| /************************************************************************** |
| Intel Pro 1000 for ppcboot/das-u-boot |
| Drivers are port from Intel's Linux driver e1000-4.3.15 |
| and from Etherboot pro 1000 driver by mrakes at vivato dot net |
| tested on both gig copper and gig fiber boards |
| ***************************************************************************/ |
| /******************************************************************************* |
| |
| |
| Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. |
| |
| This program is free software; you can redistribute it and/or modify it |
| under the terms of the GNU General Public License as published by the Free |
| Software Foundation; either version 2 of the License, or (at your option) |
| any later version. |
| |
| This program is distributed in the hope that it will be useful, but WITHOUT |
| ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program; if not, write to the Free Software Foundation, Inc., 59 |
| Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| |
| The full GNU General Public License is included in this distribution in the |
| file called LICENSE. |
| |
| Contact Information: |
| Linux NICS <linux.nics@intel.com> |
| Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 |
| |
| *******************************************************************************/ |
| /* |
| * Copyright (C) Archway Digital Solutions. |
| * |
| * written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> |
| * 2/9/2002 |
| * |
| * Copyright (C) Linux Networx. |
| * Massive upgrade to work with the new intel gigabit NICs. |
| * <ebiederman at lnxi dot com> |
| */ |
| |
| #include "e1000.h" |
| |
| #define TOUT_LOOP 100000 |
| |
| #undef virt_to_bus |
| #define virt_to_bus(x) ((unsigned long)x) |
| #define bus_to_phys(devno, a) pci_mem_to_phys(devno, a) |
| #define mdelay(n) udelay((n)*1000) |
| |
| #define E1000_DEFAULT_PBA 0x00000030 |
| |
| /* NIC specific static variables go here */ |
| |
| static char tx_pool[128 + 16]; |
| static char rx_pool[128 + 16]; |
| static char packet[2096]; |
| |
| static struct e1000_tx_desc *tx_base; |
| static struct e1000_rx_desc *rx_base; |
| |
| static int tx_tail; |
| static int rx_tail, rx_last; |
| |
| static struct pci_device_id supported[] = { |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545GM_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541ER}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82541GI_LF}, |
| }; |
| |
| /* Function forward declarations */ |
| static int e1000_setup_link(struct eth_device *nic); |
| static int e1000_setup_fiber_link(struct eth_device *nic); |
| static int e1000_setup_copper_link(struct eth_device *nic); |
| static int e1000_phy_setup_autoneg(struct e1000_hw *hw); |
| static void e1000_config_collision_dist(struct e1000_hw *hw); |
| static int e1000_config_mac_to_phy(struct e1000_hw *hw); |
| static int e1000_config_fc_after_link_up(struct e1000_hw *hw); |
| static int e1000_check_for_link(struct eth_device *nic); |
| static int e1000_wait_autoneg(struct e1000_hw *hw); |
| static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, |
| uint16_t * duplex); |
| static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| uint16_t * phy_data); |
| static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, |
| uint16_t phy_data); |
| static void e1000_phy_hw_reset(struct e1000_hw *hw); |
| static int e1000_phy_reset(struct e1000_hw *hw); |
| static int e1000_detect_gig_phy(struct e1000_hw *hw); |
| |
| #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg))) |
| #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg)) |
| #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\ |
| writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))) |
| #define E1000_READ_REG_ARRAY(a, reg, offset) ( \ |
| readl((a)->hw_addr + E1000_##reg + ((offset) << 2))) |
| #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);} |
| |
| #ifndef CONFIG_AP1000 /* remove for warnings */ |
| /****************************************************************************** |
| * Raises the EEPROM's clock input. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * eecd - EECD's current value |
| *****************************************************************************/ |
| static void |
| e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| { |
| /* Raise the clock input to the EEPROM (by setting the SK bit), and then |
| * wait 50 microseconds. |
| */ |
| *eecd = *eecd | E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, *eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(50); |
| } |
| |
| /****************************************************************************** |
| * Lowers the EEPROM's clock input. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * eecd - EECD's current value |
| *****************************************************************************/ |
| static void |
| e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) |
| { |
| /* Lower the clock input to the EEPROM (by clearing the SK bit), and then |
| * wait 50 microseconds. |
| */ |
| *eecd = *eecd & ~E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, *eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(50); |
| } |
| |
| /****************************************************************************** |
| * Shift data bits out to the EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * data - data to send to the EEPROM |
| * count - number of bits to shift out |
| *****************************************************************************/ |
| static void |
| e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) |
| { |
| uint32_t eecd; |
| uint32_t mask; |
| |
| /* We need to shift "count" bits out to the EEPROM. So, value in the |
| * "data" parameter will be shifted out to the EEPROM one bit at a time. |
| * In order to do this, "data" must be broken down into bits. |
| */ |
| mask = 0x01 << (count - 1); |
| eecd = E1000_READ_REG(hw, EECD); |
| eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| do { |
| /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", |
| * and then raising and then lowering the clock (the SK bit controls |
| * the clock input to the EEPROM). A "0" is shifted out to the EEPROM |
| * by setting "DI" to "0" and then raising and then lowering the clock. |
| */ |
| eecd &= ~E1000_EECD_DI; |
| |
| if (data & mask) |
| eecd |= E1000_EECD_DI; |
| |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| |
| udelay(50); |
| |
| e1000_raise_ee_clk(hw, &eecd); |
| e1000_lower_ee_clk(hw, &eecd); |
| |
| mask = mask >> 1; |
| |
| } while (mask); |
| |
| /* We leave the "DI" bit set to "0" when we leave this routine. */ |
| eecd &= ~E1000_EECD_DI; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| |
| /****************************************************************************** |
| * Shift data bits in from the EEPROM |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static uint16_t |
| e1000_shift_in_ee_bits(struct e1000_hw *hw) |
| { |
| uint32_t eecd; |
| uint32_t i; |
| uint16_t data; |
| |
| /* In order to read a register from the EEPROM, we need to shift 16 bits |
| * in from the EEPROM. Bits are "shifted in" by raising the clock input to |
| * the EEPROM (setting the SK bit), and then reading the value of the "DO" |
| * bit. During this "shifting in" process the "DI" bit should always be |
| * clear.. |
| */ |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); |
| data = 0; |
| |
| for (i = 0; i < 16; i++) { |
| data = data << 1; |
| e1000_raise_ee_clk(hw, &eecd); |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| eecd &= ~(E1000_EECD_DI); |
| if (eecd & E1000_EECD_DO) |
| data |= 1; |
| |
| e1000_lower_ee_clk(hw, &eecd); |
| } |
| |
| return data; |
| } |
| |
| /****************************************************************************** |
| * Prepares EEPROM for access |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This |
| * function should be called before issuing a command to the EEPROM. |
| *****************************************************************************/ |
| static void |
| e1000_setup_eeprom(struct e1000_hw *hw) |
| { |
| uint32_t eecd; |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| /* Clear SK and DI */ |
| eecd &= ~(E1000_EECD_SK | E1000_EECD_DI); |
| E1000_WRITE_REG(hw, EECD, eecd); |
| |
| /* Set CS */ |
| eecd |= E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| |
| /****************************************************************************** |
| * Returns EEPROM to a "standby" state |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| e1000_standby_eeprom(struct e1000_hw *hw) |
| { |
| uint32_t eecd; |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| |
| /* Deselct EEPROM */ |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(50); |
| |
| /* Clock high */ |
| eecd |= E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(50); |
| |
| /* Select EEPROM */ |
| eecd |= E1000_EECD_CS; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(50); |
| |
| /* Clock low */ |
| eecd &= ~E1000_EECD_SK; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| E1000_WRITE_FLUSH(hw); |
| udelay(50); |
| } |
| |
| /****************************************************************************** |
| * Reads a 16 bit word from the EEPROM. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * offset - offset of word in the EEPROM to read |
| * data - word read from the EEPROM |
| *****************************************************************************/ |
| static int |
| e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data) |
| { |
| uint32_t eecd; |
| uint32_t i = 0; |
| int large_eeprom = FALSE; |
| |
| /* Request EEPROM Access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd = E1000_READ_REG(hw, EECD); |
| if (eecd & E1000_EECD_SIZE) |
| large_eeprom = TRUE; |
| eecd |= E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| eecd = E1000_READ_REG(hw, EECD); |
| while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { |
| i++; |
| udelay(10); |
| eecd = E1000_READ_REG(hw, EECD); |
| } |
| if (!(eecd & E1000_EECD_GNT)) { |
| eecd &= ~E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| DEBUGOUT("Could not acquire EEPROM grant\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| } |
| |
| /* Prepare the EEPROM for reading */ |
| e1000_setup_eeprom(hw); |
| |
| /* Send the READ command (opcode + addr) */ |
| e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3); |
| e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6); |
| |
| /* Read the data */ |
| *data = e1000_shift_in_ee_bits(hw); |
| |
| /* End this read operation */ |
| e1000_standby_eeprom(hw); |
| |
| /* Stop requesting EEPROM access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd = E1000_READ_REG(hw, EECD); |
| eecd &= ~E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| |
| return 0; |
| } |
| |
| #if 0 |
| static void |
| e1000_eeprom_cleanup(struct e1000_hw *hw) |
| { |
| uint32_t eecd; |
| |
| eecd = E1000_READ_REG(hw, EECD); |
| eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); |
| E1000_WRITE_REG(hw, EECD, eecd); |
| e1000_raise_ee_clk(hw, &eecd); |
| e1000_lower_ee_clk(hw, &eecd); |
| } |
| |
| static uint16_t |
| e1000_wait_eeprom_done(struct e1000_hw *hw) |
| { |
| uint32_t eecd; |
| uint32_t i; |
| |
| e1000_standby_eeprom(hw); |
| for (i = 0; i < 200; i++) { |
| eecd = E1000_READ_REG(hw, EECD); |
| if (eecd & E1000_EECD_DO) |
| return (TRUE); |
| udelay(5); |
| } |
| return (FALSE); |
| } |
| |
| static int |
| e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data) |
| { |
| uint32_t eecd; |
| int large_eeprom = FALSE; |
| int i = 0; |
| |
| /* Request EEPROM Access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd = E1000_READ_REG(hw, EECD); |
| if (eecd & E1000_EECD_SIZE) |
| large_eeprom = TRUE; |
| eecd |= E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| eecd = E1000_READ_REG(hw, EECD); |
| while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { |
| i++; |
| udelay(5); |
| eecd = E1000_READ_REG(hw, EECD); |
| } |
| if (!(eecd & E1000_EECD_GNT)) { |
| eecd &= ~E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| DEBUGOUT("Could not acquire EEPROM grant\n"); |
| return FALSE; |
| } |
| } |
| e1000_setup_eeprom(hw); |
| e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5); |
| e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); |
| e1000_standby_eeprom(hw); |
| e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3); |
| e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6); |
| e1000_shift_out_ee_bits(hw, Data, 16); |
| if (!e1000_wait_eeprom_done(hw)) { |
| return FALSE; |
| } |
| e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5); |
| e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); |
| e1000_eeprom_cleanup(hw); |
| |
| /* Stop requesting EEPROM access */ |
| if (hw->mac_type > e1000_82544) { |
| eecd = E1000_READ_REG(hw, EECD); |
| eecd &= ~E1000_EECD_REQ; |
| E1000_WRITE_REG(hw, EECD, eecd); |
| } |
| i = 0; |
| eecd = E1000_READ_REG(hw, EECD); |
| while (((eecd & E1000_EECD_GNT)) && (i < 500)) { |
| i++; |
| udelay(10); |
| eecd = E1000_READ_REG(hw, EECD); |
| } |
| if ((eecd & E1000_EECD_GNT)) { |
| DEBUGOUT("Could not release EEPROM grant\n"); |
| } |
| return TRUE; |
| } |
| #endif |
| |
| /****************************************************************************** |
| * Verifies that the EEPROM has a valid checksum |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Reads the first 64 16 bit words of the EEPROM and sums the values read. |
| * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is |
| * valid. |
| *****************************************************************************/ |
| static int |
| e1000_validate_eeprom_checksum(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint16_t checksum = 0; |
| uint16_t i, eeprom_data; |
| |
| DEBUGFUNC(); |
| |
| for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
| if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| checksum += eeprom_data; |
| } |
| |
| if (checksum == (uint16_t) EEPROM_SUM) { |
| return 0; |
| } else { |
| DEBUGOUT("EEPROM Checksum Invalid\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| } |
| #endif /* #ifndef CONFIG_AP1000 */ |
| |
| /****************************************************************************** |
| * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the |
| * second function of dual function devices |
| * |
| * nic - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int |
| e1000_read_mac_addr(struct eth_device *nic) |
| { |
| #ifndef CONFIG_AP1000 |
| struct e1000_hw *hw = nic->priv; |
| uint16_t offset; |
| uint16_t eeprom_data; |
| int i; |
| |
| DEBUGFUNC(); |
| |
| for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { |
| offset = i >> 1; |
| if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| nic->enetaddr[i] = eeprom_data & 0xff; |
| nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; |
| } |
| if ((hw->mac_type == e1000_82546) && |
| (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { |
| /* Invert the last bit if this is the second device */ |
| nic->enetaddr[5] += 1; |
| } |
| #ifdef CONFIG_E1000_FALLBACK_MAC |
| if ( *(u32*)(nic->enetaddr) == 0 || *(u32*)(nic->enetaddr) == ~0 ) { |
| unsigned char fb_mac[NODE_ADDRESS_SIZE] = CONFIG_E1000_FALLBACK_MAC; |
| |
| memcpy (nic->enetaddr, fb_mac, NODE_ADDRESS_SIZE); |
| } |
| #endif |
| #else |
| /* |
| * The AP1000's e1000 has no eeprom; the MAC address is stored in the |
| * environment variables. Currently this does not support the addition |
| * of a PMC e1000 card, which is certainly a possibility, so this should |
| * be updated to properly use the env variable only for the onboard e1000 |
| */ |
| |
| int ii; |
| char *s, *e; |
| |
| DEBUGFUNC(); |
| |
| s = getenv ("ethaddr"); |
| if (s == NULL) { |
| return -E1000_ERR_EEPROM; |
| } else { |
| for(ii = 0; ii < 6; ii++) { |
| nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0; |
| if (s){ |
| s = (*e) ? e + 1 : e; |
| } |
| } |
| } |
| #endif |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Initializes receive address filters. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Places the MAC address in receive address register 0 and clears the rest |
| * of the receive addresss registers. Clears the multicast table. Assumes |
| * the receiver is in reset when the routine is called. |
| *****************************************************************************/ |
| static void |
| e1000_init_rx_addrs(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t i; |
| uint32_t addr_low; |
| uint32_t addr_high; |
| |
| DEBUGFUNC(); |
| |
| /* Setup the receive address. */ |
| DEBUGOUT("Programming MAC Address into RAR[0]\n"); |
| addr_low = (nic->enetaddr[0] | |
| (nic->enetaddr[1] << 8) | |
| (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24)); |
| |
| addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV); |
| |
| E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); |
| E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); |
| |
| /* Zero out the other 15 receive addresses. */ |
| DEBUGOUT("Clearing RAR[1-15]\n"); |
| for (i = 1; i < E1000_RAR_ENTRIES; i++) { |
| E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
| E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
| } |
| } |
| |
| /****************************************************************************** |
| * Clears the VLAN filer table |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static void |
| e1000_clear_vfta(struct e1000_hw *hw) |
| { |
| uint32_t offset; |
| |
| for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) |
| E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); |
| } |
| |
| /****************************************************************************** |
| * Set the mac type member in the hw struct. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| static int |
| e1000_set_mac_type(struct e1000_hw *hw) |
| { |
| DEBUGFUNC(); |
| |
| switch (hw->device_id) { |
| case E1000_DEV_ID_82542: |
| switch (hw->revision_id) { |
| case E1000_82542_2_0_REV_ID: |
| hw->mac_type = e1000_82542_rev2_0; |
| break; |
| case E1000_82542_2_1_REV_ID: |
| hw->mac_type = e1000_82542_rev2_1; |
| break; |
| default: |
| /* Invalid 82542 revision ID */ |
| return -E1000_ERR_MAC_TYPE; |
| } |
| break; |
| case E1000_DEV_ID_82543GC_FIBER: |
| case E1000_DEV_ID_82543GC_COPPER: |
| hw->mac_type = e1000_82543; |
| break; |
| case E1000_DEV_ID_82544EI_COPPER: |
| case E1000_DEV_ID_82544EI_FIBER: |
| case E1000_DEV_ID_82544GC_COPPER: |
| case E1000_DEV_ID_82544GC_LOM: |
| hw->mac_type = e1000_82544; |
| break; |
| case E1000_DEV_ID_82540EM: |
| case E1000_DEV_ID_82540EM_LOM: |
| hw->mac_type = e1000_82540; |
| break; |
| case E1000_DEV_ID_82545EM_COPPER: |
| case E1000_DEV_ID_82545GM_COPPER: |
| case E1000_DEV_ID_82545EM_FIBER: |
| hw->mac_type = e1000_82545; |
| break; |
| case E1000_DEV_ID_82546EB_COPPER: |
| case E1000_DEV_ID_82546EB_FIBER: |
| hw->mac_type = e1000_82546; |
| break; |
| case E1000_DEV_ID_82541ER: |
| case E1000_DEV_ID_82541GI_LF: |
| hw->mac_type = e1000_82541_rev_2; |
| break; |
| default: |
| /* Should never have loaded on this device */ |
| return -E1000_ERR_MAC_TYPE; |
| } |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Reset the transmit and receive units; mask and clear all interrupts. |
| * |
| * hw - Struct containing variables accessed by shared code |
| *****************************************************************************/ |
| void |
| e1000_reset_hw(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint32_t ctrl_ext; |
| uint32_t icr; |
| uint32_t manc; |
| |
| DEBUGFUNC(); |
| |
| /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| pci_write_config_word(hw->pdev, PCI_COMMAND, |
| hw-> |
| pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
| } |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| DEBUGOUT("Masking off all interrupts\n"); |
| E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| |
| /* Disable the Transmit and Receive units. Then delay to allow |
| * any pending transactions to complete before we hit the MAC with |
| * the global reset. |
| */ |
| E1000_WRITE_REG(hw, RCTL, 0); |
| E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); |
| E1000_WRITE_FLUSH(hw); |
| |
| /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ |
| hw->tbi_compatibility_on = FALSE; |
| |
| /* Delay to allow any outstanding PCI transactions to complete before |
| * resetting the device |
| */ |
| mdelay(10); |
| |
| /* Issue a global reset to the MAC. This will reset the chip's |
| * transmit, receive, DMA, and link units. It will not effect |
| * the current PCI configuration. The global reset bit is self- |
| * clearing, and should clear within a microsecond. |
| */ |
| DEBUGOUT("Issuing a global reset to MAC\n"); |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| #if 0 |
| if (hw->mac_type > e1000_82543) |
| E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| else |
| #endif |
| E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); |
| |
| /* Force a reload from the EEPROM if necessary */ |
| if (hw->mac_type < e1000_82540) { |
| /* Wait for reset to complete */ |
| udelay(10); |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_EE_RST; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| /* Wait for EEPROM reload */ |
| mdelay(2); |
| } else { |
| /* Wait for EEPROM reload (it happens automatically) */ |
| mdelay(4); |
| /* Dissable HW ARPs on ASF enabled adapters */ |
| manc = E1000_READ_REG(hw, MANC); |
| manc &= ~(E1000_MANC_ARP_EN); |
| E1000_WRITE_REG(hw, MANC, manc); |
| } |
| |
| /* Clear interrupt mask to stop board from generating interrupts */ |
| DEBUGOUT("Masking off all interrupts\n"); |
| E1000_WRITE_REG(hw, IMC, 0xffffffff); |
| |
| /* Clear any pending interrupt events. */ |
| icr = E1000_READ_REG(hw, ICR); |
| |
| /* If MWI was previously enabled, reenable it. */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| } |
| } |
| |
| /****************************************************************************** |
| * Performs basic configuration of the adapter. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Assumes that the controller has previously been reset and is in a |
| * post-reset uninitialized state. Initializes the receive address registers, |
| * multicast table, and VLAN filter table. Calls routines to setup link |
| * configuration and flow control settings. Clears all on-chip counters. Leaves |
| * the transmit and receive units disabled and uninitialized. |
| *****************************************************************************/ |
| static int |
| e1000_init_hw(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t ctrl, status; |
| uint32_t i; |
| int32_t ret_val; |
| uint16_t pcix_cmd_word; |
| uint16_t pcix_stat_hi_word; |
| uint16_t cmd_mmrbc; |
| uint16_t stat_mmrbc; |
| e1000_bus_type bus_type = e1000_bus_type_unknown; |
| |
| DEBUGFUNC(); |
| #if 0 |
| /* Initialize Identification LED */ |
| ret_val = e1000_id_led_init(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error Initializing Identification LED\n"); |
| return ret_val; |
| } |
| #endif |
| /* Set the Media Type and exit with error if it is not valid. */ |
| if (hw->mac_type != e1000_82543) { |
| /* tbi_compatibility is only valid on 82543 */ |
| hw->tbi_compatibility_en = FALSE; |
| } |
| |
| if (hw->mac_type >= e1000_82543) { |
| status = E1000_READ_REG(hw, STATUS); |
| if (status & E1000_STATUS_TBIMODE) { |
| hw->media_type = e1000_media_type_fiber; |
| /* tbi_compatibility not valid on fiber */ |
| hw->tbi_compatibility_en = FALSE; |
| } else { |
| hw->media_type = e1000_media_type_copper; |
| } |
| } else { |
| /* This is an 82542 (fiber only) */ |
| hw->media_type = e1000_media_type_fiber; |
| } |
| |
| /* Disabling VLAN filtering. */ |
| DEBUGOUT("Initializing the IEEE VLAN\n"); |
| E1000_WRITE_REG(hw, VET, 0); |
| |
| e1000_clear_vfta(hw); |
| |
| /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); |
| pci_write_config_word(hw->pdev, PCI_COMMAND, |
| hw-> |
| pci_cmd_word & ~PCI_COMMAND_INVALIDATE); |
| E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); |
| E1000_WRITE_FLUSH(hw); |
| mdelay(5); |
| } |
| |
| /* Setup the receive address. This involves initializing all of the Receive |
| * Address Registers (RARs 0 - 15). |
| */ |
| e1000_init_rx_addrs(nic); |
| |
| /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ |
| if (hw->mac_type == e1000_82542_rev2_0) { |
| E1000_WRITE_REG(hw, RCTL, 0); |
| E1000_WRITE_FLUSH(hw); |
| mdelay(1); |
| pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); |
| } |
| |
| /* Zero out the Multicast HASH table */ |
| DEBUGOUT("Zeroing the MTA\n"); |
| for (i = 0; i < E1000_MC_TBL_SIZE; i++) |
| E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
| |
| #if 0 |
| /* Set the PCI priority bit correctly in the CTRL register. This |
| * determines if the adapter gives priority to receives, or if it |
| * gives equal priority to transmits and receives. |
| */ |
| if (hw->dma_fairness) { |
| ctrl = E1000_READ_REG(hw, CTRL); |
| E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
| } |
| #endif |
| if (hw->mac_type >= e1000_82543) { |
| status = E1000_READ_REG(hw, STATUS); |
| bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
| e1000_bus_type_pcix : e1000_bus_type_pci; |
| } |
| /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ |
| if (bus_type == e1000_bus_type_pcix) { |
| pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| &pcix_cmd_word); |
| pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, |
| &pcix_stat_hi_word); |
| cmd_mmrbc = |
| (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> |
| PCIX_COMMAND_MMRBC_SHIFT; |
| stat_mmrbc = |
| (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> |
| PCIX_STATUS_HI_MMRBC_SHIFT; |
| if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) |
| stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; |
| if (cmd_mmrbc > stat_mmrbc) { |
| pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; |
| pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; |
| pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, |
| pcix_cmd_word); |
| } |
| } |
| |
| /* Call a subroutine to configure the link and setup flow control. */ |
| ret_val = e1000_setup_link(nic); |
| |
| /* Set the transmit descriptor write-back policy */ |
| if (hw->mac_type > e1000_82544) { |
| ctrl = E1000_READ_REG(hw, TXDCTL); |
| ctrl = |
| (ctrl & ~E1000_TXDCTL_WTHRESH) | |
| E1000_TXDCTL_FULL_TX_DESC_WB; |
| E1000_WRITE_REG(hw, TXDCTL, ctrl); |
| } |
| #if 0 |
| /* Clear all of the statistics registers (clear on read). It is |
| * important that we do this after we have tried to establish link |
| * because the symbol error count will increment wildly if there |
| * is no link. |
| */ |
| e1000_clear_hw_cntrs(hw); |
| #endif |
| |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Configures flow control and link settings. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Determines which flow control settings to use. Calls the apropriate media- |
| * specific link configuration function. Configures the flow control settings. |
| * Assuming the adapter has a valid link partner, a valid link should be |
| * established. Assumes the hardware has previously been reset and the |
| * transmitter and receiver are not enabled. |
| *****************************************************************************/ |
| static int |
| e1000_setup_link(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t ctrl_ext; |
| int32_t ret_val; |
| uint16_t eeprom_data; |
| |
| DEBUGFUNC(); |
| |
| #ifndef CONFIG_AP1000 |
| /* Read and store word 0x0F of the EEPROM. This word contains bits |
| * that determine the hardware's default PAUSE (flow control) mode, |
| * a bit that determines whether the HW defaults to enabling or |
| * disabling auto-negotiation, and the direction of the |
| * SW defined pins. If there is no SW over-ride of the flow |
| * control setting, then the variable hw->fc will |
| * be initialized based on a value in the EEPROM. |
| */ |
| if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) { |
| DEBUGOUT("EEPROM Read Error\n"); |
| return -E1000_ERR_EEPROM; |
| } |
| #else |
| /* we have to hardcode the proper value for our hardware. */ |
| /* this value is for the 82540EM pci card used for prototyping, and it works. */ |
| eeprom_data = 0xb220; |
| #endif |
| |
| if (hw->fc == e1000_fc_default) { |
| if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) |
| hw->fc = e1000_fc_none; |
| else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == |
| EEPROM_WORD0F_ASM_DIR) |
| hw->fc = e1000_fc_tx_pause; |
| else |
| hw->fc = e1000_fc_full; |
| } |
| |
| /* We want to save off the original Flow Control configuration just |
| * in case we get disconnected and then reconnected into a different |
| * hub or switch with different Flow Control capabilities. |
| */ |
| if (hw->mac_type == e1000_82542_rev2_0) |
| hw->fc &= (~e1000_fc_tx_pause); |
| |
| if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) |
| hw->fc &= (~e1000_fc_rx_pause); |
| |
| hw->original_fc = hw->fc; |
| |
| DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); |
| |
| /* Take the 4 bits from EEPROM word 0x0F that determine the initial |
| * polarity value for the SW controlled pins, and setup the |
| * Extended Device Control reg with that info. |
| * This is needed because one of the SW controlled pins is used for |
| * signal detection. So this should be done before e1000_setup_pcs_link() |
| * or e1000_phy_setup() is called. |
| */ |
| if (hw->mac_type == e1000_82543) { |
| ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << |
| SWDPIO__EXT_SHIFT); |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| } |
| |
| /* Call the necessary subroutine to configure the link. */ |
| ret_val = (hw->media_type == e1000_media_type_fiber) ? |
| e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic); |
| if (ret_val < 0) { |
| return ret_val; |
| } |
| |
| /* Initialize the flow control address, type, and PAUSE timer |
| * registers to their default values. This is done even if flow |
| * control is disabled, because it does not hurt anything to |
| * initialize these registers. |
| */ |
| DEBUGOUT |
| ("Initializing the Flow Control address, type and timer regs\n"); |
| |
| E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
| E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
| E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
| E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
| |
| /* Set the flow control receive threshold registers. Normally, |
| * these registers will be set to a default threshold that may be |
| * adjusted later by the driver's runtime code. However, if the |
| * ability to transmit pause frames in not enabled, then these |
| * registers will be set to 0. |
| */ |
| if (!(hw->fc & e1000_fc_tx_pause)) { |
| E1000_WRITE_REG(hw, FCRTL, 0); |
| E1000_WRITE_REG(hw, FCRTH, 0); |
| } else { |
| /* We need to set up the Receive Threshold high and low water marks |
| * as well as (optionally) enabling the transmission of XON frames. |
| */ |
| if (hw->fc_send_xon) { |
| E1000_WRITE_REG(hw, FCRTL, |
| (hw->fc_low_water | E1000_FCRTL_XONE)); |
| E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| } else { |
| E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); |
| E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); |
| } |
| } |
| return ret_val; |
| } |
| |
| /****************************************************************************** |
| * Sets up link for a fiber based adapter |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Manipulates Physical Coding Sublayer functions in order to configure |
| * link. Assumes the hardware has been previously reset and the transmitter |
| * and receiver are not enabled. |
| *****************************************************************************/ |
| static int |
| e1000_setup_fiber_link(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t ctrl; |
| uint32_t status; |
| uint32_t txcw = 0; |
| uint32_t i; |
| uint32_t signal; |
| int32_t ret_val; |
| |
| DEBUGFUNC(); |
| /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| * set when the optics detect a signal. On older adapters, it will be |
| * cleared when there is a signal |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| signal = E1000_CTRL_SWDPIN1; |
| else |
| signal = 0; |
| |
| printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal, |
| ctrl); |
| /* Take the link out of reset */ |
| ctrl &= ~(E1000_CTRL_LRST); |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Check for a software override of the flow control settings, and setup |
| * the device accordingly. If auto-negotiation is enabled, then software |
| * will have to set the "PAUSE" bits to the correct value in the Tranmsit |
| * Config Word Register (TXCW) and re-start auto-negotiation. However, if |
| * auto-negotiation is disabled, then software will have to manually |
| * configure the two flow control enable bits in the CTRL register. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames, but |
| * not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames but we do |
| * not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| */ |
| switch (hw->fc) { |
| case e1000_fc_none: |
| /* Flow control is completely disabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); |
| break; |
| case e1000_fc_rx_pause: |
| /* RX Flow control is enabled and TX Flow control is disabled by a |
| * software over-ride. Since there really isn't a way to advertise |
| * that we are capable of RX Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric RX PAUSE. Later, we will |
| * disable the adapter's ability to send PAUSE frames. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| case e1000_fc_tx_pause: |
| /* TX Flow control is enabled, and RX Flow control is disabled, by a |
| * software over-ride. |
| */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); |
| break; |
| case e1000_fc_full: |
| /* Flow control (both RX and TX) is enabled by a software over-ride. */ |
| txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| break; |
| } |
| |
| /* Since auto-negotiation is enabled, take the link out of reset (the link |
| * will be in reset, because we previously reset the chip). This will |
| * restart auto-negotiation. If auto-neogtiation is successful then the |
| * link-up status bit will be set and the flow control enable bits (RFCE |
| * and TFCE) will be set according to their negotiated value. |
| */ |
| DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); |
| |
| E1000_WRITE_REG(hw, TXCW, txcw); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| hw->txcw = txcw; |
| mdelay(1); |
| |
| /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" |
| * indication in the Device Status Register. Time-out if a link isn't |
| * seen in 500 milliseconds seconds (Auto-negotiation should complete in |
| * less than 500 milliseconds even if the other end is doing it in SW). |
| */ |
| if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { |
| DEBUGOUT("Looking for Link\n"); |
| for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { |
| mdelay(10); |
| status = E1000_READ_REG(hw, STATUS); |
| if (status & E1000_STATUS_LU) |
| break; |
| } |
| if (i == (LINK_UP_TIMEOUT / 10)) { |
| /* AutoNeg failed to achieve a link, so we'll call |
| * e1000_check_for_link. This routine will force the link up if we |
| * detect a signal. This will allow us to communicate with |
| * non-autonegotiating link partners. |
| */ |
| DEBUGOUT("Never got a valid link from auto-neg!!!\n"); |
| hw->autoneg_failed = 1; |
| ret_val = e1000_check_for_link(nic); |
| if (ret_val < 0) { |
| DEBUGOUT("Error while checking for link\n"); |
| return ret_val; |
| } |
| hw->autoneg_failed = 0; |
| } else { |
| hw->autoneg_failed = 0; |
| DEBUGOUT("Valid Link Found\n"); |
| } |
| } else { |
| DEBUGOUT("No Signal Detected\n"); |
| return -E1000_ERR_NOLINK; |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Detects which PHY is present and the speed and duplex |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int |
| e1000_setup_copper_link(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t ctrl; |
| int32_t ret_val; |
| uint16_t i; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| ctrl = E1000_READ_REG(hw, CTRL); |
| /* With 82543, we need to force speed and duplex on the MAC equal to what |
| * the PHY speed and duplex configuration is. In addition, we need to |
| * perform a hardware reset on the PHY to take it out of reset. |
| */ |
| if (hw->mac_type > e1000_82543) { |
| ctrl |= E1000_CTRL_SLU; |
| ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| } else { |
| ctrl |= |
| (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| e1000_phy_hw_reset(hw); |
| } |
| |
| /* Make sure we have a valid PHY */ |
| ret_val = e1000_detect_gig_phy(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error, did not detect valid phy.\n"); |
| return ret_val; |
| } |
| DEBUGOUT("Phy ID = %x \n", hw->phy_id); |
| |
| /* Enable CRS on TX. This must be set for half-duplex operation. */ |
| if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; |
| |
| #if 0 |
| /* Options: |
| * MDI/MDI-X = 0 (default) |
| * 0 - Auto for all speeds |
| * 1 - MDI mode |
| * 2 - MDI-X mode |
| * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) |
| */ |
| phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; |
| switch (hw->mdix) { |
| case 1: |
| phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; |
| break; |
| case 2: |
| phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; |
| break; |
| case 3: |
| phy_data |= M88E1000_PSCR_AUTO_X_1000T; |
| break; |
| case 0: |
| default: |
| phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| break; |
| } |
| #else |
| phy_data |= M88E1000_PSCR_AUTO_X_MODE; |
| #endif |
| |
| #if 0 |
| /* Options: |
| * disable_polarity_correction = 0 (default) |
| * Automatic Correction for Reversed Cable Polarity |
| * 0 - Disabled |
| * 1 - Enabled |
| */ |
| phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| if (hw->disable_polarity_correction == 1) |
| phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; |
| #else |
| phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; |
| #endif |
| if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) { |
| DEBUGOUT("PHY Write Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| /* Force TX_CLK in the Extended PHY Specific Control Register |
| * to 25MHz clock. |
| */ |
| if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| phy_data |= M88E1000_EPSCR_TX_CLK_25; |
| /* Configure Master and Slave downshift values */ |
| phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
| phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
| M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
| if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) { |
| DEBUGOUT("PHY Write Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| /* SW Reset the PHY so all changes take effect */ |
| ret_val = e1000_phy_reset(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error Resetting the PHY\n"); |
| return ret_val; |
| } |
| |
| /* Options: |
| * autoneg = 1 (default) |
| * PHY will advertise value(s) parsed from |
| * autoneg_advertised and fc |
| * autoneg = 0 |
| * PHY will be set to 10H, 10F, 100H, or 100F |
| * depending on value parsed from forced_speed_duplex. |
| */ |
| |
| /* Is autoneg enabled? This is enabled by default or by software override. |
| * If so, call e1000_phy_setup_autoneg routine to parse the |
| * autoneg_advertised and fc options. If autoneg is NOT enabled, then the |
| * user should have provided a speed/duplex override. If so, then call |
| * e1000_phy_force_speed_duplex to parse and set this up. |
| */ |
| /* Perform some bounds checking on the hw->autoneg_advertised |
| * parameter. If this variable is zero, then set it to the default. |
| */ |
| hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| /* If autoneg_advertised is zero, we assume it was not defaulted |
| * by the calling code so we set to advertise full capability. |
| */ |
| if (hw->autoneg_advertised == 0) |
| hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; |
| |
| DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); |
| ret_val = e1000_phy_setup_autoneg(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error Setting up Auto-Negotiation\n"); |
| return ret_val; |
| } |
| DEBUGOUT("Restarting Auto-Neg\n"); |
| |
| /* Restart auto-negotiation by setting the Auto Neg Enable bit and |
| * the Auto Neg Restart bit in the PHY control register. |
| */ |
| if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); |
| if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { |
| DEBUGOUT("PHY Write Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| #if 0 |
| /* Does the user want to wait for Auto-Neg to complete here, or |
| * check at a later time (for example, callback routine). |
| */ |
| if (hw->wait_autoneg_complete) { |
| ret_val = e1000_wait_autoneg(hw); |
| if (ret_val < 0) { |
| DEBUGOUT |
| ("Error while waiting for autoneg to complete\n"); |
| return ret_val; |
| } |
| } |
| #else |
| /* If we do not wait for autonegtation to complete I |
| * do not see a valid link status. |
| */ |
| ret_val = e1000_wait_autoneg(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error while waiting for autoneg to complete\n"); |
| return ret_val; |
| } |
| #endif |
| |
| /* Check link status. Wait up to 100 microseconds for link to become |
| * valid. |
| */ |
| for (i = 0; i < 10; i++) { |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (phy_data & MII_SR_LINK_STATUS) { |
| /* We have link, so we need to finish the config process: |
| * 1) Set up the MAC to the current PHY speed/duplex |
| * if we are on 82543. If we |
| * are on newer silicon, we only need to configure |
| * collision distance in the Transmit Control Register. |
| * 2) Set up flow control on the MAC to that established with |
| * the link partner. |
| */ |
| if (hw->mac_type >= e1000_82544) { |
| e1000_config_collision_dist(hw); |
| } else { |
| ret_val = e1000_config_mac_to_phy(hw); |
| if (ret_val < 0) { |
| DEBUGOUT |
| ("Error configuring MAC to PHY settings\n"); |
| return ret_val; |
| } |
| } |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error Configuring Flow Control\n"); |
| return ret_val; |
| } |
| DEBUGOUT("Valid link established!!!\n"); |
| return 0; |
| } |
| udelay(10); |
| } |
| |
| DEBUGOUT("Unable to establish link!!!\n"); |
| return -E1000_ERR_NOLINK; |
| } |
| |
| /****************************************************************************** |
| * Configures PHY autoneg and flow control advertisement settings |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int |
| e1000_phy_setup_autoneg(struct e1000_hw *hw) |
| { |
| uint16_t mii_autoneg_adv_reg; |
| uint16_t mii_1000t_ctrl_reg; |
| |
| DEBUGFUNC(); |
| |
| /* Read the MII Auto-Neg Advertisement Register (Address 4). */ |
| if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| /* Read the MII 1000Base-T Control Register (Address 9). */ |
| if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| /* Need to parse both autoneg_advertised and fc and set up |
| * the appropriate PHY registers. First we will parse for |
| * autoneg_advertised software override. Since we can advertise |
| * a plethora of combinations, we need to check each bit |
| * individually. |
| */ |
| |
| /* First we clear all the 10/100 mb speed bits in the Auto-Neg |
| * Advertisement Register (Address 4) and the 1000 mb speed bits in |
| * the 1000Base-T Control Register (Address 9). |
| */ |
| mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; |
| mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; |
| |
| DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); |
| |
| /* Do we want to advertise 10 Mb Half Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_10_HALF) { |
| DEBUGOUT("Advertise 10mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 10 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_10_FULL) { |
| DEBUGOUT("Advertise 10mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Half Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_100_HALF) { |
| DEBUGOUT("Advertise 100mb Half duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; |
| } |
| |
| /* Do we want to advertise 100 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_100_FULL) { |
| DEBUGOUT("Advertise 100mb Full duplex\n"); |
| mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; |
| } |
| |
| /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ |
| if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { |
| DEBUGOUT |
| ("Advertise 1000mb Half duplex requested, request denied!\n"); |
| } |
| |
| /* Do we want to advertise 1000 Mb Full Duplex? */ |
| if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { |
| DEBUGOUT("Advertise 1000mb Full duplex\n"); |
| mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; |
| } |
| |
| /* Check for a software override of the flow control settings, and |
| * setup the PHY advertisement registers accordingly. If |
| * auto-negotiation is enabled, then software will have to set the |
| * "PAUSE" bits to the correct value in the Auto-Negotiation |
| * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause frames |
| * but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * but we do not support receiving pause frames). |
| * 3: Both Rx and TX flow control (symmetric) are enabled. |
| * other: No software override. The flow control configuration |
| * in the EEPROM is used. |
| */ |
| switch (hw->fc) { |
| case e1000_fc_none: /* 0 */ |
| /* Flow control (RX & TX) is completely disabled by a |
| * software over-ride. |
| */ |
| mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case e1000_fc_rx_pause: /* 1 */ |
| /* RX Flow control is enabled, and TX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| /* Since there really isn't a way to advertise that we are |
| * capable of RX Pause ONLY, we will advertise that we |
| * support both symmetric and asymmetric RX PAUSE. Later |
| * (in e1000_config_fc_after_link_up) we will disable the |
| *hw's ability to send PAUSE frames. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| case e1000_fc_tx_pause: /* 2 */ |
| /* TX Flow control is enabled, and RX Flow control is |
| * disabled, by a software over-ride. |
| */ |
| mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; |
| mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; |
| break; |
| case e1000_fc_full: /* 3 */ |
| /* Flow control (both RX and TX) is enabled by a software |
| * over-ride. |
| */ |
| mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) { |
| DEBUGOUT("PHY Write Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
| |
| if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) { |
| DEBUGOUT("PHY Write Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Sets the collision distance in the Transmit Control register |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Link should have been established previously. Reads the speed and duplex |
| * information from the Device Status register. |
| ******************************************************************************/ |
| static void |
| e1000_config_collision_dist(struct e1000_hw *hw) |
| { |
| uint32_t tctl; |
| |
| tctl = E1000_READ_REG(hw, TCTL); |
| |
| tctl &= ~E1000_TCTL_COLD; |
| tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; |
| |
| E1000_WRITE_REG(hw, TCTL, tctl); |
| E1000_WRITE_FLUSH(hw); |
| } |
| |
| /****************************************************************************** |
| * Sets MAC speed and duplex settings to reflect the those in the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * mii_reg - data to write to the MII control register |
| * |
| * The contents of the PHY register containing the needed information need to |
| * be passed in. |
| ******************************************************************************/ |
| static int |
| e1000_config_mac_to_phy(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| /* Read the Device Control Register and set the bits to Force Speed |
| * and Duplex. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); |
| ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); |
| |
| /* Set up duplex in the Device Control and Transmit Control |
| * registers depending on negotiated values. |
| */ |
| if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (phy_data & M88E1000_PSSR_DPLX) |
| ctrl |= E1000_CTRL_FD; |
| else |
| ctrl &= ~E1000_CTRL_FD; |
| |
| e1000_config_collision_dist(hw); |
| |
| /* Set up speed in the Device Control register depending on |
| * negotiated values. |
| */ |
| if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) |
| ctrl |= E1000_CTRL_SPD_1000; |
| else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) |
| ctrl |= E1000_CTRL_SPD_100; |
| /* Write the configured values back to the Device Control Reg. */ |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Forces the MAC's flow control settings. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Sets the TFCE and RFCE bits in the device control register to reflect |
| * the adapter settings. TFCE and RFCE need to be explicitly set by |
| * software when a Copper PHY is used because autonegotiation is managed |
| * by the PHY rather than the MAC. Software must also configure these |
| * bits when link is forced on a fiber connection. |
| *****************************************************************************/ |
| static int |
| e1000_force_mac_fc(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| |
| DEBUGFUNC(); |
| |
| /* Get the current configuration of the Device Control Register */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Because we didn't get link via the internal auto-negotiation |
| * mechanism (we either forced link or we got link via PHY |
| * auto-neg), we have to manually enable/disable transmit an |
| * receive flow control. |
| * |
| * The "Case" statement below enables/disable flow control |
| * according to the "hw->fc" parameter. |
| * |
| * The possible values of the "fc" parameter are: |
| * 0: Flow control is completely disabled |
| * 1: Rx flow control is enabled (we can receive pause |
| * frames but not send pause frames). |
| * 2: Tx flow control is enabled (we can send pause frames |
| * frames but we do not receive pause frames). |
| * 3: Both Rx and TX flow control (symmetric) is enabled. |
| * other: No other values should be possible at this point. |
| */ |
| |
| switch (hw->fc) { |
| case e1000_fc_none: |
| ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); |
| break; |
| case e1000_fc_rx_pause: |
| ctrl &= (~E1000_CTRL_TFCE); |
| ctrl |= E1000_CTRL_RFCE; |
| break; |
| case e1000_fc_tx_pause: |
| ctrl &= (~E1000_CTRL_RFCE); |
| ctrl |= E1000_CTRL_TFCE; |
| break; |
| case e1000_fc_full: |
| ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); |
| break; |
| default: |
| DEBUGOUT("Flow control param set incorrectly\n"); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| /* Disable TX Flow Control for 82542 (rev 2.0) */ |
| if (hw->mac_type == e1000_82542_rev2_0) |
| ctrl &= (~E1000_CTRL_TFCE); |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Configures flow control settings after link is established |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Should be called immediately after a valid link has been established. |
| * Forces MAC flow control settings if link was forced. When in MII/GMII mode |
| * and autonegotiation is enabled, the MAC flow control settings will be set |
| * based on the flow control negotiated by the PHY. In TBI mode, the TFCE |
| * and RFCE bits will be automaticaly set to the negotiated flow control mode. |
| *****************************************************************************/ |
| static int |
| e1000_config_fc_after_link_up(struct e1000_hw *hw) |
| { |
| int32_t ret_val; |
| uint16_t mii_status_reg; |
| uint16_t mii_nway_adv_reg; |
| uint16_t mii_nway_lp_ability_reg; |
| uint16_t speed; |
| uint16_t duplex; |
| |
| DEBUGFUNC(); |
| |
| /* Check for the case where we have fiber media and auto-neg failed |
| * so we had to force link. In this case, we need to force the |
| * configuration of the MAC to match the "fc" parameter. |
| */ |
| if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) { |
| ret_val = e1000_force_mac_fc(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Check for the case where we have copper media and auto-neg is |
| * enabled. In this case, we need to check and see if Auto-Neg |
| * has completed, and if so, how the PHY and link partner has |
| * flow control configured. |
| */ |
| if (hw->media_type == e1000_media_type_copper) { |
| /* Read the MII Status Register and check to see if AutoNeg |
| * has completed. We read this twice because this reg has |
| * some "sticky" (latched) bits. |
| */ |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| DEBUGOUT("PHY Read Error \n"); |
| return -E1000_ERR_PHY; |
| } |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { |
| DEBUGOUT("PHY Read Error \n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { |
| /* The AutoNeg process has completed, so we now need to |
| * read both the Auto Negotiation Advertisement Register |
| * (Address 4) and the Auto_Negotiation Base Page Ability |
| * Register (Address 5) to determine how flow control was |
| * negotiated. |
| */ |
| if (e1000_read_phy_reg |
| (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (e1000_read_phy_reg |
| (hw, PHY_LP_ABILITY, |
| &mii_nway_lp_ability_reg) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| /* Two bits in the Auto Negotiation Advertisement Register |
| * (Address 4) and two bits in the Auto Negotiation Base |
| * Page Ability Register (Address 5) determine flow control |
| * for both the PHY and the link partner. The following |
| * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, |
| * 1999, describes these PAUSE resolution bits and how flow |
| * control is determined based upon these settings. |
| * NOTE: DC = Don't Care |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 0 | DC | DC | e1000_fc_none |
| * 0 | 1 | 0 | DC | e1000_fc_none |
| * 0 | 1 | 1 | 0 | e1000_fc_none |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| * 1 | 0 | 0 | DC | e1000_fc_none |
| * 1 | DC | 1 | DC | e1000_fc_full |
| * 1 | 1 | 0 | 0 | e1000_fc_none |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| * |
| */ |
| /* Are both PAUSE bits set to 1? If so, this implies |
| * Symmetric Flow Control is enabled at both ends. The |
| * ASM_DIR bits are irrelevant per the spec. |
| * |
| * For Symmetric Flow Control: |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | DC | 1 | DC | e1000_fc_full |
| * |
| */ |
| if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { |
| /* Now we need to check if the user selected RX ONLY |
| * of pause frames. In this case, we had to advertise |
| * FULL flow control because we could not advertise RX |
| * ONLY. Hence, we must now check to see if we need to |
| * turn OFF the TRANSMISSION of PAUSE frames. |
| */ |
| if (hw->original_fc == e1000_fc_full) { |
| hw->fc = e1000_fc_full; |
| DEBUGOUT("Flow Control = FULL.\r\n"); |
| } else { |
| hw->fc = e1000_fc_rx_pause; |
| DEBUGOUT |
| ("Flow Control = RX PAUSE frames only.\r\n"); |
| } |
| } |
| /* For receiving PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 0 | 1 | 1 | 1 | e1000_fc_tx_pause |
| * |
| */ |
| else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| { |
| hw->fc = e1000_fc_tx_pause; |
| DEBUGOUT |
| ("Flow Control = TX PAUSE frames only.\r\n"); |
| } |
| /* For transmitting PAUSE frames ONLY. |
| * |
| * LOCAL DEVICE | LINK PARTNER |
| * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result |
| *-------|---------|-------|---------|-------------------- |
| * 1 | 1 | 0 | 1 | e1000_fc_rx_pause |
| * |
| */ |
| else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && |
| (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && |
| !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && |
| (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) |
| { |
| hw->fc = e1000_fc_rx_pause; |
| DEBUGOUT |
| ("Flow Control = RX PAUSE frames only.\r\n"); |
| } |
| /* Per the IEEE spec, at this point flow control should be |
| * disabled. However, we want to consider that we could |
| * be connected to a legacy switch that doesn't advertise |
| * desired flow control, but can be forced on the link |
| * partner. So if we advertised no flow control, that is |
| * what we will resolve to. If we advertised some kind of |
| * receive capability (Rx Pause Only or Full Flow Control) |
| * and the link partner advertised none, we will configure |
| * ourselves to enable Rx Flow Control only. We can do |
| * this safely for two reasons: If the link partner really |
| * didn't want flow control enabled, and we enable Rx, no |
| * harm done since we won't be receiving any PAUSE frames |
| * anyway. If the intent on the link partner was to have |
| * flow control enabled, then by us enabling RX only, we |
| * can at least receive pause frames and process them. |
| * This is a good idea because in most cases, since we are |
| * predominantly a server NIC, more times than not we will |
| * be asked to delay transmission of packets than asking |
| * our link partner to pause transmission of frames. |
| */ |
| else if (hw->original_fc == e1000_fc_none || |
| hw->original_fc == e1000_fc_tx_pause) { |
| hw->fc = e1000_fc_none; |
| DEBUGOUT("Flow Control = NONE.\r\n"); |
| } else { |
| hw->fc = e1000_fc_rx_pause; |
| DEBUGOUT |
| ("Flow Control = RX PAUSE frames only.\r\n"); |
| } |
| |
| /* Now we need to do one last check... If we auto- |
| * negotiated to HALF DUPLEX, flow control should not be |
| * enabled per IEEE 802.3 spec. |
| */ |
| e1000_get_speed_and_duplex(hw, &speed, &duplex); |
| |
| if (duplex == HALF_DUPLEX) |
| hw->fc = e1000_fc_none; |
| |
| /* Now we call a subroutine to actually force the MAC |
| * controller to use the correct flow control settings. |
| */ |
| ret_val = e1000_force_mac_fc(hw); |
| if (ret_val < 0) { |
| DEBUGOUT |
| ("Error forcing flow control settings\n"); |
| return ret_val; |
| } |
| } else { |
| DEBUGOUT |
| ("Copper PHY and Auto Neg has not completed.\r\n"); |
| } |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Checks to see if the link status of the hardware has changed. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Called by any function that needs to check the link status of the adapter. |
| *****************************************************************************/ |
| static int |
| e1000_check_for_link(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| uint32_t rxcw; |
| uint32_t ctrl; |
| uint32_t status; |
| uint32_t rctl; |
| uint32_t signal; |
| int32_t ret_val; |
| uint16_t phy_data; |
| uint16_t lp_capability; |
| |
| DEBUGFUNC(); |
| |
| /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be |
| * set when the optics detect a signal. On older adapters, it will be |
| * cleared when there is a signal |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) |
| signal = E1000_CTRL_SWDPIN1; |
| else |
| signal = 0; |
| |
| status = E1000_READ_REG(hw, STATUS); |
| rxcw = E1000_READ_REG(hw, RXCW); |
| DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); |
| |
| /* If we have a copper PHY then we only want to go out to the PHY |
| * registers to see if Auto-Neg has completed and/or if our link |
| * status has changed. The get_link_status flag will be set if we |
| * receive a Link Status Change interrupt or we have Rx Sequence |
| * Errors. |
| */ |
| if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { |
| /* First we want to see if the MII Status Register reports |
| * link. If so, then we want to get the current speed/duplex |
| * of the PHY. |
| * Read the register twice since the link bit is sticky. |
| */ |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| |
| if (phy_data & MII_SR_LINK_STATUS) { |
| hw->get_link_status = FALSE; |
| } else { |
| /* No link detected */ |
| return -E1000_ERR_NOLINK; |
| } |
| |
| /* We have a M88E1000 PHY and Auto-Neg is enabled. If we |
| * have Si on board that is 82544 or newer, Auto |
| * Speed Detection takes care of MAC speed/duplex |
| * configuration. So we only need to configure Collision |
| * Distance in the MAC. Otherwise, we need to force |
| * speed/duplex on the MAC to the current PHY speed/duplex |
| * settings. |
| */ |
| if (hw->mac_type >= e1000_82544) |
| e1000_config_collision_dist(hw); |
| else { |
| ret_val = e1000_config_mac_to_phy(hw); |
| if (ret_val < 0) { |
| DEBUGOUT |
| ("Error configuring MAC to PHY settings\n"); |
| return ret_val; |
| } |
| } |
| |
| /* Configure Flow Control now that Auto-Neg has completed. First, we |
| * need to restore the desired flow control settings because we may |
| * have had to re-autoneg with a different link partner. |
| */ |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error configuring flow control\n"); |
| return ret_val; |
| } |
| |
| /* At this point we know that we are on copper and we have |
| * auto-negotiated link. These are conditions for checking the link |
| * parter capability register. We use the link partner capability to |
| * determine if TBI Compatibility needs to be turned on or off. If |
| * the link partner advertises any speed in addition to Gigabit, then |
| * we assume that they are GMII-based, and TBI compatibility is not |
| * needed. If no other speeds are advertised, we assume the link |
| * partner is TBI-based, and we turn on TBI Compatibility. |
| */ |
| if (hw->tbi_compatibility_en) { |
| if (e1000_read_phy_reg |
| (hw, PHY_LP_ABILITY, &lp_capability) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | |
| NWAY_LPAR_10T_FD_CAPS | |
| NWAY_LPAR_100TX_HD_CAPS | |
| NWAY_LPAR_100TX_FD_CAPS | |
| NWAY_LPAR_100T4_CAPS)) { |
| /* If our link partner advertises anything in addition to |
| * gigabit, we do not need to enable TBI compatibility. |
| */ |
| if (hw->tbi_compatibility_on) { |
| /* If we previously were in the mode, turn it off. */ |
| rctl = E1000_READ_REG(hw, RCTL); |
| rctl &= ~E1000_RCTL_SBP; |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| hw->tbi_compatibility_on = FALSE; |
| } |
| } else { |
| /* If TBI compatibility is was previously off, turn it on. For |
| * compatibility with a TBI link partner, we will store bad |
| * packets. Some frames have an additional byte on the end and |
| * will look like CRC errors to to the hardware. |
| */ |
| if (!hw->tbi_compatibility_on) { |
| hw->tbi_compatibility_on = TRUE; |
| rctl = E1000_READ_REG(hw, RCTL); |
| rctl |= E1000_RCTL_SBP; |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| } |
| } |
| } |
| } |
| /* If we don't have link (auto-negotiation failed or link partner cannot |
| * auto-negotiate), the cable is plugged in (we have signal), and our |
| * link partner is not trying to auto-negotiate with us (we are receiving |
| * idles or data), we need to force link up. We also need to give |
| * auto-negotiation time to complete, in case the cable was just plugged |
| * in. The autoneg_failed flag does this. |
| */ |
| else if ((hw->media_type == e1000_media_type_fiber) && |
| (!(status & E1000_STATUS_LU)) && |
| ((ctrl & E1000_CTRL_SWDPIN1) == signal) && |
| (!(rxcw & E1000_RXCW_C))) { |
| if (hw->autoneg_failed == 0) { |
| hw->autoneg_failed = 1; |
| return 0; |
| } |
| DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); |
| |
| /* Disable auto-negotiation in the TXCW register */ |
| E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); |
| |
| /* Force link-up and also force full-duplex. */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| |
| /* Configure Flow Control after forcing link up. */ |
| ret_val = e1000_config_fc_after_link_up(hw); |
| if (ret_val < 0) { |
| DEBUGOUT("Error configuring flow control\n"); |
| return ret_val; |
| } |
| } |
| /* If we are forcing link and we are receiving /C/ ordered sets, re-enable |
| * auto-negotiation in the TXCW register and disable forced link in the |
| * Device Control register in an attempt to auto-negotiate with our link |
| * partner. |
| */ |
| else if ((hw->media_type == e1000_media_type_fiber) && |
| (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { |
| DEBUGOUT |
| ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); |
| E1000_WRITE_REG(hw, TXCW, hw->txcw); |
| E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Detects the current speed and duplex settings of the hardware. |
| * |
| * hw - Struct containing variables accessed by shared code |
| * speed - Speed of the connection |
| * duplex - Duplex setting of the connection |
| *****************************************************************************/ |
| static void |
| e1000_get_speed_and_duplex(struct e1000_hw *hw, |
| uint16_t * speed, uint16_t * duplex) |
| { |
| uint32_t status; |
| |
| DEBUGFUNC(); |
| |
| if (hw->mac_type >= e1000_82543) { |
| status = E1000_READ_REG(hw, STATUS); |
| if (status & E1000_STATUS_SPEED_1000) { |
| *speed = SPEED_1000; |
| DEBUGOUT("1000 Mbs, "); |
| } else if (status & E1000_STATUS_SPEED_100) { |
| *speed = SPEED_100; |
| DEBUGOUT("100 Mbs, "); |
| } else { |
| *speed = SPEED_10; |
| DEBUGOUT("10 Mbs, "); |
| } |
| |
| if (status & E1000_STATUS_FD) { |
| *duplex = FULL_DUPLEX; |
| DEBUGOUT("Full Duplex\r\n"); |
| } else { |
| *duplex = HALF_DUPLEX; |
| DEBUGOUT(" Half Duplex\r\n"); |
| } |
| } else { |
| DEBUGOUT("1000 Mbs, Full Duplex\r\n"); |
| *speed = SPEED_1000; |
| *duplex = FULL_DUPLEX; |
| } |
| } |
| |
| /****************************************************************************** |
| * Blocks until autoneg completes or times out (~4.5 seconds) |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int |
| e1000_wait_autoneg(struct e1000_hw *hw) |
| { |
| uint16_t i; |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| DEBUGOUT("Waiting for Auto-Neg to complete.\n"); |
| |
| /* We will wait for autoneg to complete or 4.5 seconds to expire. */ |
| for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { |
| /* Read the MII Status Register and wait for Auto-Neg |
| * Complete bit to be set. |
| */ |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (phy_data & MII_SR_AUTONEG_COMPLETE) { |
| DEBUGOUT("Auto-Neg complete.\n"); |
| return 0; |
| } |
| mdelay(100); |
| } |
| DEBUGOUT("Auto-Neg timedout.\n"); |
| return -E1000_ERR_TIMEOUT; |
| } |
| |
| /****************************************************************************** |
| * Raises the Management Data Clock |
| * |
| * hw - Struct containing variables accessed by shared code |
| * ctrl - Device control register's current value |
| ******************************************************************************/ |
| static void |
| e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| { |
| /* Raise the clock input to the Management Data Clock (by setting the MDC |
| * bit), and then delay 2 microseconds. |
| */ |
| E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); |
| E1000_WRITE_FLUSH(hw); |
| udelay(2); |
| } |
| |
| /****************************************************************************** |
| * Lowers the Management Data Clock |
| * |
| * hw - Struct containing variables accessed by shared code |
| * ctrl - Device control register's current value |
| ******************************************************************************/ |
| static void |
| e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) |
| { |
| /* Lower the clock input to the Management Data Clock (by clearing the MDC |
| * bit), and then delay 2 microseconds. |
| */ |
| E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); |
| E1000_WRITE_FLUSH(hw); |
| udelay(2); |
| } |
| |
| /****************************************************************************** |
| * Shifts data bits out to the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * data - Data to send out to the PHY |
| * count - Number of bits to shift out |
| * |
| * Bits are shifted out in MSB to LSB order. |
| ******************************************************************************/ |
| static void |
| e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) |
| { |
| uint32_t ctrl; |
| uint32_t mask; |
| |
| /* We need to shift "count" number of bits out to the PHY. So, the value |
| * in the "data" parameter will be shifted out to the PHY one bit at a |
| * time. In order to do this, "data" must be broken down into bits. |
| */ |
| mask = 0x01; |
| mask <<= (count - 1); |
| |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ |
| ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); |
| |
| while (mask) { |
| /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and |
| * then raising and lowering the Management Data Clock. A "0" is |
| * shifted out to the PHY by setting the MDIO bit to "0" and then |
| * raising and lowering the clock. |
| */ |
| if (data & mask) |
| ctrl |= E1000_CTRL_MDIO; |
| else |
| ctrl &= ~E1000_CTRL_MDIO; |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| udelay(2); |
| |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| mask = mask >> 1; |
| } |
| } |
| |
| /****************************************************************************** |
| * Shifts data bits in from the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Bits are shifted in in MSB to LSB order. |
| ******************************************************************************/ |
| static uint16_t |
| e1000_shift_in_mdi_bits(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint16_t data = 0; |
| uint8_t i; |
| |
| /* In order to read a register from the PHY, we need to shift in a total |
| * of 18 bits from the PHY. The first two bit (turnaround) times are used |
| * to avoid contention on the MDIO pin when a read operation is performed. |
| * These two bits are ignored by us and thrown away. Bits are "shifted in" |
| * by raising the input to the Management Data Clock (setting the MDC bit), |
| * and then reading the value of the MDIO bit. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| |
| /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ |
| ctrl &= ~E1000_CTRL_MDIO_DIR; |
| ctrl &= ~E1000_CTRL_MDIO; |
| |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| |
| /* Raise and Lower the clock before reading in the data. This accounts for |
| * the turnaround bits. The first clock occurred when we clocked out the |
| * last bit of the Register Address. |
| */ |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| for (data = 0, i = 0; i < 16; i++) { |
| data = data << 1; |
| e1000_raise_mdi_clk(hw, &ctrl); |
| ctrl = E1000_READ_REG(hw, CTRL); |
| /* Check to see if we shifted in a "1". */ |
| if (ctrl & E1000_CTRL_MDIO) |
| data |= 1; |
| e1000_lower_mdi_clk(hw, &ctrl); |
| } |
| |
| e1000_raise_mdi_clk(hw, &ctrl); |
| e1000_lower_mdi_clk(hw, &ctrl); |
| |
| return data; |
| } |
| |
| /***************************************************************************** |
| * Reads the value from a PHY register |
| * |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to read |
| ******************************************************************************/ |
| static int |
| e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) |
| { |
| uint32_t i; |
| uint32_t mdic = 0; |
| const uint32_t phy_addr = 1; |
| |
| if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| return -E1000_ERR_PARAM; |
| } |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Set up Op-code, Phy Address, and register address in the MDI |
| * Control register. The MAC will take care of interfacing with the |
| * PHY to retrieve the desired data. |
| */ |
| mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_READ)); |
| |
| E1000_WRITE_REG(hw, MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < 64; i++) { |
| udelay(10); |
| mdic = E1000_READ_REG(hw, MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| DEBUGOUT("MDI Read did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| if (mdic & E1000_MDIC_ERROR) { |
| DEBUGOUT("MDI Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| *phy_data = (uint16_t) mdic; |
| } else { |
| /* We must first send a preamble through the MDIO pin to signal the |
| * beginning of an MII instruction. This is done by sending 32 |
| * consecutive "1" bits. |
| */ |
| e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| |
| /* Now combine the next few fields that are required for a read |
| * operation. We use this method instead of calling the |
| * e1000_shift_out_mdi_bits routine five different times. The format of |
| * a MII read instruction consists of a shift out of 14 bits and is |
| * defined as follows: |
| * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> |
| * followed by a shift in of 18 bits. This first two bits shifted in |
| * are TurnAround bits used to avoid contention on the MDIO pin when a |
| * READ operation is performed. These two bits are thrown away |
| * followed by a shift in of 16 bits which contains the desired data. |
| */ |
| mdic = ((reg_addr) | (phy_addr << 5) | |
| (PHY_OP_READ << 10) | (PHY_SOF << 12)); |
| |
| e1000_shift_out_mdi_bits(hw, mdic, 14); |
| |
| /* Now that we've shifted out the read command to the MII, we need to |
| * "shift in" the 16-bit value (18 total bits) of the requested PHY |
| * register address. |
| */ |
| *phy_data = e1000_shift_in_mdi_bits(hw); |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Writes a value to a PHY register |
| * |
| * hw - Struct containing variables accessed by shared code |
| * reg_addr - address of the PHY register to write |
| * data - data to write to the PHY |
| ******************************************************************************/ |
| static int |
| e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) |
| { |
| uint32_t i; |
| uint32_t mdic = 0; |
| const uint32_t phy_addr = 1; |
| |
| if (reg_addr > MAX_PHY_REG_ADDRESS) { |
| DEBUGOUT("PHY Address %d is out of range\n", reg_addr); |
| return -E1000_ERR_PARAM; |
| } |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Set up Op-code, Phy Address, register address, and data intended |
| * for the PHY register in the MDI Control register. The MAC will take |
| * care of interfacing with the PHY to send the desired data. |
| */ |
| mdic = (((uint32_t) phy_data) | |
| (reg_addr << E1000_MDIC_REG_SHIFT) | |
| (phy_addr << E1000_MDIC_PHY_SHIFT) | |
| (E1000_MDIC_OP_WRITE)); |
| |
| E1000_WRITE_REG(hw, MDIC, mdic); |
| |
| /* Poll the ready bit to see if the MDI read completed */ |
| for (i = 0; i < 64; i++) { |
| udelay(10); |
| mdic = E1000_READ_REG(hw, MDIC); |
| if (mdic & E1000_MDIC_READY) |
| break; |
| } |
| if (!(mdic & E1000_MDIC_READY)) { |
| DEBUGOUT("MDI Write did not complete\n"); |
| return -E1000_ERR_PHY; |
| } |
| } else { |
| /* We'll need to use the SW defined pins to shift the write command |
| * out to the PHY. We first send a preamble to the PHY to signal the |
| * beginning of the MII instruction. This is done by sending 32 |
| * consecutive "1" bits. |
| */ |
| e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); |
| |
| /* Now combine the remaining required fields that will indicate a |
| * write operation. We use this method instead of calling the |
| * e1000_shift_out_mdi_bits routine for each field in the command. The |
| * format of a MII write instruction is as follows: |
| * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. |
| */ |
| mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | |
| (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); |
| mdic <<= 16; |
| mdic |= (uint32_t) phy_data; |
| |
| e1000_shift_out_mdi_bits(hw, mdic, 32); |
| } |
| return 0; |
| } |
| |
| /****************************************************************************** |
| * Returns the PHY to the power-on reset state |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static void |
| e1000_phy_hw_reset(struct e1000_hw *hw) |
| { |
| uint32_t ctrl; |
| uint32_t ctrl_ext; |
| |
| DEBUGFUNC(); |
| |
| DEBUGOUT("Resetting Phy...\n"); |
| |
| if (hw->mac_type > e1000_82543) { |
| /* Read the device control register and assert the E1000_CTRL_PHY_RST |
| * bit. Then, take it out of reset. |
| */ |
| ctrl = E1000_READ_REG(hw, CTRL); |
| E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); |
| E1000_WRITE_FLUSH(hw); |
| mdelay(10); |
| E1000_WRITE_REG(hw, CTRL, ctrl); |
| E1000_WRITE_FLUSH(hw); |
| } else { |
| /* Read the Extended Device Control Register, assert the PHY_RESET_DIR |
| * bit to put the PHY into reset. Then, take it out of reset. |
| */ |
| ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); |
| ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; |
| ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| mdelay(10); |
| ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; |
| E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); |
| E1000_WRITE_FLUSH(hw); |
| } |
| udelay(150); |
| } |
| |
| /****************************************************************************** |
| * Resets the PHY |
| * |
| * hw - Struct containing variables accessed by shared code |
| * |
| * Sets bit 15 of the MII Control regiser |
| ******************************************************************************/ |
| static int |
| e1000_phy_reset(struct e1000_hw *hw) |
| { |
| uint16_t phy_data; |
| |
| DEBUGFUNC(); |
| |
| if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| phy_data |= MII_CR_RESET; |
| if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { |
| DEBUGOUT("PHY Write Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| udelay(1); |
| return 0; |
| } |
| |
| static int e1000_set_phy_type (struct e1000_hw *hw) |
| { |
| DEBUGFUNC (); |
| |
| if (hw->mac_type == e1000_undefined) |
| return -E1000_ERR_PHY_TYPE; |
| |
| switch (hw->phy_id) { |
| case M88E1000_E_PHY_ID: |
| case M88E1000_I_PHY_ID: |
| case M88E1011_I_PHY_ID: |
| hw->phy_type = e1000_phy_m88; |
| break; |
| case IGP01E1000_I_PHY_ID: |
| if (hw->mac_type == e1000_82541 || |
| hw->mac_type == e1000_82541_rev_2) { |
| hw->phy_type = e1000_phy_igp; |
| break; |
| } |
| /* Fall Through */ |
| default: |
| /* Should never have loaded on this device */ |
| hw->phy_type = e1000_phy_undefined; |
| return -E1000_ERR_PHY_TYPE; |
| } |
| |
| return E1000_SUCCESS; |
| } |
| |
| /****************************************************************************** |
| * Probes the expected PHY address for known PHY IDs |
| * |
| * hw - Struct containing variables accessed by shared code |
| ******************************************************************************/ |
| static int |
| e1000_detect_gig_phy(struct e1000_hw *hw) |
| { |
| int32_t phy_init_status; |
| uint16_t phy_id_high, phy_id_low; |
| int match = FALSE; |
| |
| DEBUGFUNC(); |
| |
| /* Read the PHY ID Registers to identify which PHY is onboard. */ |
| if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| hw->phy_id = (uint32_t) (phy_id_high << 16); |
| udelay(2); |
| if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) { |
| DEBUGOUT("PHY Read Error\n"); |
| return -E1000_ERR_PHY; |
| } |
| hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); |
| |
| switch (hw->mac_type) { |
| case e1000_82543: |
| if (hw->phy_id == M88E1000_E_PHY_ID) |
| match = TRUE; |
| break; |
| case e1000_82544: |
| if (hw->phy_id == M88E1000_I_PHY_ID) |
| match = TRUE; |
| break; |
| case e1000_82540: |
| case e1000_82545: |
| case e1000_82546: |
| if (hw->phy_id == M88E1011_I_PHY_ID) |
| match = TRUE; |
| break; |
| case e1000_82541_rev_2: |
| if(hw->phy_id == IGP01E1000_I_PHY_ID) |
| match = TRUE; |
| |
| break; |
| default: |
| DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); |
| return -E1000_ERR_CONFIG; |
| } |
| |
| phy_init_status = e1000_set_phy_type(hw); |
| |
| if ((match) && (phy_init_status == E1000_SUCCESS)) { |
| DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); |
| return 0; |
| } |
| DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); |
| return -E1000_ERR_PHY; |
| } |
| |
| /** |
| * e1000_sw_init - Initialize general software structures (struct e1000_adapter) |
| * |
| * e1000_sw_init initializes the Adapter private data structure. |
| * Fields are initialized based on PCI device information and |
| * OS network device settings (MTU size). |
| **/ |
| |
| static int |
| e1000_sw_init(struct eth_device *nic, int cardnum) |
| { |
| struct e1000_hw *hw = (typeof(hw)) nic->priv; |
| int result; |
| |
| /* PCI config space info */ |
| pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); |
| pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); |
| pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, |
| &hw->subsystem_vendor_id); |
| pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); |
| |
| pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); |
| pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); |
| |
| /* identify the MAC */ |
| result = e1000_set_mac_type(hw); |
| if (result) { |
| E1000_ERR("Unknown MAC Type\n"); |
| return result; |
| } |
| |
| /* lan a vs. lan b settings */ |
| if (hw->mac_type == e1000_82546) |
| /*this also works w/ multiple 82546 cards */ |
| /*but not if they're intermingled /w other e1000s */ |
| hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a; |
| else |
| hw->lan_loc = e1000_lan_a; |
| |
| /* flow control settings */ |
| hw->fc_high_water = E1000_FC_HIGH_THRESH; |
| hw->fc_low_water = E1000_FC_LOW_THRESH; |
| hw->fc_pause_time = E1000_FC_PAUSE_TIME; |
| hw->fc_send_xon = 1; |
| |
| /* Media type - copper or fiber */ |
| |
| if (hw->mac_type >= e1000_82543) { |
| uint32_t status = E1000_READ_REG(hw, STATUS); |
| |
| if (status & E1000_STATUS_TBIMODE) { |
| DEBUGOUT("fiber interface\n"); |
| hw->media_type = e1000_media_type_fiber; |
| } else { |
| DEBUGOUT("copper interface\n"); |
| hw->media_type = e1000_media_type_copper; |
| } |
| } else { |
| hw->media_type = e1000_media_type_fiber; |
| } |
| |
| if (hw->mac_type < e1000_82543) |
| hw->report_tx_early = 0; |
| else |
| hw->report_tx_early = 1; |
| |
| hw->tbi_compatibility_en = TRUE; |
| #if 0 |
| hw->wait_autoneg_complete = FALSE; |
| hw->adaptive_ifs = TRUE; |
| |
| /* Copper options */ |
| if (hw->media_type == e1000_media_type_copper) { |
| hw->mdix = AUTO_ALL_MODES; |
| hw->disable_polarity_correction = FALSE; |
| } |
| #endif |
| return E1000_SUCCESS; |
| } |
| |
| void |
| fill_rx(struct e1000_hw *hw) |
| { |
| struct e1000_rx_desc *rd; |
| |
| rx_last = rx_tail; |
| rd = rx_base + rx_tail; |
| rx_tail = (rx_tail + 1) % 8; |
| memset(rd, 0, 16); |
| rd->buffer_addr = cpu_to_le64((u32) & packet); |
| E1000_WRITE_REG(hw, RDT, rx_tail); |
| } |
| |
| /** |
| * e1000_configure_tx - Configure 8254x Transmit Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Tx unit of the MAC after a reset. |
| **/ |
| |
| static void |
| e1000_configure_tx(struct e1000_hw *hw) |
| { |
| unsigned long ptr; |
| unsigned long tctl; |
| unsigned long tipg; |
| |
| ptr = (u32) tx_pool; |
| if (ptr & 0xf) |
| ptr = (ptr + 0x10) & (~0xf); |
| |
| tx_base = (typeof(tx_base)) ptr; |
| |
| E1000_WRITE_REG(hw, TDBAL, (u32) tx_base); |
| E1000_WRITE_REG(hw, TDBAH, 0); |
| |
| E1000_WRITE_REG(hw, TDLEN, 128); |
| |
| /* Setup the HW Tx Head and Tail descriptor pointers */ |
| E1000_WRITE_REG(hw, TDH, 0); |
| E1000_WRITE_REG(hw, TDT, 0); |
| tx_tail = 0; |
| |
| /* Set the default values for the Tx Inter Packet Gap timer */ |
| switch (hw->mac_type) { |
| case e1000_82542_rev2_0: |
| case e1000_82542_rev2_1: |
| tipg = DEFAULT_82542_TIPG_IPGT; |
| tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; |
| tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; |
| break; |
| default: |
| if (hw->media_type == e1000_media_type_fiber) |
| tipg = DEFAULT_82543_TIPG_IPGT_FIBER; |
| else |
| tipg = DEFAULT_82543_TIPG_IPGT_COPPER; |
| tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; |
| tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; |
| } |
| E1000_WRITE_REG(hw, TIPG, tipg); |
| #if 0 |
| /* Set the Tx Interrupt Delay register */ |
| E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); |
| if (hw->mac_type >= e1000_82540) |
| E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); |
| #endif |
| /* Program the Transmit Control Register */ |
| tctl = E1000_READ_REG(hw, TCTL); |
| tctl &= ~E1000_TCTL_CT; |
| tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | |
| (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); |
| E1000_WRITE_REG(hw, TCTL, tctl); |
| |
| e1000_config_collision_dist(hw); |
| #if 0 |
| /* Setup Transmit Descriptor Settings for this adapter */ |
| adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE; |
| |
| if (adapter->hw.report_tx_early == 1) |
| adapter->txd_cmd |= E1000_TXD_CMD_RS; |
| else |
| adapter->txd_cmd |= E1000_TXD_CMD_RPS; |
| #endif |
| } |
| |
| /** |
| * e1000_setup_rctl - configure the receive control register |
| * @adapter: Board private structure |
| **/ |
| static void |
| e1000_setup_rctl(struct e1000_hw *hw) |
| { |
| uint32_t rctl; |
| |
| rctl = E1000_READ_REG(hw, RCTL); |
| |
| rctl &= ~(3 << E1000_RCTL_MO_SHIFT); |
| |
| rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF; /* | |
| (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ |
| |
| if (hw->tbi_compatibility_on == 1) |
| rctl |= E1000_RCTL_SBP; |
| else |
| rctl &= ~E1000_RCTL_SBP; |
| |
| rctl &= ~(E1000_RCTL_SZ_4096); |
| #if 0 |
| switch (adapter->rx_buffer_len) { |
| case E1000_RXBUFFER_2048: |
| default: |
| #endif |
| rctl |= E1000_RCTL_SZ_2048; |
| rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); |
| #if 0 |
| break; |
| case E1000_RXBUFFER_4096: |
| rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE; |
| break; |
| case E1000_RXBUFFER_8192: |
| rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE; |
| break; |
| case E1000_RXBUFFER_16384: |
| rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE; |
| break; |
| } |
| #endif |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| } |
| |
| /** |
| * e1000_configure_rx - Configure 8254x Receive Unit after Reset |
| * @adapter: board private structure |
| * |
| * Configure the Rx unit of the MAC after a reset. |
| **/ |
| static void |
| e1000_configure_rx(struct e1000_hw *hw) |
| { |
| unsigned long ptr; |
| unsigned long rctl; |
| #if 0 |
| unsigned long rxcsum; |
| #endif |
| rx_tail = 0; |
| /* make sure receives are disabled while setting up the descriptors */ |
| rctl = E1000_READ_REG(hw, RCTL); |
| E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); |
| #if 0 |
| /* set the Receive Delay Timer Register */ |
| |
| E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); |
| #endif |
| if (hw->mac_type >= e1000_82540) { |
| #if 0 |
| E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); |
| #endif |
| /* Set the interrupt throttling rate. Value is calculated |
| * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ |
| #define MAX_INTS_PER_SEC 8000 |
| #define DEFAULT_ITR 1000000000/(MAX_INTS_PER_SEC * 256) |
| E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); |
| } |
| |
| /* Setup the Base and Length of the Rx Descriptor Ring */ |
| ptr = (u32) rx_pool; |
| if (ptr & 0xf) |
| ptr = (ptr + 0x10) & (~0xf); |
| rx_base = (typeof(rx_base)) ptr; |
| E1000_WRITE_REG(hw, RDBAL, (u32) rx_base); |
| E1000_WRITE_REG(hw, RDBAH, 0); |
| |
| E1000_WRITE_REG(hw, RDLEN, 128); |
| |
| /* Setup the HW Rx Head and Tail Descriptor Pointers */ |
| E1000_WRITE_REG(hw, RDH, 0); |
| E1000_WRITE_REG(hw, RDT, 0); |
| #if 0 |
| /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
| if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) { |
| rxcsum = E1000_READ_REG(hw, RXCSUM); |
| rxcsum |= E1000_RXCSUM_TUOFL; |
| E1000_WRITE_REG(hw, RXCSUM, rxcsum); |
| } |
| #endif |
| /* Enable Receives */ |
| |
| E1000_WRITE_REG(hw, RCTL, rctl); |
| fill_rx(hw); |
| } |
| |
| /************************************************************************** |
| POLL - Wait for a frame |
| ***************************************************************************/ |
| static int |
| e1000_poll(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| struct e1000_rx_desc *rd; |
| /* return true if there's an ethernet packet ready to read */ |
| rd = rx_base + rx_last; |
| if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) |
| return 0; |
| /*DEBUGOUT("recv: packet len=%d \n", rd->length); */ |
| NetReceive((uchar *)packet, le32_to_cpu(rd->length)); |
| fill_rx(hw); |
| return 1; |
| } |
| |
| /************************************************************************** |
| TRANSMIT - Transmit a frame |
| ***************************************************************************/ |
| static int |
| e1000_transmit(struct eth_device *nic, volatile void *packet, int length) |
| { |
| struct e1000_hw *hw = nic->priv; |
| struct e1000_tx_desc *txp; |
| int i = 0; |
| |
| txp = tx_base + tx_tail; |
| tx_tail = (tx_tail + 1) % 8; |
| |
| txp->buffer_addr = cpu_to_le64(virt_to_bus(packet)); |
| txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | |
| E1000_TXD_CMD_IFCS | length); |
| txp->upper.data = 0; |
| E1000_WRITE_REG(hw, TDT, tx_tail); |
| |
| while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) { |
| if (i++ > TOUT_LOOP) { |
| DEBUGOUT("e1000: tx timeout\n"); |
| return 0; |
| } |
| udelay(10); /* give the nic a chance to write to the register */ |
| } |
| return 1; |
| } |
| |
| /*reset function*/ |
| static inline int |
| e1000_reset(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| |
| e1000_reset_hw(hw); |
| if (hw->mac_type >= e1000_82544) { |
| E1000_WRITE_REG(hw, WUC, 0); |
| } |
| return e1000_init_hw(nic); |
| } |
| |
| /************************************************************************** |
| DISABLE - Turn off ethernet interface |
| ***************************************************************************/ |
| static void |
| e1000_disable(struct eth_device *nic) |
| { |
| struct e1000_hw *hw = nic->priv; |
| |
| /* Turn off the ethernet interface */ |
| E1000_WRITE_REG(hw, RCTL, 0); |
| E1000_WRITE_REG(hw, TCTL, 0); |
| |
| /* Clear the transmit ring */ |
| E1000_WRITE_REG(hw, TDH, 0); |
| E1000_WRITE_REG(hw, TDT, 0); |
| |
| /* Clear the receive ring */ |
| E1000_WRITE_REG(hw, RDH, 0); |
| E1000_WRITE_REG(hw, RDT, 0); |
| |
| /* put the card in its initial state */ |
| #if 0 |
| E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST); |
| #endif |
| mdelay(10); |
| |
| } |
| |
| /************************************************************************** |
| INIT - set up ethernet interface(s) |
| ***************************************************************************/ |
| static int |
| e1000_init(struct eth_device *nic, bd_t * bis) |
| { |
| struct e1000_hw *hw = nic->priv; |
| int ret_val = 0; |
| |
| ret_val = e1000_reset(nic); |
| if (ret_val < 0) { |
| if ((ret_val == -E1000_ERR_NOLINK) || |
| (ret_val == -E1000_ERR_TIMEOUT)) { |
| E1000_ERR("Valid Link not detected\n"); |
| } else { |
| E1000_ERR("Hardware Initialization Failed\n"); |
| } |
| return 0; |
| } |
| e1000_configure_tx(hw); |
| e1000_setup_rctl(hw); |
| e1000_configure_rx(hw); |
| return 1; |
| } |
| |
| /************************************************************************** |
| PROBE - Look for an adapter, this routine's visible to the outside |
| You should omit the last argument struct pci_device * for a non-PCI NIC |
| ***************************************************************************/ |
| int |
| e1000_initialize(bd_t * bis) |
| { |
| pci_dev_t devno; |
| int card_number = 0; |
| struct eth_device *nic = NULL; |
| struct e1000_hw *hw = NULL; |
| u32 iobase; |
| int idx = 0; |
| u32 PciCommandWord; |
| |
| while (1) { /* Find PCI device(s) */ |
| if ((devno = pci_find_devices(supported, idx++)) < 0) { |
| break; |
| } |
| |
| pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase); |
| iobase &= ~0xf; /* Mask the bits that say "this is an io addr" */ |
| DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase); |
| |
| pci_write_config_dword(devno, PCI_COMMAND, |
| PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| /* Check if I/O accesses and Bus Mastering are enabled. */ |
| pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord); |
| if (!(PciCommandWord & PCI_COMMAND_MEMORY)) { |
| printf("Error: Can not enable MEM access.\n"); |
| continue; |
| } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) { |
| printf("Error: Can not enable Bus Mastering.\n"); |
| continue; |
| } |
| |
| nic = (struct eth_device *) malloc(sizeof (*nic)); |
| hw = (struct e1000_hw *) malloc(sizeof (*hw)); |
| hw->pdev = devno; |
| nic->priv = hw; |
| nic->iobase = bus_to_phys(devno, iobase); |
| |
| sprintf(nic->name, "e1000#%d", card_number); |
| |
| /* Are these variables needed? */ |
| #if 0 |
| hw->fc = e1000_fc_none; |
| hw->original_fc = e1000_fc_none; |
| #else |
| hw->fc = e1000_fc_default; |
| hw->original_fc = e1000_fc_default; |
| #endif |
| hw->autoneg_failed = 0; |
| hw->get_link_status = TRUE; |
| hw->hw_addr = (typeof(hw->hw_addr)) iobase; |
| hw->mac_type = e1000_undefined; |
| |
| /* MAC and Phy settings */ |
| if (e1000_sw_init(nic, card_number) < 0) { |
| free(hw); |
| free(nic); |
| return 0; |
| } |
| #if !(defined(CONFIG_AP1000) || defined(CONFIG_MVBC_1G)) |
| if (e1000_validate_eeprom_checksum(nic) < 0) { |
| printf("The EEPROM Checksum Is Not Valid\n"); |
| free(hw); |
| free(nic); |
| return 0; |
| } |
| #endif |
| e1000_read_mac_addr(nic); |
| |
| E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA); |
| |
| printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2], |
| nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]); |
| |
| nic->init = e1000_init; |
| nic->recv = e1000_poll; |
| nic->send = e1000_transmit; |
| nic->halt = e1000_disable; |
| |
| eth_register(nic); |
| |
| card_number++; |
| } |
| return card_number; |
| } |