blob: b27b1633bab56538358d2a93a199eb501efea494 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2011-2013, NVIDIA Corporation.
* Copyright 2014 Google Inc.
*/
#include <common.h>
#include <display.h>
#include <dm.h>
#include <div64.h>
#include <errno.h>
#include <log.h>
#include <video_bridge.h>
#include <asm/io.h>
#include <asm/arch-tegra/dc.h>
#include <linux/delay.h>
#include "display.h"
#include "edid.h"
#include "sor.h"
#include "displayport.h"
#define DO_FAST_LINK_TRAINING 1
struct tegra_dp_plat {
ulong base;
};
/**
* struct tegra_dp_priv - private displayport driver info
*
* @dc_dev: Display controller device that is sending the video feed
*/
struct tegra_dp_priv {
struct udevice *sor;
struct udevice *dc_dev;
struct dpaux_ctlr *regs;
u8 revision;
int enabled;
};
struct tegra_dp_priv dp_data;
static inline u32 tegra_dpaux_readl(struct tegra_dp_priv *dp, u32 reg)
{
return readl((u32 *)dp->regs + reg);
}
static inline void tegra_dpaux_writel(struct tegra_dp_priv *dp, u32 reg,
u32 val)
{
writel(val, (u32 *)dp->regs + reg);
}
static inline u32 tegra_dc_dpaux_poll_register(struct tegra_dp_priv *dp,
u32 reg, u32 mask, u32 exp_val,
u32 poll_interval_us,
u32 timeout_us)
{
u32 reg_val = 0;
u32 temp = timeout_us;
do {
udelay(poll_interval_us);
reg_val = tegra_dpaux_readl(dp, reg);
if (timeout_us > poll_interval_us)
timeout_us -= poll_interval_us;
else
break;
} while ((reg_val & mask) != exp_val);
if ((reg_val & mask) == exp_val)
return 0; /* success */
debug("dpaux_poll_register 0x%x: timeout: (reg_val)0x%08x & (mask)0x%08x != (exp_val)0x%08x\n",
reg, reg_val, mask, exp_val);
return temp;
}
static inline int tegra_dpaux_wait_transaction(struct tegra_dp_priv *dp)
{
/* According to DP spec, each aux transaction needs to finish
within 40ms. */
if (tegra_dc_dpaux_poll_register(dp, DPAUX_DP_AUXCTL,
DPAUX_DP_AUXCTL_TRANSACTREQ_MASK,
DPAUX_DP_AUXCTL_TRANSACTREQ_DONE,
100, DP_AUX_TIMEOUT_MS * 1000) != 0) {
debug("dp: DPAUX transaction timeout\n");
return -1;
}
return 0;
}
static int tegra_dc_dpaux_write_chunk(struct tegra_dp_priv *dp, u32 cmd,
u32 addr, u8 *data, u32 *size,
u32 *aux_stat)
{
int i;
u32 reg_val;
u32 timeout_retries = DP_AUX_TIMEOUT_MAX_TRIES;
u32 defer_retries = DP_AUX_DEFER_MAX_TRIES;
u32 temp_data;
if (*size > DP_AUX_MAX_BYTES)
return -1; /* only write one chunk of data */
/* Make sure the command is write command */
switch (cmd) {
case DPAUX_DP_AUXCTL_CMD_I2CWR:
case DPAUX_DP_AUXCTL_CMD_MOTWR:
case DPAUX_DP_AUXCTL_CMD_AUXWR:
break;
default:
debug("dp: aux write cmd 0x%x is invalid\n", cmd);
return -EINVAL;
}
tegra_dpaux_writel(dp, DPAUX_DP_AUXADDR, addr);
for (i = 0; i < DP_AUX_MAX_BYTES / 4; ++i) {
memcpy(&temp_data, data, 4);
tegra_dpaux_writel(dp, DPAUX_DP_AUXDATA_WRITE_W(i), temp_data);
data += 4;
}
reg_val = tegra_dpaux_readl(dp, DPAUX_DP_AUXCTL);
reg_val &= ~DPAUX_DP_AUXCTL_CMD_MASK;
reg_val |= cmd;
reg_val &= ~DPAUX_DP_AUXCTL_CMDLEN_FIELD;
reg_val |= ((*size - 1) << DPAUX_DP_AUXCTL_CMDLEN_SHIFT);
while ((timeout_retries > 0) && (defer_retries > 0)) {
if ((timeout_retries != DP_AUX_TIMEOUT_MAX_TRIES) ||
(defer_retries != DP_AUX_DEFER_MAX_TRIES))
udelay(1);
reg_val |= DPAUX_DP_AUXCTL_TRANSACTREQ_PENDING;
tegra_dpaux_writel(dp, DPAUX_DP_AUXCTL, reg_val);
if (tegra_dpaux_wait_transaction(dp))
debug("dp: aux write transaction timeout\n");
*aux_stat = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT);
if ((*aux_stat & DPAUX_DP_AUXSTAT_TIMEOUT_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_RX_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_SINKSTAT_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_NO_STOP_ERROR_PENDING)) {
if (timeout_retries-- > 0) {
debug("dp: aux write retry (0x%x) -- %d\n",
*aux_stat, timeout_retries);
/* clear the error bits */
tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT,
*aux_stat);
continue;
} else {
debug("dp: aux write got error (0x%x)\n",
*aux_stat);
return -ETIMEDOUT;
}
}
if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_I2CDEFER) ||
(*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_DEFER)) {
if (defer_retries-- > 0) {
debug("dp: aux write defer (0x%x) -- %d\n",
*aux_stat, defer_retries);
/* clear the error bits */
tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT,
*aux_stat);
continue;
} else {
debug("dp: aux write defer exceeds max retries (0x%x)\n",
*aux_stat);
return -ETIMEDOUT;
}
}
if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_MASK) ==
DPAUX_DP_AUXSTAT_REPLYTYPE_ACK) {
*size = ((*aux_stat) & DPAUX_DP_AUXSTAT_REPLY_M_MASK);
return 0;
} else {
debug("dp: aux write failed (0x%x)\n", *aux_stat);
return -EIO;
}
}
/* Should never come to here */
return -EIO;
}
static int tegra_dc_dpaux_read_chunk(struct tegra_dp_priv *dp, u32 cmd,
u32 addr, u8 *data, u32 *size,
u32 *aux_stat)
{
u32 reg_val;
u32 timeout_retries = DP_AUX_TIMEOUT_MAX_TRIES;
u32 defer_retries = DP_AUX_DEFER_MAX_TRIES;
if (*size > DP_AUX_MAX_BYTES) {
debug("only read one chunk\n");
return -EIO; /* only read one chunk */
}
/* Check to make sure the command is read command */
switch (cmd) {
case DPAUX_DP_AUXCTL_CMD_I2CRD:
case DPAUX_DP_AUXCTL_CMD_I2CREQWSTAT:
case DPAUX_DP_AUXCTL_CMD_MOTRD:
case DPAUX_DP_AUXCTL_CMD_AUXRD:
break;
default:
debug("dp: aux read cmd 0x%x is invalid\n", cmd);
return -EIO;
}
*aux_stat = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT);
if (!(*aux_stat & DPAUX_DP_AUXSTAT_HPD_STATUS_PLUGGED)) {
debug("dp: HPD is not detected\n");
return -EIO;
}
tegra_dpaux_writel(dp, DPAUX_DP_AUXADDR, addr);
reg_val = tegra_dpaux_readl(dp, DPAUX_DP_AUXCTL);
reg_val &= ~DPAUX_DP_AUXCTL_CMD_MASK;
reg_val |= cmd;
reg_val &= ~DPAUX_DP_AUXCTL_CMDLEN_FIELD;
reg_val |= ((*size - 1) << DPAUX_DP_AUXCTL_CMDLEN_SHIFT);
while ((timeout_retries > 0) && (defer_retries > 0)) {
if ((timeout_retries != DP_AUX_TIMEOUT_MAX_TRIES) ||
(defer_retries != DP_AUX_DEFER_MAX_TRIES))
udelay(DP_DPCP_RETRY_SLEEP_NS * 2);
reg_val |= DPAUX_DP_AUXCTL_TRANSACTREQ_PENDING;
tegra_dpaux_writel(dp, DPAUX_DP_AUXCTL, reg_val);
if (tegra_dpaux_wait_transaction(dp))
debug("dp: aux read transaction timeout\n");
*aux_stat = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT);
if ((*aux_stat & DPAUX_DP_AUXSTAT_TIMEOUT_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_RX_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_SINKSTAT_ERROR_PENDING) ||
(*aux_stat & DPAUX_DP_AUXSTAT_NO_STOP_ERROR_PENDING)) {
if (timeout_retries-- > 0) {
debug("dp: aux read retry (0x%x) -- %d\n",
*aux_stat, timeout_retries);
/* clear the error bits */
tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT,
*aux_stat);
continue; /* retry */
} else {
debug("dp: aux read got error (0x%x)\n",
*aux_stat);
return -ETIMEDOUT;
}
}
if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_I2CDEFER) ||
(*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_DEFER)) {
if (defer_retries-- > 0) {
debug("dp: aux read defer (0x%x) -- %d\n",
*aux_stat, defer_retries);
/* clear the error bits */
tegra_dpaux_writel(dp, DPAUX_DP_AUXSTAT,
*aux_stat);
continue;
} else {
debug("dp: aux read defer exceeds max retries (0x%x)\n",
*aux_stat);
return -ETIMEDOUT;
}
}
if ((*aux_stat & DPAUX_DP_AUXSTAT_REPLYTYPE_MASK) ==
DPAUX_DP_AUXSTAT_REPLYTYPE_ACK) {
int i;
u32 temp_data[4];
for (i = 0; i < DP_AUX_MAX_BYTES / 4; ++i)
temp_data[i] = tegra_dpaux_readl(dp,
DPAUX_DP_AUXDATA_READ_W(i));
*size = ((*aux_stat) & DPAUX_DP_AUXSTAT_REPLY_M_MASK);
memcpy(data, temp_data, *size);
return 0;
} else {
debug("dp: aux read failed (0x%x\n", *aux_stat);
return -EIO;
}
}
/* Should never come to here */
debug("%s: can't\n", __func__);
return -EIO;
}
static int tegra_dc_dpaux_read(struct tegra_dp_priv *dp, u32 cmd, u32 addr,
u8 *data, u32 *size, u32 *aux_stat)
{
u32 finished = 0;
u32 cur_size;
int ret = 0;
do {
cur_size = *size - finished;
if (cur_size > DP_AUX_MAX_BYTES)
cur_size = DP_AUX_MAX_BYTES;
ret = tegra_dc_dpaux_read_chunk(dp, cmd, addr,
data, &cur_size, aux_stat);
if (ret)
break;
/* cur_size should be the real size returned */
addr += cur_size;
data += cur_size;
finished += cur_size;
} while (*size > finished);
*size = finished;
return ret;
}
static int tegra_dc_dp_dpcd_read(struct tegra_dp_priv *dp, u32 cmd,
u8 *data_ptr)
{
u32 size = 1;
u32 status = 0;
int ret;
ret = tegra_dc_dpaux_read_chunk(dp, DPAUX_DP_AUXCTL_CMD_AUXRD,
cmd, data_ptr, &size, &status);
if (ret) {
debug("dp: Failed to read DPCD data. CMD 0x%x, Status 0x%x\n",
cmd, status);
}
return ret;
}
static int tegra_dc_dp_dpcd_write(struct tegra_dp_priv *dp, u32 cmd,
u8 data)
{
u32 size = 1;
u32 status = 0;
int ret;
ret = tegra_dc_dpaux_write_chunk(dp, DPAUX_DP_AUXCTL_CMD_AUXWR,
cmd, &data, &size, &status);
if (ret) {
debug("dp: Failed to write DPCD data. CMD 0x%x, Status 0x%x\n",
cmd, status);
}
return ret;
}
static int tegra_dc_i2c_aux_read(struct tegra_dp_priv *dp, u32 i2c_addr,
u8 addr, u8 *data, u32 size, u32 *aux_stat)
{
u32 finished = 0;
int ret = 0;
do {
u32 cur_size = min((u32)DP_AUX_MAX_BYTES, size - finished);
u32 len = 1;
ret = tegra_dc_dpaux_write_chunk(
dp, DPAUX_DP_AUXCTL_CMD_MOTWR, i2c_addr,
&addr, &len, aux_stat);
if (ret) {
debug("%s: error sending address to read.\n",
__func__);
return ret;
}
ret = tegra_dc_dpaux_read_chunk(
dp, DPAUX_DP_AUXCTL_CMD_I2CRD, i2c_addr,
data, &cur_size, aux_stat);
if (ret) {
debug("%s: error reading data.\n", __func__);
return ret;
}
/* cur_size should be the real size returned */
addr += cur_size;
data += cur_size;
finished += cur_size;
} while (size > finished);
return finished;
}
static void tegra_dc_dpaux_enable(struct tegra_dp_priv *dp)
{
/* clear interrupt */
tegra_dpaux_writel(dp, DPAUX_INTR_AUX, 0xffffffff);
/* do not enable interrupt for now. Enable them when Isr in place */
tegra_dpaux_writel(dp, DPAUX_INTR_EN_AUX, 0x0);
tegra_dpaux_writel(dp, DPAUX_HYBRID_PADCTL,
DPAUX_HYBRID_PADCTL_AUX_DRVZ_OHM_50 |
DPAUX_HYBRID_PADCTL_AUX_CMH_V0_70 |
0x18 << DPAUX_HYBRID_PADCTL_AUX_DRVI_SHIFT |
DPAUX_HYBRID_PADCTL_AUX_INPUT_RCV_ENABLE);
tegra_dpaux_writel(dp, DPAUX_HYBRID_SPARE,
DPAUX_HYBRID_SPARE_PAD_PWR_POWERUP);
}
#ifdef DEBUG
static void tegra_dc_dp_dump_link_cfg(struct tegra_dp_priv *dp,
const struct tegra_dp_link_config *link_cfg)
{
debug("DP config: cfg_name cfg_value\n");
debug(" Lane Count %d\n",
link_cfg->max_lane_count);
debug(" SupportEnhancedFraming %s\n",
link_cfg->support_enhanced_framing ? "Y" : "N");
debug(" Bandwidth %d\n",
link_cfg->max_link_bw);
debug(" bpp %d\n",
link_cfg->bits_per_pixel);
debug(" EnhancedFraming %s\n",
link_cfg->enhanced_framing ? "Y" : "N");
debug(" Scramble_enabled %s\n",
link_cfg->scramble_ena ? "Y" : "N");
debug(" LinkBW %d\n",
link_cfg->link_bw);
debug(" lane_count %d\n",
link_cfg->lane_count);
debug(" activespolarity %d\n",
link_cfg->activepolarity);
debug(" active_count %d\n",
link_cfg->active_count);
debug(" tu_size %d\n",
link_cfg->tu_size);
debug(" active_frac %d\n",
link_cfg->active_frac);
debug(" watermark %d\n",
link_cfg->watermark);
debug(" hblank_sym %d\n",
link_cfg->hblank_sym);
debug(" vblank_sym %d\n",
link_cfg->vblank_sym);
}
#endif
static int _tegra_dp_lower_link_config(struct tegra_dp_priv *dp,
struct tegra_dp_link_config *cfg)
{
switch (cfg->link_bw) {
case SOR_LINK_SPEED_G1_62:
if (cfg->max_link_bw > SOR_LINK_SPEED_G1_62)
cfg->link_bw = SOR_LINK_SPEED_G2_7;
cfg->lane_count /= 2;
break;
case SOR_LINK_SPEED_G2_7:
cfg->link_bw = SOR_LINK_SPEED_G1_62;
break;
case SOR_LINK_SPEED_G5_4:
if (cfg->lane_count == 1) {
cfg->link_bw = SOR_LINK_SPEED_G2_7;
cfg->lane_count = cfg->max_lane_count;
} else {
cfg->lane_count /= 2;
}
break;
default:
debug("dp: Error link rate %d\n", cfg->link_bw);
return -ENOLINK;
}
return (cfg->lane_count > 0) ? 0 : -ENOLINK;
}
/*
* Calcuate if given cfg can meet the mode request.
* Return 0 if mode is possible, -1 otherwise
*/
static int tegra_dc_dp_calc_config(struct tegra_dp_priv *dp,
const struct display_timing *timing,
struct tegra_dp_link_config *link_cfg)
{
const u32 link_rate = 27 * link_cfg->link_bw * 1000 * 1000;
const u64 f = 100000; /* precision factor */
u32 num_linkclk_line; /* Number of link clocks per line */
u64 ratio_f; /* Ratio of incoming to outgoing data rate */
u64 frac_f;
u64 activesym_f; /* Activesym per TU */
u64 activecount_f;
u32 activecount;
u32 activepolarity;
u64 approx_value_f;
u32 activefrac = 0;
u64 accumulated_error_f = 0;
u32 lowest_neg_activecount = 0;
u32 lowest_neg_activepolarity = 0;
u32 lowest_neg_tusize = 64;
u32 num_symbols_per_line;
u64 lowest_neg_activefrac = 0;
u64 lowest_neg_error_f = 64 * f;
u64 watermark_f;
int i;
int neg;
if (!link_rate || !link_cfg->lane_count || !timing->pixelclock.typ ||
!link_cfg->bits_per_pixel)
return -1;
if ((u64)timing->pixelclock.typ * link_cfg->bits_per_pixel >=
(u64)link_rate * 8 * link_cfg->lane_count)
return -1;
num_linkclk_line = (u32)(lldiv(link_rate * timing->hactive.typ,
timing->pixelclock.typ));
ratio_f = (u64)timing->pixelclock.typ * link_cfg->bits_per_pixel * f;
ratio_f /= 8;
do_div(ratio_f, link_rate * link_cfg->lane_count);
for (i = 64; i >= 32; --i) {
activesym_f = ratio_f * i;
activecount_f = lldiv(activesym_f, (u32)f) * f;
frac_f = activesym_f - activecount_f;
activecount = (u32)(lldiv(activecount_f, (u32)f));
if (frac_f < (lldiv(f, 2))) /* fraction < 0.5 */
activepolarity = 0;
else {
activepolarity = 1;
frac_f = f - frac_f;
}
if (frac_f != 0) {
/* warning: frac_f should be 64-bit */
frac_f = lldiv(f * f, frac_f); /* 1 / fraction */
if (frac_f > (15 * f))
activefrac = activepolarity ? 1 : 15;
else
activefrac = activepolarity ?
(u32)lldiv(frac_f, (u32)f) + 1 :
(u32)lldiv(frac_f, (u32)f);
}
if (activefrac == 1)
activepolarity = 0;
if (activepolarity == 1)
approx_value_f = activefrac ? lldiv(
(activecount_f + (activefrac * f - f) * f),
(activefrac * f)) :
activecount_f + f;
else
approx_value_f = activefrac ?
activecount_f + lldiv(f, activefrac) :
activecount_f;
if (activesym_f < approx_value_f) {
accumulated_error_f = num_linkclk_line *
lldiv(approx_value_f - activesym_f, i);
neg = 1;
} else {
accumulated_error_f = num_linkclk_line *
lldiv(activesym_f - approx_value_f, i);
neg = 0;
}
if ((neg && (lowest_neg_error_f > accumulated_error_f)) ||
(accumulated_error_f == 0)) {
lowest_neg_error_f = accumulated_error_f;
lowest_neg_tusize = i;
lowest_neg_activecount = activecount;
lowest_neg_activepolarity = activepolarity;
lowest_neg_activefrac = activefrac;
if (accumulated_error_f == 0)
break;
}
}
if (lowest_neg_activefrac == 0) {
link_cfg->activepolarity = 0;
link_cfg->active_count = lowest_neg_activepolarity ?
lowest_neg_activecount : lowest_neg_activecount - 1;
link_cfg->tu_size = lowest_neg_tusize;
link_cfg->active_frac = 1;
} else {
link_cfg->activepolarity = lowest_neg_activepolarity;
link_cfg->active_count = (u32)lowest_neg_activecount;
link_cfg->tu_size = lowest_neg_tusize;
link_cfg->active_frac = (u32)lowest_neg_activefrac;
}
watermark_f = lldiv(ratio_f * link_cfg->tu_size * (f - ratio_f), f);
link_cfg->watermark = (u32)(lldiv(watermark_f + lowest_neg_error_f,
f)) + link_cfg->bits_per_pixel / 4 - 1;
num_symbols_per_line = (timing->hactive.typ *
link_cfg->bits_per_pixel) /
(8 * link_cfg->lane_count);
if (link_cfg->watermark > 30) {
debug("dp: sor setting: unable to get a good tusize, force watermark to 30\n");
link_cfg->watermark = 30;
return -1;
} else if (link_cfg->watermark > num_symbols_per_line) {
debug("dp: sor setting: force watermark to the number of symbols in the line\n");
link_cfg->watermark = num_symbols_per_line;
return -1;
}
/*
* Refer to dev_disp.ref for more information.
* # symbols/hblank = ((SetRasterBlankEnd.X + SetRasterSize.Width -
* SetRasterBlankStart.X - 7) * link_clk / pclk)
* - 3 * enhanced_framing - Y
* where Y = (# lanes == 4) 3 : (# lanes == 2) ? 6 : 12
*/
link_cfg->hblank_sym = (int)lldiv(((uint64_t)timing->hback_porch.typ +
timing->hfront_porch.typ + timing->hsync_len.typ - 7) *
link_rate, timing->pixelclock.typ) -
3 * link_cfg->enhanced_framing -
(12 / link_cfg->lane_count);
if (link_cfg->hblank_sym < 0)
link_cfg->hblank_sym = 0;
/*
* Refer to dev_disp.ref for more information.
* # symbols/vblank = ((SetRasterBlankStart.X -
* SetRasterBlankEen.X - 25) * link_clk / pclk)
* - Y - 1;
* where Y = (# lanes == 4) 12 : (# lanes == 2) ? 21 : 39
*/
link_cfg->vblank_sym = (int)lldiv(((uint64_t)timing->hactive.typ - 25)
* link_rate, timing->pixelclock.typ) - (36 /
link_cfg->lane_count) - 4;
if (link_cfg->vblank_sym < 0)
link_cfg->vblank_sym = 0;
link_cfg->is_valid = 1;
#ifdef DEBUG
tegra_dc_dp_dump_link_cfg(dp, link_cfg);
#endif
return 0;
}
static int tegra_dc_dp_init_max_link_cfg(
const struct display_timing *timing,
struct tegra_dp_priv *dp,
struct tegra_dp_link_config *link_cfg)
{
const int drive_current = 0x40404040;
const int preemphasis = 0x0f0f0f0f;
const int postcursor = 0;
u8 dpcd_data;
int ret;
ret = tegra_dc_dp_dpcd_read(dp, DP_MAX_LANE_COUNT, &dpcd_data);
if (ret)
return ret;
link_cfg->max_lane_count = dpcd_data & DP_MAX_LANE_COUNT_MASK;
link_cfg->tps3_supported = (dpcd_data &
DP_MAX_LANE_COUNT_TPS3_SUPPORTED_YES) ? 1 : 0;
link_cfg->support_enhanced_framing =
(dpcd_data & DP_MAX_LANE_COUNT_ENHANCED_FRAMING_YES) ?
1 : 0;
ret = tegra_dc_dp_dpcd_read(dp, DP_MAX_DOWNSPREAD, &dpcd_data);
if (ret)
return ret;
link_cfg->downspread = (dpcd_data & DP_MAX_DOWNSPREAD_VAL_0_5_PCT) ?
1 : 0;
ret = tegra_dc_dp_dpcd_read(dp, NV_DPCD_TRAINING_AUX_RD_INTERVAL,
&link_cfg->aux_rd_interval);
if (ret)
return ret;
ret = tegra_dc_dp_dpcd_read(dp, DP_MAX_LINK_RATE,
&link_cfg->max_link_bw);
if (ret)
return ret;
/*
* Set to a high value for link training and attach.
* Will be re-programmed when dp is enabled.
*/
link_cfg->drive_current = drive_current;
link_cfg->preemphasis = preemphasis;
link_cfg->postcursor = postcursor;
ret = tegra_dc_dp_dpcd_read(dp, DP_EDP_CONFIGURATION_CAP, &dpcd_data);
if (ret)
return ret;
link_cfg->alt_scramber_reset_cap =
(dpcd_data & DP_EDP_CONFIGURATION_CAP_ASC_RESET_YES) ?
1 : 0;
link_cfg->only_enhanced_framing =
(dpcd_data & DP_EDP_CONFIGURATION_CAP_FRAMING_CHANGE_YES) ?
1 : 0;
link_cfg->lane_count = link_cfg->max_lane_count;
link_cfg->link_bw = link_cfg->max_link_bw;
link_cfg->enhanced_framing = link_cfg->support_enhanced_framing;
link_cfg->frame_in_ms = (1000 / 60) + 1;
tegra_dc_dp_calc_config(dp, timing, link_cfg);
return 0;
}
static int tegra_dc_dp_set_assr(struct tegra_dp_priv *priv,
struct udevice *sor, int ena)
{
int ret;
u8 dpcd_data = ena ?
DP_MAIN_LINK_CHANNEL_CODING_SET_ASC_RESET_ENABLE :
DP_MAIN_LINK_CHANNEL_CODING_SET_ASC_RESET_DISABLE;
ret = tegra_dc_dp_dpcd_write(priv, DP_EDP_CONFIGURATION_SET,
dpcd_data);
if (ret)
return ret;
/* Also reset the scrambler to 0xfffe */
tegra_dc_sor_set_internal_panel(sor, ena);
return 0;
}
static int tegra_dp_set_link_bandwidth(struct tegra_dp_priv *dp,
struct udevice *sor,
u8 link_bw)
{
tegra_dc_sor_set_link_bandwidth(sor, link_bw);
/* Sink side */
return tegra_dc_dp_dpcd_write(dp, DP_LINK_BW_SET, link_bw);
}
static int tegra_dp_set_lane_count(struct tegra_dp_priv *dp,
const struct tegra_dp_link_config *link_cfg,
struct udevice *sor)
{
u8 dpcd_data;
int ret;
/* check if panel support enhanched_framing */
dpcd_data = link_cfg->lane_count;
if (link_cfg->enhanced_framing)
dpcd_data |= DP_LANE_COUNT_SET_ENHANCEDFRAMING_T;
ret = tegra_dc_dp_dpcd_write(dp, DP_LANE_COUNT_SET, dpcd_data);
if (ret)
return ret;
tegra_dc_sor_set_lane_count(sor, link_cfg->lane_count);
/* Also power down lanes that will not be used */
return 0;
}
static int tegra_dc_dp_link_trained(struct tegra_dp_priv *dp,
const struct tegra_dp_link_config *cfg)
{
u32 lane;
u8 mask;
u8 data;
int ret;
for (lane = 0; lane < cfg->lane_count; ++lane) {
ret = tegra_dc_dp_dpcd_read(dp, (lane / 2) ?
DP_LANE2_3_STATUS : DP_LANE0_1_STATUS,
&data);
if (ret)
return ret;
mask = (lane & 1) ?
NV_DPCD_STATUS_LANEXPLUS1_CR_DONE_YES |
NV_DPCD_STATUS_LANEXPLUS1_CHN_EQ_DONE_YES |
NV_DPCD_STATUS_LANEXPLUS1_SYMBOL_LOCKED_YES :
DP_LANE_CR_DONE |
DP_LANE_CHANNEL_EQ_DONE |
DP_LANE_SYMBOL_LOCKED;
if ((data & mask) != mask)
return -1;
}
return 0;
}
static int tegra_dp_channel_eq_status(struct tegra_dp_priv *dp,
const struct tegra_dp_link_config *cfg)
{
u32 cnt;
u32 n_lanes = cfg->lane_count;
u8 data;
u8 ce_done = 1;
int ret;
for (cnt = 0; cnt < n_lanes / 2; cnt++) {
ret = tegra_dc_dp_dpcd_read(dp, DP_LANE0_1_STATUS + cnt, &data);
if (ret)
return ret;
if (n_lanes == 1) {
ce_done = (data & (0x1 <<
NV_DPCD_STATUS_LANEX_CHN_EQ_DONE_SHIFT)) &&
(data & (0x1 <<
NV_DPCD_STATUS_LANEX_SYMBOL_LOCKED_SHFIT));
break;
} else if (!(data & (0x1 <<
NV_DPCD_STATUS_LANEX_CHN_EQ_DONE_SHIFT)) ||
!(data & (0x1 <<
NV_DPCD_STATUS_LANEX_SYMBOL_LOCKED_SHFIT)) ||
!(data & (0x1 <<
NV_DPCD_STATUS_LANEXPLUS1_CHN_EQ_DONE_SHIFT)) ||
!(data & (0x1 <<
NV_DPCD_STATUS_LANEXPLUS1_SYMBOL_LOCKED_SHIFT)))
return -EIO;
}
if (ce_done) {
ret = tegra_dc_dp_dpcd_read(dp,
DP_LANE_ALIGN_STATUS_UPDATED,
&data);
if (ret)
return ret;
if (!(data & NV_DPCD_LANE_ALIGN_STATUS_UPDATED_DONE_YES))
ce_done = 0;
}
return ce_done ? 0 : -EIO;
}
static int tegra_dp_clock_recovery_status(struct tegra_dp_priv *dp,
const struct tegra_dp_link_config *cfg)
{
u32 cnt;
u32 n_lanes = cfg->lane_count;
u8 data_ptr;
int ret;
for (cnt = 0; cnt < n_lanes / 2; cnt++) {
ret = tegra_dc_dp_dpcd_read(dp, (DP_LANE0_1_STATUS + cnt),
&data_ptr);
if (ret)
return ret;
if (n_lanes == 1)
return (data_ptr & NV_DPCD_STATUS_LANEX_CR_DONE_YES) ?
1 : 0;
else if (!(data_ptr & NV_DPCD_STATUS_LANEX_CR_DONE_YES) ||
!(data_ptr & (NV_DPCD_STATUS_LANEXPLUS1_CR_DONE_YES)))
return 0;
}
return 1;
}
static int tegra_dp_lt_adjust(struct tegra_dp_priv *dp, u32 pe[4], u32 vs[4],
u32 pc[4], u8 pc_supported,
const struct tegra_dp_link_config *cfg)
{
size_t cnt;
u8 data_ptr;
u32 n_lanes = cfg->lane_count;
int ret;
for (cnt = 0; cnt < n_lanes / 2; cnt++) {
ret = tegra_dc_dp_dpcd_read(dp, DP_ADJUST_REQUEST_LANE0_1 + cnt,
&data_ptr);
if (ret)
return ret;
pe[2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEX_PE_MASK) >>
NV_DPCD_ADJUST_REQ_LANEX_PE_SHIFT;
vs[2 * cnt] = (data_ptr & NV_DPCD_ADJUST_REQ_LANEX_DC_MASK) >>
NV_DPCD_ADJUST_REQ_LANEX_DC_SHIFT;
pe[1 + 2 * cnt] =
(data_ptr & NV_DPCD_ADJUST_REQ_LANEXPLUS1_PE_MASK) >>
NV_DPCD_ADJUST_REQ_LANEXPLUS1_PE_SHIFT;
vs[1 + 2 * cnt] =
(data_ptr & NV_DPCD_ADJUST_REQ_LANEXPLUS1_DC_MASK) >>
NV_DPCD_ADJUST_REQ_LANEXPLUS1_DC_SHIFT;
}
if (pc_supported) {
ret = tegra_dc_dp_dpcd_read(dp, NV_DPCD_ADJUST_REQ_POST_CURSOR2,
&data_ptr);
if (ret)
return ret;
for (cnt = 0; cnt < n_lanes; cnt++) {
pc[cnt] = (data_ptr >>
NV_DPCD_ADJUST_REQ_POST_CURSOR2_LANE_SHIFT(cnt)) &
NV_DPCD_ADJUST_REQ_POST_CURSOR2_LANE_MASK;
}
}
return 0;
}
static void tegra_dp_wait_aux_training(struct tegra_dp_priv *dp,
bool is_clk_recovery,
const struct tegra_dp_link_config *cfg)
{
if (!cfg->aux_rd_interval)
udelay(is_clk_recovery ? 200 : 500);
else
mdelay(cfg->aux_rd_interval * 4);
}
static void tegra_dp_tpg(struct tegra_dp_priv *dp, u32 tp, u32 n_lanes,
const struct tegra_dp_link_config *cfg)
{
u8 data = (tp == training_pattern_disabled)
? (tp | NV_DPCD_TRAINING_PATTERN_SET_SC_DISABLED_F)
: (tp | NV_DPCD_TRAINING_PATTERN_SET_SC_DISABLED_T);
tegra_dc_sor_set_dp_linkctl(dp->sor, 1, tp, cfg);
tegra_dc_dp_dpcd_write(dp, DP_TRAINING_PATTERN_SET, data);
}
static int tegra_dp_link_config(struct tegra_dp_priv *dp,
const struct tegra_dp_link_config *link_cfg)
{
u8 dpcd_data;
u32 retry;
int ret;
if (link_cfg->lane_count == 0) {
debug("dp: error: lane count is 0. Can not set link config.\n");
return -ENOLINK;
}
/* Set power state if it is not in normal level */
ret = tegra_dc_dp_dpcd_read(dp, DP_SET_POWER, &dpcd_data);
if (ret)
return ret;
if (dpcd_data == DP_SET_POWER_D3) {
dpcd_data = DP_SET_POWER_D0;
/* DP spec requires 3 retries */
for (retry = 3; retry > 0; --retry) {
ret = tegra_dc_dp_dpcd_write(dp, DP_SET_POWER,
dpcd_data);
if (!ret)
break;
if (retry == 1) {
debug("dp: Failed to set DP panel power\n");
return ret;
}
}
}
/* Enable ASSR if possible */
if (link_cfg->alt_scramber_reset_cap) {
ret = tegra_dc_dp_set_assr(dp, dp->sor, 1);
if (ret)
return ret;
}
ret = tegra_dp_set_link_bandwidth(dp, dp->sor, link_cfg->link_bw);
if (ret) {
debug("dp: Failed to set link bandwidth\n");
return ret;
}
ret = tegra_dp_set_lane_count(dp, link_cfg, dp->sor);
if (ret) {
debug("dp: Failed to set lane count\n");
return ret;
}
tegra_dc_sor_set_dp_linkctl(dp->sor, 1, training_pattern_none,
link_cfg);
return 0;
}
static int tegra_dp_lower_link_config(struct tegra_dp_priv *dp,
const struct display_timing *timing,
struct tegra_dp_link_config *cfg)
{
struct tegra_dp_link_config tmp_cfg;
int ret;
tmp_cfg = *cfg;
cfg->is_valid = 0;
ret = _tegra_dp_lower_link_config(dp, cfg);
if (!ret)
ret = tegra_dc_dp_calc_config(dp, timing, cfg);
if (!ret)
ret = tegra_dp_link_config(dp, cfg);
if (ret)
goto fail;
return 0;
fail:
*cfg = tmp_cfg;
tegra_dp_link_config(dp, &tmp_cfg);
return ret;
}
static int tegra_dp_lt_config(struct tegra_dp_priv *dp, u32 pe[4], u32 vs[4],
u32 pc[4], const struct tegra_dp_link_config *cfg)
{
struct udevice *sor = dp->sor;
u32 n_lanes = cfg->lane_count;
u8 pc_supported = cfg->tps3_supported;
u32 cnt;
u32 val;
for (cnt = 0; cnt < n_lanes; cnt++) {
u32 mask = 0;
u32 pe_reg, vs_reg, pc_reg;
u32 shift = 0;
switch (cnt) {
case 0:
mask = PR_LANE2_DP_LANE0_MASK;
shift = PR_LANE2_DP_LANE0_SHIFT;
break;
case 1:
mask = PR_LANE1_DP_LANE1_MASK;
shift = PR_LANE1_DP_LANE1_SHIFT;
break;
case 2:
mask = PR_LANE0_DP_LANE2_MASK;
shift = PR_LANE0_DP_LANE2_SHIFT;
break;
case 3:
mask = PR_LANE3_DP_LANE3_MASK;
shift = PR_LANE3_DP_LANE3_SHIFT;
break;
default:
debug("dp: incorrect lane cnt\n");
return -EINVAL;
}
pe_reg = tegra_dp_pe_regs[pc[cnt]][vs[cnt]][pe[cnt]];
vs_reg = tegra_dp_vs_regs[pc[cnt]][vs[cnt]][pe[cnt]];
pc_reg = tegra_dp_pc_regs[pc[cnt]][vs[cnt]][pe[cnt]];
tegra_dp_set_pe_vs_pc(sor, mask, pe_reg << shift,
vs_reg << shift, pc_reg << shift,
pc_supported);
}
tegra_dp_disable_tx_pu(dp->sor);
udelay(20);
for (cnt = 0; cnt < n_lanes; cnt++) {
u32 max_vs_flag = tegra_dp_is_max_vs(pe[cnt], vs[cnt]);
u32 max_pe_flag = tegra_dp_is_max_pe(pe[cnt], vs[cnt]);
val = (vs[cnt] << NV_DPCD_TRAINING_LANEX_SET_DC_SHIFT) |
(max_vs_flag ?
NV_DPCD_TRAINING_LANEX_SET_DC_MAX_REACHED_T :
NV_DPCD_TRAINING_LANEX_SET_DC_MAX_REACHED_F) |
(pe[cnt] << NV_DPCD_TRAINING_LANEX_SET_PE_SHIFT) |
(max_pe_flag ?
NV_DPCD_TRAINING_LANEX_SET_PE_MAX_REACHED_T :
NV_DPCD_TRAINING_LANEX_SET_PE_MAX_REACHED_F);
tegra_dc_dp_dpcd_write(dp, (DP_TRAINING_LANE0_SET + cnt), val);
}
if (pc_supported) {
for (cnt = 0; cnt < n_lanes / 2; cnt++) {
u32 max_pc_flag0 = tegra_dp_is_max_pc(pc[cnt]);
u32 max_pc_flag1 = tegra_dp_is_max_pc(pc[cnt + 1]);
val = (pc[cnt] << NV_DPCD_LANEX_SET2_PC2_SHIFT) |
(max_pc_flag0 ?
NV_DPCD_LANEX_SET2_PC2_MAX_REACHED_T :
NV_DPCD_LANEX_SET2_PC2_MAX_REACHED_F) |
(pc[cnt + 1] <<
NV_DPCD_LANEXPLUS1_SET2_PC2_SHIFT) |
(max_pc_flag1 ?
NV_DPCD_LANEXPLUS1_SET2_PC2_MAX_REACHED_T :
NV_DPCD_LANEXPLUS1_SET2_PC2_MAX_REACHED_F);
tegra_dc_dp_dpcd_write(dp,
NV_DPCD_TRAINING_LANE0_1_SET2 +
cnt, val);
}
}
return 0;
}
static int _tegra_dp_channel_eq(struct tegra_dp_priv *dp, u32 pe[4],
u32 vs[4], u32 pc[4], u8 pc_supported,
u32 n_lanes,
const struct tegra_dp_link_config *cfg)
{
u32 retry_cnt;
for (retry_cnt = 0; retry_cnt < 4; retry_cnt++) {
int ret;
if (retry_cnt) {
ret = tegra_dp_lt_adjust(dp, pe, vs, pc, pc_supported,
cfg);
if (ret)
return ret;
tegra_dp_lt_config(dp, pe, vs, pc, cfg);
}
tegra_dp_wait_aux_training(dp, false, cfg);
if (!tegra_dp_clock_recovery_status(dp, cfg)) {
debug("dp: CR failed in channel EQ sequence!\n");
break;
}
if (!tegra_dp_channel_eq_status(dp, cfg))
return 0;
}
return -EIO;
}
static int tegra_dp_channel_eq(struct tegra_dp_priv *dp, u32 pe[4], u32 vs[4],
u32 pc[4],
const struct tegra_dp_link_config *cfg)
{
u32 n_lanes = cfg->lane_count;
u8 pc_supported = cfg->tps3_supported;
int ret;
u32 tp_src = training_pattern_2;
if (pc_supported)
tp_src = training_pattern_3;
tegra_dp_tpg(dp, tp_src, n_lanes, cfg);
ret = _tegra_dp_channel_eq(dp, pe, vs, pc, pc_supported, n_lanes, cfg);
tegra_dp_tpg(dp, training_pattern_disabled, n_lanes, cfg);
return ret;
}
static int _tegra_dp_clk_recovery(struct tegra_dp_priv *dp, u32 pe[4],
u32 vs[4], u32 pc[4], u8 pc_supported,
u32 n_lanes,
const struct tegra_dp_link_config *cfg)
{
u32 vs_temp[4];
u32 retry_cnt = 0;
do {
tegra_dp_lt_config(dp, pe, vs, pc, cfg);
tegra_dp_wait_aux_training(dp, true, cfg);
if (tegra_dp_clock_recovery_status(dp, cfg))
return 0;
memcpy(vs_temp, vs, sizeof(vs_temp));
tegra_dp_lt_adjust(dp, pe, vs, pc, pc_supported, cfg);
if (memcmp(vs_temp, vs, sizeof(vs_temp)))
retry_cnt = 0;
else
++retry_cnt;
} while (retry_cnt < 5);
return -EIO;
}
static int tegra_dp_clk_recovery(struct tegra_dp_priv *dp, u32 pe[4],
u32 vs[4], u32 pc[4],
const struct tegra_dp_link_config *cfg)
{
u32 n_lanes = cfg->lane_count;
u8 pc_supported = cfg->tps3_supported;
int err;
tegra_dp_tpg(dp, training_pattern_1, n_lanes, cfg);
err = _tegra_dp_clk_recovery(dp, pe, vs, pc, pc_supported, n_lanes,
cfg);
if (err < 0)
tegra_dp_tpg(dp, training_pattern_disabled, n_lanes, cfg);
return err;
}
static int tegra_dc_dp_full_link_training(struct tegra_dp_priv *dp,
const struct display_timing *timing,
struct tegra_dp_link_config *cfg)
{
struct udevice *sor = dp->sor;
int err;
u32 pe[4], vs[4], pc[4];
tegra_sor_precharge_lanes(sor, cfg);
retry_cr:
memset(pe, PREEMPHASIS_DISABLED, sizeof(pe));
memset(vs, DRIVECURRENT_LEVEL0, sizeof(vs));
memset(pc, POSTCURSOR2_LEVEL0, sizeof(pc));
err = tegra_dp_clk_recovery(dp, pe, vs, pc, cfg);
if (err) {
if (!tegra_dp_lower_link_config(dp, timing, cfg))
goto retry_cr;
debug("dp: clk recovery failed\n");
goto fail;
}
err = tegra_dp_channel_eq(dp, pe, vs, pc, cfg);
if (err) {
if (!tegra_dp_lower_link_config(dp, timing, cfg))
goto retry_cr;
debug("dp: channel equalization failed\n");
goto fail;
}
#ifdef DEBUG
tegra_dc_dp_dump_link_cfg(dp, cfg);
#endif
return 0;
fail:
return err;
}
/*
* All link training functions are ported from kernel dc driver.
* See more details at drivers/video/tegra/dc/dp.c
*/
static int tegra_dc_dp_fast_link_training(struct tegra_dp_priv *dp,
const struct tegra_dp_link_config *link_cfg,
struct udevice *sor)
{
u8 link_bw;
u8 lane_count;
u16 data16;
u32 data32;
u32 size;
u32 status;
int j;
u32 mask = 0xffff >> ((4 - link_cfg->lane_count) * 4);
tegra_dc_sor_set_lane_parm(sor, link_cfg);
tegra_dc_dp_dpcd_write(dp, DP_MAIN_LINK_CHANNEL_CODING_SET,
DP_SET_ANSI_8B10B);
/* Send TP1 */
tegra_dc_sor_set_dp_linkctl(sor, 1, training_pattern_1, link_cfg);
tegra_dc_dp_dpcd_write(dp, DP_TRAINING_PATTERN_SET,
DP_TRAINING_PATTERN_1);
for (j = 0; j < link_cfg->lane_count; ++j)
tegra_dc_dp_dpcd_write(dp, DP_TRAINING_LANE0_SET + j, 0x24);
udelay(520);
size = sizeof(data16);
tegra_dc_dpaux_read(dp, DPAUX_DP_AUXCTL_CMD_AUXRD,
DP_LANE0_1_STATUS, (u8 *)&data16, &size, &status);
status = mask & 0x1111;
if ((data16 & status) != status) {
debug("dp: Link training error for TP1 (%#x, status %#x)\n",
data16, status);
return -EFAULT;
}
/* enable ASSR */
tegra_dc_dp_set_assr(dp, sor, link_cfg->scramble_ena);
tegra_dc_sor_set_dp_linkctl(sor, 1, training_pattern_3, link_cfg);
tegra_dc_dp_dpcd_write(dp, DP_TRAINING_PATTERN_SET,
link_cfg->link_bw == 20 ? 0x23 : 0x22);
for (j = 0; j < link_cfg->lane_count; ++j)
tegra_dc_dp_dpcd_write(dp, DP_TRAINING_LANE0_SET + j, 0x24);
udelay(520);
size = sizeof(data32);
tegra_dc_dpaux_read(dp, DPAUX_DP_AUXCTL_CMD_AUXRD, DP_LANE0_1_STATUS,
(u8 *)&data32, &size, &status);
if ((data32 & mask) != (0x7777 & mask)) {
debug("dp: Link training error for TP2/3 (0x%x)\n", data32);
return -EFAULT;
}
tegra_dc_sor_set_dp_linkctl(sor, 1, training_pattern_disabled,
link_cfg);
tegra_dc_dp_dpcd_write(dp, DP_TRAINING_PATTERN_SET, 0);
if (tegra_dc_dp_link_trained(dp, link_cfg)) {
tegra_dc_sor_read_link_config(sor, &link_bw, &lane_count);
debug("Fast link training failed, link bw %d, lane # %d\n",
link_bw, lane_count);
return -EFAULT;
}
debug("Fast link training succeeded, link bw %d, lane %d\n",
link_cfg->link_bw, link_cfg->lane_count);
return 0;
}
static int tegra_dp_do_link_training(struct tegra_dp_priv *dp,
struct tegra_dp_link_config *link_cfg,
const struct display_timing *timing,
struct udevice *sor)
{
u8 link_bw;
u8 lane_count;
int ret;
if (DO_FAST_LINK_TRAINING) {
ret = tegra_dc_dp_fast_link_training(dp, link_cfg, sor);
if (ret) {
debug("dp: fast link training failed\n");
} else {
/*
* set to a known-good drive setting if fast link
* succeeded. Ignore any error.
*/
ret = tegra_dc_sor_set_voltage_swing(dp->sor, link_cfg);
if (ret)
debug("Failed to set voltage swing\n");
}
} else {
ret = -ENOSYS;
}
if (ret) {
/* Try full link training then */
ret = tegra_dc_dp_full_link_training(dp, timing, link_cfg);
if (ret) {
debug("dp: full link training failed\n");
return ret;
}
}
/* Everything is good; double check the link config */
tegra_dc_sor_read_link_config(sor, &link_bw, &lane_count);
if ((link_cfg->link_bw == link_bw) &&
(link_cfg->lane_count == lane_count))
return 0;
else
return -EFAULT;
}
static int tegra_dc_dp_explore_link_cfg(struct tegra_dp_priv *dp,
struct tegra_dp_link_config *link_cfg,
struct udevice *sor,
const struct display_timing *timing)
{
struct tegra_dp_link_config temp_cfg;
if (!timing->pixelclock.typ || !timing->hactive.typ ||
!timing->vactive.typ) {
debug("dp: error mode configuration");
return -EINVAL;
}
if (!link_cfg->max_link_bw || !link_cfg->max_lane_count) {
debug("dp: error link configuration");
return -EINVAL;
}
link_cfg->is_valid = 0;
memcpy(&temp_cfg, link_cfg, sizeof(temp_cfg));
temp_cfg.link_bw = temp_cfg.max_link_bw;
temp_cfg.lane_count = temp_cfg.max_lane_count;
/*
* set to max link config
*/
if ((!tegra_dc_dp_calc_config(dp, timing, &temp_cfg)) &&
(!tegra_dp_link_config(dp, &temp_cfg)) &&
(!tegra_dp_do_link_training(dp, &temp_cfg, timing, sor)))
/* the max link cfg is doable */
memcpy(link_cfg, &temp_cfg, sizeof(temp_cfg));
return link_cfg->is_valid ? 0 : -EFAULT;
}
static int tegra_dp_hpd_plug(struct tegra_dp_priv *dp)
{
const int vdd_to_hpd_delay_ms = 200;
u32 val;
ulong start;
start = get_timer(0);
do {
val = tegra_dpaux_readl(dp, DPAUX_DP_AUXSTAT);
if (val & DPAUX_DP_AUXSTAT_HPD_STATUS_PLUGGED)
return 0;
udelay(100);
} while (get_timer(start) < vdd_to_hpd_delay_ms);
return -EIO;
}
static int tegra_dc_dp_sink_out_of_sync(struct tegra_dp_priv *dp, u32 delay_ms)
{
u8 dpcd_data;
int out_of_sync;
int ret;
debug("%s: delay=%d\n", __func__, delay_ms);
mdelay(delay_ms);
ret = tegra_dc_dp_dpcd_read(dp, DP_SINK_STATUS, &dpcd_data);
if (ret)
return ret;
out_of_sync = !(dpcd_data & DP_SINK_STATUS_PORT0_IN_SYNC);
if (out_of_sync)
debug("SINK receive port 0 out of sync, data=%x\n", dpcd_data);
else
debug("SINK is in synchronization\n");
return out_of_sync;
}
static int tegra_dc_dp_check_sink(struct tegra_dp_priv *dp,
struct tegra_dp_link_config *link_cfg,
const struct display_timing *timing)
{
const int max_retry = 5;
int delay_frame;
int retries;
/*
* DP TCON may skip some main stream frames, thus we need to wait
* some delay before reading the DPCD SINK STATUS register, starting
* from 5
*/
delay_frame = 5;
retries = max_retry;
do {
int ret;
if (!tegra_dc_dp_sink_out_of_sync(dp, link_cfg->frame_in_ms *
delay_frame))
return 0;
debug("%s: retries left %d\n", __func__, retries);
if (!retries--) {
printf("DP: Out of sync after %d retries\n", max_retry);
return -EIO;
}
ret = tegra_dc_sor_detach(dp->dc_dev, dp->sor);
if (ret)
return ret;
if (tegra_dc_dp_explore_link_cfg(dp, link_cfg, dp->sor,
timing)) {
debug("dp: %s: error to configure link\n", __func__);
continue;
}
tegra_dc_sor_set_power_state(dp->sor, 1);
tegra_dc_sor_attach(dp->dc_dev, dp->sor, link_cfg, timing);
/* Increase delay_frame for next try in case the sink is
skipping more frames */
delay_frame += 10;
} while (1);
}
int tegra_dp_enable(struct udevice *dev, int panel_bpp,
const struct display_timing *timing)
{
struct tegra_dp_priv *priv = dev_get_priv(dev);
struct tegra_dp_link_config slink_cfg, *link_cfg = &slink_cfg;
struct udevice *sor;
int data;
int retry;
int ret;
memset(link_cfg, '\0', sizeof(*link_cfg));
link_cfg->is_valid = 0;
link_cfg->scramble_ena = 1;
tegra_dc_dpaux_enable(priv);
if (tegra_dp_hpd_plug(priv) < 0) {
debug("dp: hpd plug failed\n");
return -EIO;
}
link_cfg->bits_per_pixel = panel_bpp;
if (tegra_dc_dp_init_max_link_cfg(timing, priv, link_cfg)) {
debug("dp: failed to init link configuration\n");
return -ENOLINK;
}
ret = uclass_first_device_err(UCLASS_VIDEO_BRIDGE, &sor);
if (ret) {
debug("dp: failed to find SOR device: ret=%d\n", ret);
return ret;
}
priv->sor = sor;
ret = tegra_dc_sor_enable_dp(sor, link_cfg);
if (ret)
return ret;
tegra_dc_sor_set_panel_power(sor, 1);
/* Write power on to DPCD */
data = DP_SET_POWER_D0;
retry = 0;
do {
ret = tegra_dc_dp_dpcd_write(priv, DP_SET_POWER, data);
} while ((retry++ < DP_POWER_ON_MAX_TRIES) && ret);
if (ret || retry >= DP_POWER_ON_MAX_TRIES) {
debug("dp: failed to power on panel (0x%x)\n", ret);
return -ENETUNREACH;
goto error_enable;
}
/* Confirm DP plugging status */
if (!(tegra_dpaux_readl(priv, DPAUX_DP_AUXSTAT) &
DPAUX_DP_AUXSTAT_HPD_STATUS_PLUGGED)) {
debug("dp: could not detect HPD\n");
return -ENXIO;
}
/* Check DP version */
if (tegra_dc_dp_dpcd_read(priv, DP_DPCD_REV, &priv->revision)) {
debug("dp: failed to read the revision number from sink\n");
return -EIO;
}
if (tegra_dc_dp_explore_link_cfg(priv, link_cfg, sor, timing)) {
debug("dp: error configuring link\n");
return -ENOMEDIUM;
}
tegra_dc_sor_set_power_state(sor, 1);
ret = tegra_dc_sor_attach(priv->dc_dev, sor, link_cfg, timing);
if (ret && ret != -EEXIST)
return ret;
/*
* This takes a long time, but can apparently resolve a failure to
* bring up the display correctly.
*/
if (0) {
ret = tegra_dc_dp_check_sink(priv, link_cfg, timing);
if (ret)
return ret;
}
/* Power down the unused lanes to save power - a few hundred mW */
tegra_dc_sor_power_down_unused_lanes(sor, link_cfg);
ret = video_bridge_set_backlight(sor, 80);
if (ret) {
debug("dp: failed to set backlight\n");
return ret;
}
priv->enabled = true;
error_enable:
return 0;
}
static int tegra_dp_of_to_plat(struct udevice *dev)
{
struct tegra_dp_plat *plat = dev_get_plat(dev);
plat->base = dev_read_addr(dev);
return 0;
}
static int tegra_dp_read_edid(struct udevice *dev, u8 *buf, int buf_size)
{
struct tegra_dp_priv *priv = dev_get_priv(dev);
const int tegra_edid_i2c_address = 0x50;
u32 aux_stat = 0;
tegra_dc_dpaux_enable(priv);
return tegra_dc_i2c_aux_read(priv, tegra_edid_i2c_address, 0, buf,
buf_size, &aux_stat);
}
static const struct dm_display_ops dp_tegra_ops = {
.read_edid = tegra_dp_read_edid,
.enable = tegra_dp_enable,
};
static int dp_tegra_probe(struct udevice *dev)
{
struct tegra_dp_plat *plat = dev_get_plat(dev);
struct tegra_dp_priv *priv = dev_get_priv(dev);
struct display_plat *disp_uc_plat = dev_get_uclass_plat(dev);
priv->regs = (struct dpaux_ctlr *)plat->base;
priv->enabled = false;
/* Remember the display controller that is sending us video */
priv->dc_dev = disp_uc_plat->src_dev;
return 0;
}
static const struct udevice_id tegra_dp_ids[] = {
{ .compatible = "nvidia,tegra124-dpaux" },
{ .compatible = "nvidia,tegra210-dpaux" },
{ }
};
U_BOOT_DRIVER(dp_tegra) = {
.name = "dpaux_tegra",
.id = UCLASS_DISPLAY,
.of_match = tegra_dp_ids,
.of_to_plat = tegra_dp_of_to_plat,
.probe = dp_tegra_probe,
.ops = &dp_tegra_ops,
.priv_auto = sizeof(struct tegra_dp_priv),
.plat_auto = sizeof(struct tegra_dp_plat),
};