATUS_BLOCK_UPDATED | |
| (pDevice->pStatusBlkVirt-> |
| Status & ~STATUS_BLOCK_LINK_CHANGED_STATUS); |
| |
| for (j = 0; j < 100; j++) { |
| REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| MAC_STATUS_CFG_CHANGED); |
| MM_Wait (5); |
| if ((REG_RD (pDevice, MacCtrl.Status) & |
| (MAC_STATUS_SYNC_CHANGED | MAC_STATUS_CFG_CHANGED)) == 0) |
| break; |
| } |
| |
| Value32 = REG_RD (pDevice, MacCtrl.Status); |
| if ((Value32 & MAC_STATUS_PCS_SYNCED) == 0) { |
| CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| if (pDevice->DisableAutoNeg == FALSE) { |
| REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode | |
| MAC_MODE_SEND_CONFIGS); |
| MM_Wait (1); |
| REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode); |
| } |
| } |
| |
| /* Initialize the current link status. */ |
| if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) { |
| pDevice->LineSpeed = LM_LINE_SPEED_1000MBPS; |
| pDevice->DuplexMode = LM_DUPLEX_MODE_FULL; |
| REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED | |
| LED_CTRL_1000MBPS_LED_ON); |
| } else { |
| pDevice->LineSpeed = LM_LINE_SPEED_UNKNOWN; |
| pDevice->DuplexMode = LM_DUPLEX_MODE_UNKNOWN; |
| REG_WR (pDevice, MacCtrl.LedCtrl, LED_CTRL_OVERRIDE_LINK_LED | |
| LED_CTRL_OVERRIDE_TRAFFIC_LED); |
| } |
| |
| /* Indicate link status. */ |
| if (pDevice->LinkStatus != CurrentLinkStatus) { |
| pDevice->LinkStatus = CurrentLinkStatus; |
| MM_IndicateStatus (pDevice, CurrentLinkStatus); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| #endif /* INCLUDE_TBI_SUPPORT */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS LM_SetupCopperPhy (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_STATUS CurrentLinkStatus; |
| LM_UINT32 Value32; |
| |
| /* Assume there is not link first. */ |
| CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| |
| /* Disable phy link change attention. */ |
| REG_WR (pDevice, MacCtrl.MacEvent, 0); |
| |
| /* Clear link change attention. */ |
| REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| MAC_STATUS_CFG_CHANGED); |
| |
| /* Disable auto-polling for the moment. */ |
| pDevice->MiMode = 0xc0000; |
| REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| MM_Wait (40); |
| |
| /* Determine the requested line speed and duplex. */ |
| pDevice->OldLineSpeed = pDevice->LineSpeed; |
| LM_TranslateRequestedMediaType (pDevice->RequestedMediaType, |
| &pDevice->MediaType, |
| &pDevice->LineSpeed, |
| &pDevice->DuplexMode); |
| |
| /* Initialize the phy chip. */ |
| switch (pDevice->PhyId & PHY_ID_MASK) { |
| case PHY_BCM5400_PHY_ID: |
| case PHY_BCM5401_PHY_ID: |
| case PHY_BCM5411_PHY_ID: |
| case PHY_BCM5701_PHY_ID: |
| case PHY_BCM5703_PHY_ID: |
| case PHY_BCM5704_PHY_ID: |
| CurrentLinkStatus = LM_InitBcm540xPhy (pDevice); |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (CurrentLinkStatus == LM_STATUS_LINK_SETTING_MISMATCH) { |
| CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| } |
| |
| /* Setup flow control. */ |
| pDevice->FlowControl = LM_FLOW_CONTROL_NONE; |
| if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) { |
| LM_FLOW_CONTROL FlowCap; /* Flow control capability. */ |
| |
| FlowCap = LM_FLOW_CONTROL_NONE; |
| |
| if (pDevice->DuplexMode == LM_DUPLEX_MODE_FULL) { |
| if (pDevice->DisableAutoNeg == FALSE || |
| pDevice->RequestedMediaType == |
| LM_REQUESTED_MEDIA_TYPE_AUTO |
| || pDevice->RequestedMediaType == |
| LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) { |
| LM_UINT32 ExpectedPhyAd; |
| LM_UINT32 LocalPhyAd; |
| LM_UINT32 RemotePhyAd; |
| |
| LM_ReadPhy (pDevice, PHY_AN_AD_REG, |
| &LocalPhyAd); |
| pDevice->advertising = LocalPhyAd; |
| LocalPhyAd &= |
| (PHY_AN_AD_ASYM_PAUSE | |
| PHY_AN_AD_PAUSE_CAPABLE); |
| |
| ExpectedPhyAd = |
| GetPhyAdFlowCntrlSettings (pDevice); |
| |
| if (LocalPhyAd != ExpectedPhyAd) { |
| CurrentLinkStatus = LM_STATUS_LINK_DOWN; |
| } else { |
| LM_ReadPhy (pDevice, |
| PHY_LINK_PARTNER_ABILITY_REG, |
| &RemotePhyAd); |
| |
| LM_SetFlowControl (pDevice, LocalPhyAd, |
| RemotePhyAd); |
| } |
| } else { |
| pDevice->FlowControlCap &= |
| ~LM_FLOW_CONTROL_AUTO_PAUSE; |
| LM_SetFlowControl (pDevice, 0, 0); |
| } |
| } |
| } |
| |
| if (CurrentLinkStatus == LM_STATUS_LINK_DOWN) { |
| LM_ForceAutoNeg (pDevice, pDevice->RequestedMediaType); |
| |
| /* If we force line speed, we make get link right away. */ |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| if (Value32 & PHY_STATUS_LINK_PASS) { |
| CurrentLinkStatus = LM_STATUS_LINK_ACTIVE; |
| } |
| } |
| |
| /* GMII interface. */ |
| pDevice->MacMode &= ~MAC_MODE_PORT_MODE_MASK; |
| if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) { |
| if (pDevice->LineSpeed == LM_LINE_SPEED_100MBPS || |
| pDevice->LineSpeed == LM_LINE_SPEED_10MBPS) { |
| pDevice->MacMode |= MAC_MODE_PORT_MODE_MII; |
| } else { |
| pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII; |
| } |
| } else { |
| pDevice->MacMode |= MAC_MODE_PORT_MODE_GMII; |
| } |
| |
| /* Set the MAC to operate in the appropriate duplex mode. */ |
| pDevice->MacMode &= ~MAC_MODE_HALF_DUPLEX; |
| if (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF) { |
| pDevice->MacMode |= MAC_MODE_HALF_DUPLEX; |
| } |
| |
| /* Set the link polarity bit. */ |
| pDevice->MacMode &= ~MAC_MODE_LINK_POLARITY; |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| if ((pDevice->LedMode == LED_MODE_LINK10) || |
| (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE && |
| pDevice->LineSpeed == LM_LINE_SPEED_10MBPS)) { |
| pDevice->MacMode |= MAC_MODE_LINK_POLARITY; |
| } |
| } else { |
| if (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) { |
| pDevice->MacMode |= MAC_MODE_LINK_POLARITY; |
| } |
| |
| /* Set LED mode. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| Value32 = LED_CTRL_PHY_MODE_1; |
| } else { |
| if (pDevice->LedMode == LED_MODE_OUTPUT) { |
| Value32 = LED_CTRL_PHY_MODE_2; |
| } else { |
| Value32 = LED_CTRL_PHY_MODE_1; |
| } |
| } |
| REG_WR (pDevice, MacCtrl.LedCtrl, Value32); |
| } |
| |
| REG_WR (pDevice, MacCtrl.Mode, pDevice->MacMode); |
| |
| /* Enable auto polling. */ |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) { |
| pDevice->MiMode |= MI_MODE_AUTO_POLLING_ENABLE; |
| REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| } |
| |
| /* Enable phy link change attention. */ |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_MI_INTERRUPT) { |
| REG_WR (pDevice, MacCtrl.MacEvent, |
| MAC_EVENT_ENABLE_MI_INTERRUPT); |
| } else { |
| REG_WR (pDevice, MacCtrl.MacEvent, |
| MAC_EVENT_ENABLE_LINK_STATE_CHANGED_ATTN); |
| } |
| if ((T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) && |
| (CurrentLinkStatus == LM_STATUS_LINK_ACTIVE) && |
| (pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) && |
| (((pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE) && |
| (pDevice->PciState & T3_PCI_STATE_BUS_SPEED_HIGH)) || |
| !(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE))) { |
| MM_Wait (120); |
| REG_WR (pDevice, MacCtrl.Status, MAC_STATUS_SYNC_CHANGED | |
| MAC_STATUS_CFG_CHANGED); |
| MEM_WR_OFFSET (pDevice, T3_FIRMWARE_MAILBOX, |
| T3_MAGIC_NUM_DISABLE_DMAW_ON_LINK_CHANGE); |
| } |
| |
| /* Indicate link status. */ |
| if (pDevice->LinkStatus != CurrentLinkStatus) { |
| pDevice->LinkStatus = CurrentLinkStatus; |
| MM_IndicateStatus (pDevice, CurrentLinkStatus); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_SetupCopperPhy */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS LM_SetupPhy (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_STATUS LmStatus; |
| LM_UINT32 Value32; |
| |
| #if INCLUDE_TBI_SUPPORT |
| if (pDevice->EnableTbi) { |
| LmStatus = LM_SetupFiberPhy (pDevice); |
| } else |
| #endif /* INCLUDE_TBI_SUPPORT */ |
| { |
| LmStatus = LM_SetupCopperPhy (pDevice); |
| } |
| if (pDevice->ChipRevId == T3_CHIP_ID_5704_A0) { |
| if (!(pDevice->PciState & T3_PCI_STATE_CONVENTIONAL_PCI_MODE)) { |
| Value32 = REG_RD (pDevice, PciCfg.PciState); |
| REG_WR (pDevice, PciCfg.PciState, |
| Value32 | T3_PCI_STATE_RETRY_SAME_DMA); |
| } |
| } |
| if ((pDevice->LineSpeed == LM_LINE_SPEED_1000MBPS) && |
| (pDevice->DuplexMode == LM_DUPLEX_MODE_HALF)) { |
| REG_WR (pDevice, MacCtrl.TxLengths, 0x26ff); |
| } else { |
| REG_WR (pDevice, MacCtrl.TxLengths, 0x2620); |
| } |
| |
| return LmStatus; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_VOID |
| LM_ReadPhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, PLM_UINT32 pData32) |
| { |
| LM_UINT32 Value32; |
| LM_UINT32 j; |
| |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) { |
| REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode & |
| ~MI_MODE_AUTO_POLLING_ENABLE); |
| MM_Wait (40); |
| } |
| |
| Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) | |
| ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << |
| MI_COM_FIRST_PHY_REG_ADDR_BIT) | MI_COM_CMD_READ | MI_COM_START; |
| |
| REG_WR (pDevice, MacCtrl.MiCom, Value32); |
| |
| for (j = 0; j < 20; j++) { |
| MM_Wait (25); |
| |
| Value32 = REG_RD (pDevice, MacCtrl.MiCom); |
| |
| if (!(Value32 & MI_COM_BUSY)) { |
| MM_Wait (5); |
| Value32 = REG_RD (pDevice, MacCtrl.MiCom); |
| Value32 &= MI_COM_PHY_DATA_MASK; |
| break; |
| } |
| } |
| |
| if (Value32 & MI_COM_BUSY) { |
| Value32 = 0; |
| } |
| |
| *pData32 = Value32; |
| |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) { |
| REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| MM_Wait (40); |
| } |
| } /* LM_ReadPhy */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_VOID |
| LM_WritePhy (PLM_DEVICE_BLOCK pDevice, LM_UINT32 PhyReg, LM_UINT32 Data32) |
| { |
| LM_UINT32 Value32; |
| LM_UINT32 j; |
| |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) { |
| REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode & |
| ~MI_MODE_AUTO_POLLING_ENABLE); |
| MM_Wait (40); |
| } |
| |
| Value32 = (pDevice->PhyAddr << MI_COM_FIRST_PHY_ADDR_BIT) | |
| ((PhyReg & MI_COM_PHY_REG_ADDR_MASK) << |
| MI_COM_FIRST_PHY_REG_ADDR_BIT) | (Data32 & MI_COM_PHY_DATA_MASK) | |
| MI_COM_CMD_WRITE | MI_COM_START; |
| |
| REG_WR (pDevice, MacCtrl.MiCom, Value32); |
| |
| for (j = 0; j < 20; j++) { |
| MM_Wait (25); |
| |
| Value32 = REG_RD (pDevice, MacCtrl.MiCom); |
| |
| if (!(Value32 & MI_COM_BUSY)) { |
| MM_Wait (5); |
| break; |
| } |
| } |
| |
| if (pDevice->PhyIntMode == T3_PHY_INT_MODE_AUTO_POLLING) { |
| REG_WR (pDevice, MacCtrl.MiMode, pDevice->MiMode); |
| MM_Wait (40); |
| } |
| } /* LM_WritePhy */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS LM_SetPowerState (PLM_DEVICE_BLOCK pDevice, LM_POWER_STATE PowerLevel) |
| { |
| LM_UINT32 PmeSupport; |
| LM_UINT32 Value32; |
| LM_UINT32 PmCtrl; |
| |
| /* make sureindirect accesses are enabled */ |
| MM_WriteConfig32 (pDevice, T3_PCI_MISC_HOST_CTRL_REG, |
| pDevice->MiscHostCtrl); |
| |
| /* Clear the PME_ASSERT bit and the power state bits. Also enable */ |
| /* the PME bit. */ |
| MM_ReadConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, &PmCtrl); |
| |
| PmCtrl |= T3_PM_PME_ASSERTED; |
| PmCtrl &= ~T3_PM_POWER_STATE_MASK; |
| |
| /* Set the appropriate power state. */ |
| if (PowerLevel == LM_POWER_STATE_D0) { |
| |
| /* Bring the card out of low power mode. */ |
| PmCtrl |= T3_PM_POWER_STATE_D0; |
| MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl); |
| |
| REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl); |
| MM_Wait (40); |
| #if 0 /* Bugfix by jmb...can't call WritePhy here because pDevice not fully initialized */ |
| LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x02); |
| #endif |
| |
| return LM_STATUS_SUCCESS; |
| } else if (PowerLevel == LM_POWER_STATE_D1) { |
| PmCtrl |= T3_PM_POWER_STATE_D1; |
| } else if (PowerLevel == LM_POWER_STATE_D2) { |
| PmCtrl |= T3_PM_POWER_STATE_D2; |
| } else if (PowerLevel == LM_POWER_STATE_D3) { |
| PmCtrl |= T3_PM_POWER_STATE_D3; |
| } else { |
| return LM_STATUS_FAILURE; |
| } |
| PmCtrl |= T3_PM_PME_ENABLE; |
| |
| /* Mask out all interrupts so LM_SetupPhy won't be called while we are */ |
| /* setting new line speed. */ |
| Value32 = REG_RD (pDevice, PciCfg.MiscHostCtrl); |
| REG_WR (pDevice, PciCfg.MiscHostCtrl, |
| Value32 | MISC_HOST_CTRL_MASK_PCI_INT); |
| |
| if (!pDevice->RestoreOnWakeUp) { |
| pDevice->RestoreOnWakeUp = TRUE; |
| pDevice->WakeUpDisableAutoNeg = pDevice->DisableAutoNeg; |
| pDevice->WakeUpRequestedMediaType = pDevice->RequestedMediaType; |
| } |
| |
| /* Force auto-negotiation to 10 line speed. */ |
| pDevice->DisableAutoNeg = FALSE; |
| pDevice->RequestedMediaType = LM_REQUESTED_MEDIA_TYPE_UTP_10MBPS; |
| LM_SetupPhy (pDevice); |
| |
| /* Put the driver in the initial state, and go through the power down */ |
| /* sequence. */ |
| LM_Halt (pDevice); |
| |
| MM_ReadConfig32 (pDevice, T3_PCI_PM_CAP_REG, &PmeSupport); |
| |
| if (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE) { |
| |
| /* Enable WOL. */ |
| LM_WritePhy (pDevice, BCM5401_AUX_CTRL, 0x5a); |
| MM_Wait (40); |
| |
| /* Set LED mode. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| Value32 = LED_CTRL_PHY_MODE_1; |
| } else { |
| if (pDevice->LedMode == LED_MODE_OUTPUT) { |
| Value32 = LED_CTRL_PHY_MODE_2; |
| } else { |
| Value32 = LED_CTRL_PHY_MODE_1; |
| } |
| } |
| |
| Value32 = MAC_MODE_PORT_MODE_MII; |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700) { |
| if (pDevice->LedMode == LED_MODE_LINK10 || |
| pDevice->WolSpeed == WOL_SPEED_10MB) { |
| Value32 |= MAC_MODE_LINK_POLARITY; |
| } |
| } else { |
| Value32 |= MAC_MODE_LINK_POLARITY; |
| } |
| REG_WR (pDevice, MacCtrl.Mode, Value32); |
| MM_Wait (40); |
| MM_Wait (40); |
| MM_Wait (40); |
| |
| /* Always enable magic packet wake-up if we have vaux. */ |
| if ((PmeSupport & T3_PCI_PM_CAP_PME_D3COLD) && |
| (pDevice->WakeUpModeCap & LM_WAKE_UP_MODE_MAGIC_PACKET)) { |
| Value32 |= MAC_MODE_DETECT_MAGIC_PACKET_ENABLE; |
| } |
| |
| REG_WR (pDevice, MacCtrl.Mode, Value32); |
| |
| /* Enable the receiver. */ |
| REG_WR (pDevice, MacCtrl.RxMode, RX_MODE_ENABLE); |
| } |
| |
| /* Disable tx/rx clocks, and seletect an alternate clock. */ |
| if (pDevice->WolSpeed == WOL_SPEED_100MB) { |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| Value32 = |
| T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK | |
| T3_PCI_SELECT_ALTERNATE_CLOCK; |
| } else { |
| Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK; |
| } |
| REG_WR (pDevice, PciCfg.ClockCtrl, Value32); |
| |
| MM_Wait (40); |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| Value32 = |
| T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK | |
| T3_PCI_SELECT_ALTERNATE_CLOCK | |
| T3_PCI_44MHZ_CORE_CLOCK; |
| } else { |
| Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK | |
| T3_PCI_44MHZ_CORE_CLOCK; |
| } |
| |
| REG_WR (pDevice, PciCfg.ClockCtrl, Value32); |
| |
| MM_Wait (40); |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| Value32 = |
| T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK | |
| T3_PCI_44MHZ_CORE_CLOCK; |
| } else { |
| Value32 = T3_PCI_44MHZ_CORE_CLOCK; |
| } |
| |
| REG_WR (pDevice, PciCfg.ClockCtrl, Value32); |
| } else { |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| Value32 = |
| T3_PCI_DISABLE_RX_CLOCK | T3_PCI_DISABLE_TX_CLOCK | |
| T3_PCI_SELECT_ALTERNATE_CLOCK | |
| T3_PCI_POWER_DOWN_PCI_PLL133; |
| } else { |
| Value32 = T3_PCI_SELECT_ALTERNATE_CLOCK | |
| T3_PCI_POWER_DOWN_PCI_PLL133; |
| } |
| |
| REG_WR (pDevice, PciCfg.ClockCtrl, Value32); |
| } |
| |
| MM_Wait (40); |
| |
| if (!pDevice->EepromWp |
| && (pDevice->WakeUpModeCap != LM_WAKE_UP_MODE_NONE)) { |
| /* Switch adapter to auxilliary power. */ |
| if (T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5700 || |
| T3_ASIC_REV (pDevice->ChipRevId) == T3_ASIC_REV_5701) { |
| /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */ |
| REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| MM_Wait (40); |
| } else { |
| /* GPIO0 = 0, GPIO1 = 1, GPIO2 = 1. */ |
| REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2); |
| MM_Wait (40); |
| |
| /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 1. */ |
| REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT2); |
| MM_Wait (40); |
| |
| /* GPIO0 = 1, GPIO1 = 1, GPIO2 = 0. */ |
| REG_WR (pDevice, Grc.LocalCtrl, pDevice->GrcLocalCtrl | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE0 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE1 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OE2 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT0 | |
| GRC_MISC_LOCAL_CTRL_GPIO_OUTPUT1); |
| MM_Wait (40); |
| } |
| } |
| |
| /* Set the phy to low power mode. */ |
| /* Put the the hardware in low power mode. */ |
| MM_WriteConfig32 (pDevice, T3_PCI_PM_STATUS_CTRL_REG, PmCtrl); |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_SetPowerState */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| static LM_UINT32 GetPhyAdFlowCntrlSettings (PLM_DEVICE_BLOCK pDevice) |
| { |
| LM_UINT32 Value32; |
| |
| Value32 = 0; |
| |
| /* Auto negotiation flow control only when autonegotiation is enabled. */ |
| if (pDevice->DisableAutoNeg == FALSE || |
| pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_AUTO || |
| pDevice->RequestedMediaType == LM_REQUESTED_MEDIA_TYPE_UTP_AUTO) { |
| /* Please refer to Table 28B-3 of the 802.3ab-1999 spec. */ |
| if ((pDevice->FlowControlCap == LM_FLOW_CONTROL_AUTO_PAUSE) || |
| ((pDevice->FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) |
| && (pDevice-> |
| FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE))) { |
| Value32 |= PHY_AN_AD_PAUSE_CAPABLE; |
| } else if (pDevice-> |
| FlowControlCap & LM_FLOW_CONTROL_TRANSMIT_PAUSE) { |
| Value32 |= PHY_AN_AD_ASYM_PAUSE; |
| } else if (pDevice-> |
| FlowControlCap & LM_FLOW_CONTROL_RECEIVE_PAUSE) { |
| Value32 |= |
| PHY_AN_AD_PAUSE_CAPABLE | PHY_AN_AD_ASYM_PAUSE; |
| } |
| } |
| |
| return Value32; |
| } |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /* LM_STATUS_FAILURE */ |
| /* LM_STATUS_SUCCESS */ |
| /* */ |
| /******************************************************************************/ |
| static LM_STATUS |
| LM_ForceAutoNegBcm540xPhy (PLM_DEVICE_BLOCK pDevice, |
| LM_REQUESTED_MEDIA_TYPE RequestedMediaType) |
| { |
| LM_MEDIA_TYPE MediaType; |
| LM_LINE_SPEED LineSpeed; |
| LM_DUPLEX_MODE DuplexMode; |
| LM_UINT32 NewPhyCtrl; |
| LM_UINT32 Value32; |
| LM_UINT32 Cnt; |
| |
| /* Get the interface type, line speed, and duplex mode. */ |
| LM_TranslateRequestedMediaType (RequestedMediaType, &MediaType, |
| &LineSpeed, &DuplexMode); |
| |
| if (pDevice->RestoreOnWakeUp) { |
| LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0); |
| pDevice->advertising1000 = 0; |
| Value32 = PHY_AN_AD_10BASET_FULL | PHY_AN_AD_10BASET_HALF; |
| if (pDevice->WolSpeed == WOL_SPEED_100MB) { |
| Value32 |= |
| PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF; |
| } |
| Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD; |
| Value32 |= GetPhyAdFlowCntrlSettings (pDevice); |
| LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32); |
| pDevice->advertising = Value32; |
| } |
| /* Setup the auto-negotiation advertisement register. */ |
| else if (LineSpeed == LM_LINE_SPEED_UNKNOWN) { |
| /* Setup the 10/100 Mbps auto-negotiation advertisement register. */ |
| Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD | |
| PHY_AN_AD_10BASET_HALF | PHY_AN_AD_10BASET_FULL | |
| PHY_AN_AD_100BASETX_FULL | PHY_AN_AD_100BASETX_HALF; |
| Value32 |= GetPhyAdFlowCntrlSettings (pDevice); |
| |
| LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32); |
| pDevice->advertising = Value32; |
| |
| /* Advertise 1000Mbps */ |
| Value32 = |
| BCM540X_AN_AD_1000BASET_HALF | BCM540X_AN_AD_1000BASET_FULL; |
| |
| #if INCLUDE_5701_AX_FIX |
| /* Bug: workaround for CRC error in gigabit mode when we are in */ |
| /* slave mode. This will force the PHY to operate in */ |
| /* master mode. */ |
| if (pDevice->ChipRevId == T3_CHIP_ID_5701_A0 || |
| pDevice->ChipRevId == T3_CHIP_ID_5701_B0) { |
| Value32 |= BCM540X_CONFIG_AS_MASTER | |
| BCM540X_ENABLE_CONFIG_AS_MASTER; |
| } |
| #endif |
| |
| LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, Value32); |
| pDevice->advertising1000 = Value32; |
| } else { |
| if (LineSpeed == LM_LINE_SPEED_1000MBPS) { |
| Value32 = PHY_AN_AD_PROTOCOL_802_3_CSMA_CD; |
| Value32 |= GetPhyAdFlowCntrlSettings (pDevice); |
| |
| LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32); |
| pDevice->advertising = Value32; |
| |
| if (DuplexMode != LM_DUPLEX_MODE_FULL) { |
| Value32 = BCM540X_AN_AD_1000BASET_HALF; |
| } else { |
| Value32 = BCM540X_AN_AD_1000BASET_FULL; |
| } |
| |
| LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, |
| Value32); |
| pDevice->advertising1000 = Value32; |
| } else if (LineSpeed == LM_LINE_SPEED_100MBPS) { |
| LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0); |
| pDevice->advertising1000 = 0; |
| |
| if (DuplexMode != LM_DUPLEX_MODE_FULL) { |
| Value32 = PHY_AN_AD_100BASETX_HALF; |
| } else { |
| Value32 = PHY_AN_AD_100BASETX_FULL; |
| } |
| |
| Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD; |
| Value32 |= GetPhyAdFlowCntrlSettings (pDevice); |
| |
| LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32); |
| pDevice->advertising = Value32; |
| } else if (LineSpeed == LM_LINE_SPEED_10MBPS) { |
| LM_WritePhy (pDevice, BCM540X_1000BASET_CTRL_REG, 0); |
| pDevice->advertising1000 = 0; |
| |
| if (DuplexMode != LM_DUPLEX_MODE_FULL) { |
| Value32 = PHY_AN_AD_10BASET_HALF; |
| } else { |
| Value32 = PHY_AN_AD_10BASET_FULL; |
| } |
| |
| Value32 |= PHY_AN_AD_PROTOCOL_802_3_CSMA_CD; |
| Value32 |= GetPhyAdFlowCntrlSettings (pDevice); |
| |
| LM_WritePhy (pDevice, PHY_AN_AD_REG, Value32); |
| pDevice->advertising = Value32; |
| } |
| } |
| |
| /* Force line speed if auto-negotiation is disabled. */ |
| if (pDevice->DisableAutoNeg && LineSpeed != LM_LINE_SPEED_UNKNOWN) { |
| /* This code path is executed only when there is link. */ |
| pDevice->MediaType = MediaType; |
| pDevice->LineSpeed = LineSpeed; |
| pDevice->DuplexMode = DuplexMode; |
| |
| /* Force line seepd. */ |
| NewPhyCtrl = 0; |
| switch (LineSpeed) { |
| case LM_LINE_SPEED_10MBPS: |
| NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_10MBPS; |
| break; |
| case LM_LINE_SPEED_100MBPS: |
| NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_100MBPS; |
| break; |
| case LM_LINE_SPEED_1000MBPS: |
| NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS; |
| break; |
| default: |
| NewPhyCtrl |= PHY_CTRL_SPEED_SELECT_1000MBPS; |
| break; |
| } |
| |
| if (DuplexMode == LM_DUPLEX_MODE_FULL) { |
| NewPhyCtrl |= PHY_CTRL_FULL_DUPLEX_MODE; |
| } |
| |
| /* Don't do anything if the PHY_CTRL is already what we wanted. */ |
| LM_ReadPhy (pDevice, PHY_CTRL_REG, &Value32); |
| if (Value32 != NewPhyCtrl) { |
| /* Temporary bring the link down before forcing line speed. */ |
| LM_WritePhy (pDevice, PHY_CTRL_REG, |
| PHY_CTRL_LOOPBACK_MODE); |
| |
| /* Wait for link to go down. */ |
| for (Cnt = 0; Cnt < 15000; Cnt++) { |
| MM_Wait (10); |
| |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| LM_ReadPhy (pDevice, PHY_STATUS_REG, &Value32); |
| |
| if (!(Value32 & PHY_STATUS_LINK_PASS)) { |
| MM_Wait (40); |
| break; |
| } |
| } |
| |
| LM_WritePhy (pDevice, PHY_CTRL_REG, NewPhyCtrl); |
| MM_Wait (40); |
| } |
| } else { |
| LM_WritePhy (pDevice, PHY_CTRL_REG, PHY_CTRL_AUTO_NEG_ENABLE | |
| PHY_CTRL_RESTART_AUTO_NEG); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } /* LM_ForceAutoNegBcm540xPhy */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| static LM_STATUS |
| LM_ForceAutoNeg (PLM_DEVICE_BLOCK pDevice, |
| LM_REQUESTED_MEDIA_TYPE RequestedMediaType) |
| { |
| LM_STATUS LmStatus; |
| |
| /* Initialize the phy chip. */ |
| switch (pDevice->PhyId & PHY_ID_MASK) { |
| case PHY_BCM5400_PHY_ID: |
| case PHY_BCM5401_PHY_ID: |
| case PHY_BCM5411_PHY_ID: |
| case PHY_BCM5701_PHY_ID: |
| case PHY_BCM5703_PHY_ID: |
| case PHY_BCM5704_PHY_ID: |
| LmStatus = |
| LM_ForceAutoNegBcm540xPhy (pDevice, RequestedMediaType); |
| break; |
| |
| default: |
| LmStatus = LM_STATUS_FAILURE; |
| break; |
| } |
| |
| return LmStatus; |
| } /* LM_ForceAutoNeg */ |
| |
| /******************************************************************************/ |
| /* Description: */ |
| /* */ |
| /* Return: */ |
| /******************************************************************************/ |
| LM_STATUS LM_LoadFirmware (PLM_DEVICE_BLOCK pDevice, |
| PT3_FWIMG_INFO pFwImg, |
| LM_UINT32 LoadCpu, LM_UINT32 StartCpu) |
| { |
| LM_UINT32 i; |
| LM_UINT32 address; |
| |
| if (LoadCpu & T3_RX_CPU_ID) { |
| if (LM_HaltCpu (pDevice, T3_RX_CPU_ID) != LM_STATUS_SUCCESS) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| /* First of all clear scrach pad memory */ |
| for (i = 0; i < T3_RX_CPU_SPAD_SIZE; i += 4) { |
| LM_RegWrInd (pDevice, T3_RX_CPU_SPAD_ADDR + i, 0); |
| } |
| |
| /* Copy code first */ |
| address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff); |
| for (i = 0; i <= pFwImg->Text.Length; i += 4) { |
| LM_RegWrInd (pDevice, address + i, |
| ((LM_UINT32 *) pFwImg->Text.Buffer)[i / |
| 4]); |
| } |
| |
| address = |
| T3_RX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff); |
| for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) { |
| LM_RegWrInd (pDevice, address + i, |
| ((LM_UINT32 *) pFwImg->ROnlyData. |
| Buffer)[i / 4]); |
| } |
| |
| address = T3_RX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff); |
| for (i = 0; i <= pFwImg->Data.Length; i += 4) { |
| LM_RegWrInd (pDevice, address + i, |
| ((LM_UINT32 *) pFwImg->Data.Buffer)[i / |
| 4]); |
| } |
| } |
| |
| if (LoadCpu & T3_TX_CPU_ID) { |
| if (LM_HaltCpu (pDevice, T3_TX_CPU_ID) != LM_STATUS_SUCCESS) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| /* First of all clear scrach pad memory */ |
| for (i = 0; i < T3_TX_CPU_SPAD_SIZE; i += 4) { |
| LM_RegWrInd (pDevice, T3_TX_CPU_SPAD_ADDR + i, 0); |
| } |
| |
| /* Copy code first */ |
| address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Text.Offset & 0xffff); |
| for (i = 0; i <= pFwImg->Text.Length; i += 4) { |
| LM_RegWrInd (pDevice, address + i, |
| ((LM_UINT32 *) pFwImg->Text.Buffer)[i / |
| 4]); |
| } |
| |
| address = |
| T3_TX_CPU_SPAD_ADDR + (pFwImg->ROnlyData.Offset & 0xffff); |
| for (i = 0; i <= pFwImg->ROnlyData.Length; i += 4) { |
| LM_RegWrInd (pDevice, address + i, |
| ((LM_UINT32 *) pFwImg->ROnlyData. |
| Buffer)[i / 4]); |
| } |
| |
| address = T3_TX_CPU_SPAD_ADDR + (pFwImg->Data.Offset & 0xffff); |
| for (i = 0; i <= pFwImg->Data.Length; i += 4) { |
| LM_RegWrInd (pDevice, address + i, |
| ((LM_UINT32 *) pFwImg->Data.Buffer)[i / |
| 4]); |
| } |
| } |
| |
| if (StartCpu & T3_RX_CPU_ID) { |
| /* Start Rx CPU */ |
| REG_WR (pDevice, rxCpu.reg.state, 0xffffffff); |
| REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress); |
| for (i = 0; i < 5; i++) { |
| if (pFwImg->StartAddress == |
| REG_RD (pDevice, rxCpu.reg.PC)) |
| break; |
| |
| REG_WR (pDevice, rxCpu.reg.state, 0xffffffff); |
| REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT); |
| REG_WR (pDevice, rxCpu.reg.PC, pFwImg->StartAddress); |
| MM_Wait (1000); |
| } |
| |
| REG_WR (pDevice, rxCpu.reg.state, 0xffffffff); |
| REG_WR (pDevice, rxCpu.reg.mode, 0); |
| } |
| |
| if (StartCpu & T3_TX_CPU_ID) { |
| /* Start Tx CPU */ |
| REG_WR (pDevice, txCpu.reg.state, 0xffffffff); |
| REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress); |
| for (i = 0; i < 5; i++) { |
| if (pFwImg->StartAddress == |
| REG_RD (pDevice, txCpu.reg.PC)) |
| break; |
| |
| REG_WR (pDevice, txCpu.reg.state, 0xffffffff); |
| REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT); |
| REG_WR (pDevice, txCpu.reg.PC, pFwImg->StartAddress); |
| MM_Wait (1000); |
| } |
| |
| REG_WR (pDevice, txCpu.reg.state, 0xffffffff); |
| REG_WR (pDevice, txCpu.reg.mode, 0); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| STATIC LM_STATUS LM_HaltCpu (PLM_DEVICE_BLOCK pDevice, LM_UINT32 cpu_number) |
| { |
| LM_UINT32 i; |
| |
| if (cpu_number == T3_RX_CPU_ID) { |
| for (i = 0; i < 10000; i++) { |
| REG_WR (pDevice, rxCpu.reg.state, 0xffffffff); |
| REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT); |
| |
| if (REG_RD (pDevice, rxCpu.reg.mode) & CPU_MODE_HALT) |
| break; |
| } |
| |
| REG_WR (pDevice, rxCpu.reg.state, 0xffffffff); |
| REG_WR (pDevice, rxCpu.reg.mode, CPU_MODE_HALT); |
| MM_Wait (10); |
| } else { |
| for (i = 0; i < 10000; i++) { |
| REG_WR (pDevice, txCpu.reg.state, 0xffffffff); |
| REG_WR (pDevice, txCpu.reg.mode, CPU_MODE_HALT); |
| |
| if (REG_RD (pDevice, txCpu.reg.mode) & CPU_MODE_HALT) |
| break; |
| } |
| } |
| |
| return ((i == 10000) ? LM_STATUS_FAILURE : LM_STATUS_SUCCESS); |
| } |
| |
| int LM_BlinkLED (PLM_DEVICE_BLOCK pDevice, LM_UINT32 BlinkDurationSec) |
| { |
| LM_UINT32 Oldcfg; |
| int j; |
| int ret = 0; |
| |
| if (BlinkDurationSec == 0) { |
| return 0; |
| } |
| if (BlinkDurationSec > 120) { |
| BlinkDurationSec = 120; |
| } |
| |
| Oldcfg = REG_RD (pDevice, MacCtrl.LedCtrl); |
| for (j = 0; j < BlinkDurationSec * 2; j++) { |
| if (j % 2) { |
| /* Turn on the LEDs. */ |
| REG_WR (pDevice, MacCtrl.LedCtrl, |
| LED_CTRL_OVERRIDE_LINK_LED | |
| LED_CTRL_1000MBPS_LED_ON | |
| LED_CTRL_100MBPS_LED_ON | |
| LED_CTRL_10MBPS_LED_ON | |
| LED_CTRL_OVERRIDE_TRAFFIC_LED | |
| LED_CTRL_BLINK_TRAFFIC_LED | |
| LED_CTRL_TRAFFIC_LED); |
| } else { |
| /* Turn off the LEDs. */ |
| REG_WR (pDevice, MacCtrl.LedCtrl, |
| LED_CTRL_OVERRIDE_LINK_LED | |
| LED_CTRL_OVERRIDE_TRAFFIC_LED); |
| } |
| |
| #ifndef EMBEDDED |
| current->state = TASK_INTERRUPTIBLE; |
| if (schedule_timeout (HZ / 2) != 0) { |
| ret = -EINTR; |
| break; |
| } |
| #else |
| udelay (100000); /* 1s sleep */ |
| #endif |
| } |
| REG_WR (pDevice, MacCtrl.LedCtrl, Oldcfg); |
| return ret; |
| } |
| |
| int t3_do_dma (PLM_DEVICE_BLOCK pDevice, |
| LM_PHYSICAL_ADDRESS host_addr_phy, int length, int dma_read) |
| { |
| T3_DMA_DESC dma_desc; |
| int i; |
| LM_UINT32 dma_desc_addr; |
| LM_UINT32 value32; |
| |
| REG_WR (pDevice, BufMgr.Mode, 0); |
| REG_WR (pDevice, Ftq.Reset, 0); |
| |
| dma_desc.host_addr.High = host_addr_phy.High; |
| dma_desc.host_addr.Low = host_addr_phy.Low; |
| dma_desc.nic_mbuf = 0x2100; |
| dma_desc.len = length; |
| dma_desc.flags = 0x00000004; /* Generate Rx-CPU event */ |
| |
| if (dma_read) { |
| dma_desc.cqid_sqid = (T3_QID_RX_BD_COMP << 8) | |
| T3_QID_DMA_HIGH_PRI_READ; |
| REG_WR (pDevice, DmaRead.Mode, DMA_READ_MODE_ENABLE); |
| } else { |
| dma_desc.cqid_sqid = (T3_QID_RX_DATA_COMP << 8) | |
| T3_QID_DMA_HIGH_PRI_WRITE; |
| REG_WR (pDevice, DmaWrite.Mode, DMA_WRITE_MODE_ENABLE); |
| } |
| |
| dma_desc_addr = T3_NIC_DMA_DESC_POOL_ADDR; |
| |
| /* Writing this DMA descriptor to DMA memory */ |
| for (i = 0; i < sizeof (T3_DMA_DESC); i += 4) { |
| value32 = *((PLM_UINT32) (((PLM_UINT8) & dma_desc) + i)); |
| MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, |
| dma_desc_addr + i); |
| MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_DATA_REG, |
| cpu_to_le32 (value32)); |
| } |
| MM_WriteConfig32 (pDevice, T3_PCI_MEM_WIN_ADDR_REG, 0); |
| |
| if (dma_read) |
| REG_WR (pDevice, Ftq.DmaHighReadFtqFifoEnqueueDequeue, |
| dma_desc_addr); |
| else |
| REG_WR (pDevice, Ftq.DmaHighWriteFtqFifoEnqueueDequeue, |
| dma_desc_addr); |
| |
| for (i = 0; i < 40; i++) { |
| if (dma_read) |
| value32 = |
| REG_RD (pDevice, |
| Ftq.RcvBdCompFtqFifoEnqueueDequeue); |
| else |
| value32 = |
| REG_RD (pDevice, |
| Ftq.RcvDataCompFtqFifoEnqueueDequeue); |
| |
| if ((value32 & 0xffff) == dma_desc_addr) |
| break; |
| |
| MM_Wait (10); |
| } |
| |
| return LM_STATUS_SUCCESS; |
| } |
| |
| STATIC LM_STATUS |
| LM_DmaTest (PLM_DEVICE_BLOCK pDevice, PLM_UINT8 pBufferVirt, |
| LM_PHYSICAL_ADDRESS BufferPhy, LM_UINT32 BufferSize) |
| { |
| int j; |
| LM_UINT32 *ptr; |
| int dma_success = 0; |
| |
| if (T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5700 && |
| T3_ASIC_REV (pDevice->ChipRevId) != T3_ASIC_REV_5701) { |
| return LM_STATUS_SUCCESS; |
| } |
| while (!dma_success) { |
| /* Fill data with incremental patterns */ |
| ptr = (LM_UINT32 *) pBufferVirt; |
| for (j = 0; j < BufferSize / 4; j++) |
| *ptr++ = j; |
| |
| if (t3_do_dma (pDevice, BufferPhy, BufferSize, 1) == |
| LM_STATUS_FAILURE) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| MM_Wait (40); |
| ptr = (LM_UINT32 *) pBufferVirt; |
| /* Fill data with zero */ |
| for (j = 0; j < BufferSize / 4; j++) |
| *ptr++ = 0; |
| |
| if (t3_do_dma (pDevice, BufferPhy, BufferSize, 0) == |
| LM_STATUS_FAILURE) { |
| return LM_STATUS_FAILURE; |
| } |
| |
| MM_Wait (40); |
| /* Check for data */ |
| ptr = (LM_UINT32 *) pBufferVirt; |
| for (j = 0; j < BufferSize / 4; j++) { |
| if (*ptr++ != j) { |
| if ((pDevice-> |
| DmaReadWriteCtrl & |
| DMA_CTRL_WRITE_BOUNDARY_MASK) |
| == DMA_CTRL_WRITE_BOUNDARY_DISABLE) { |
| pDevice->DmaReadWriteCtrl = |
| (pDevice-> |
| DmaReadWriteCtrl & |
| ~DMA_CTRL_WRITE_BOUNDARY_MASK) | |
| DMA_CTRL_WRITE_BOUNDARY_16; |
| REG_WR (pDevice, |
| PciCfg.DmaReadWriteCtrl, |
| pDevice->DmaReadWriteCtrl); |
| break; |
| } else { |
| return LM_STATUS_FAILURE; |
| } |
| } |
| } |
| if (j == (BufferSize / 4)) |
| dma_success = 1; |
| } |
| return LM_STATUS_SUCCESS; |
| } |