blob: e19c491cbce7c00d3f429f9b7d009172bd0b66b5 [file] [log] [blame]
/*------------------------------------------------------------------------
. smc91111.h - macros for the LAN91C111 Ethernet Driver
.
. (C) Copyright 2002
. Sysgo Real-Time Solutions, GmbH <www.elinos.com>
. Rolf Offermanns <rof@sysgo.de>
. Copyright (C) 2001 Standard Microsystems Corporation (SMSC)
. Developed by Simple Network Magic Corporation (SNMC)
. Copyright (C) 1996 by Erik Stahlman (ES)
.
* SPDX-License-Identifier: GPL-2.0+
.
. This file contains register information and access macros for
. the LAN91C111 single chip ethernet controller. It is a modified
. version of the smc9194.h file.
.
. Information contained in this file was obtained from the LAN91C111
. manual from SMC. To get a copy, if you really want one, you can find
. information under www.smsc.com.
.
. Authors
. Erik Stahlman ( erik@vt.edu )
. Daris A Nevil ( dnevil@snmc.com )
.
. History
. 03/16/01 Daris A Nevil Modified for use with LAN91C111 device
.
---------------------------------------------------------------------------*/
#ifndef _SMC91111_H_
#define _SMC91111_H_
#include <asm/types.h>
#include <config.h>
/*
* This function may be called by the board specific initialisation code
* in order to override the default mac address.
*/
void smc_set_mac_addr (const unsigned char *addr);
/* I want some simple types */
typedef unsigned char byte;
typedef unsigned short word;
typedef unsigned long int dword;
struct smc91111_priv{
u8 dev_num;
};
/*
. DEBUGGING LEVELS
.
. 0 for normal operation
. 1 for slightly more details
. >2 for various levels of increasingly useless information
. 2 for interrupt tracking, status flags
. 3 for packet info
. 4 for complete packet dumps
*/
/*#define SMC_DEBUG 0 */
/* Because of bank switching, the LAN91xxx uses only 16 I/O ports */
#define SMC_IO_EXTENT 16
#ifdef CONFIG_CPU_PXA25X
#ifdef CONFIG_XSENGINE
#define SMC_inl(a,r) (*((volatile dword *)((a)->iobase+((r)<<1))))
#define SMC_inw(a,r) (*((volatile word *)((a)->iobase+((r)<<1))))
#define SMC_inb(a,p) ({ \
unsigned int __p = (unsigned int)((a)->iobase + ((p)<<1)); \
unsigned int __v = *(volatile unsigned short *)((__p) & ~2); \
if (__p & 2) __v >>= 8; \
else __v &= 0xff; \
__v; })
#elif defined(CONFIG_XAENIAX)
#define SMC_inl(a,r) (*((volatile dword *)((a)->iobase+(r))))
#define SMC_inw(a,z) ({ \
unsigned int __p = (unsigned int)((a)->iobase + (z)); \
unsigned int __v = *(volatile unsigned int *)((__p) & ~3); \
if (__p & 3) __v >>= 16; \
else __v &= 0xffff; \
__v; })
#define SMC_inb(a,p) ({ \
unsigned int ___v = SMC_inw((a),(p) & ~1); \
if ((p) & 1) ___v >>= 8; \
else ___v &= 0xff; \
___v; })
#else
#define SMC_inl(a,r) (*((volatile dword *)((a)->iobase+(r))))
#define SMC_inw(a,r) (*((volatile word *)((a)->iobase+(r))))
#define SMC_inb(a,p) ({ \
unsigned int __p = (unsigned int)((a)->iobase + (p)); \
unsigned int __v = *(volatile unsigned short *)((__p) & ~1); \
if (__p & 1) __v >>= 8; \
else __v &= 0xff; \
__v; })
#endif
#ifdef CONFIG_XSENGINE
#define SMC_outl(a,d,r) (*((volatile dword *)((a)->iobase+(r<<1))) = d)
#define SMC_outw(a,d,r) (*((volatile word *)((a)->iobase+(r<<1))) = d)
#elif defined (CONFIG_XAENIAX)
#define SMC_outl(a,d,r) (*((volatile dword *)((a)->iobase+(r))) = d)
#define SMC_outw(a,d,p) ({ \
dword __dwo = SMC_inl((a),(p) & ~3); \
dword __dwn = (word)(d); \
__dwo &= ((p) & 3) ? 0x0000ffff : 0xffff0000; \
__dwo |= ((p) & 3) ? __dwn << 16 : __dwn; \
SMC_outl((a), __dwo, (p) & ~3); \
})
#else
#define SMC_outl(a,d,r) (*((volatile dword *)((a)->iobase+(r))) = d)
#define SMC_outw(a,d,r) (*((volatile word *)((a)->iobase+(r))) = d)
#endif
#define SMC_outb(a,d,r) ({ word __d = (byte)(d); \
word __w = SMC_inw((a),(r)&~1); \
__w &= ((r)&1) ? 0x00FF : 0xFF00; \
__w |= ((r)&1) ? __d<<8 : __d; \
SMC_outw((a),__w,(r)&~1); \
})
#define SMC_outsl(a,r,b,l) ({ int __i; \
dword *__b2; \
__b2 = (dword *) b; \
for (__i = 0; __i < l; __i++) { \
SMC_outl((a), *(__b2 + __i), r); \
} \
})
#define SMC_outsw(a,r,b,l) ({ int __i; \
word *__b2; \
__b2 = (word *) b; \
for (__i = 0; __i < l; __i++) { \
SMC_outw((a), *(__b2 + __i), r); \
} \
})
#define SMC_insl(a,r,b,l) ({ int __i ; \
dword *__b2; \
__b2 = (dword *) b; \
for (__i = 0; __i < l; __i++) { \
*(__b2 + __i) = SMC_inl((a),(r)); \
SMC_inl((a),0); \
}; \
})
#define SMC_insw(a,r,b,l) ({ int __i ; \
word *__b2; \
__b2 = (word *) b; \
for (__i = 0; __i < l; __i++) { \
*(__b2 + __i) = SMC_inw((a),(r)); \
SMC_inw((a),0); \
}; \
})
#define SMC_insb(a,r,b,l) ({ int __i ; \
byte *__b2; \
__b2 = (byte *) b; \
for (__i = 0; __i < l; __i++) { \
*(__b2 + __i) = SMC_inb((a),(r)); \
SMC_inb((a),0); \
}; \
})
#elif defined(CONFIG_LEON) /* if not CONFIG_CPU_PXA25X */
#define SMC_LEON_SWAP16(_x_) ({ word _x = (_x_); ((_x << 8) | (_x >> 8)); })
#define SMC_LEON_SWAP32(_x_) \
({ dword _x = (_x_); \
((_x << 24) | \
((0x0000FF00UL & _x) << 8) | \
((0x00FF0000UL & _x) >> 8) | \
(_x >> 24)); })
#define SMC_inl(a,r) (SMC_LEON_SWAP32((*(volatile dword *)((a)->iobase+((r)<<0)))))
#define SMC_inl_nosw(a,r) ((*(volatile dword *)((a)->iobase+((r)<<0))))
#define SMC_inw(a,r) (SMC_LEON_SWAP16((*(volatile word *)((a)->iobase+((r)<<0)))))
#define SMC_inw_nosw(a,r) ((*(volatile word *)((a)->iobase+((r)<<0))))
#define SMC_inb(a,p) ({ \
word ___v = SMC_inw((a),(p) & ~1); \
if ((p) & 1) ___v >>= 8; \
else ___v &= 0xff; \
___v; })
#define SMC_outl(a,d,r) (*(volatile dword *)((a)->iobase+((r)<<0))=SMC_LEON_SWAP32(d))
#define SMC_outl_nosw(a,d,r) (*(volatile dword *)((a)->iobase+((r)<<0))=(d))
#define SMC_outw(a,d,r) (*(volatile word *)((a)->iobase+((r)<<0))=SMC_LEON_SWAP16(d))
#define SMC_outw_nosw(a,d,r) (*(volatile word *)((a)->iobase+((r)<<0))=(d))
#define SMC_outb(a,d,r) do{ word __d = (byte)(d); \
word __w = SMC_inw((a),(r)&~1); \
__w &= ((r)&1) ? 0x00FF : 0xFF00; \
__w |= ((r)&1) ? __d<<8 : __d; \
SMC_outw((a),__w,(r)&~1); \
}while(0)
#define SMC_outsl(a,r,b,l) do{ int __i; \
dword *__b2; \
__b2 = (dword *) b; \
for (__i = 0; __i < l; __i++) { \
SMC_outl_nosw((a), *(__b2 + __i), r); \
} \
}while(0)
#define SMC_outsw(a,r,b,l) do{ int __i; \
word *__b2; \
__b2 = (word *) b; \
for (__i = 0; __i < l; __i++) { \
SMC_outw_nosw((a), *(__b2 + __i), r); \
} \
}while(0)
#define SMC_insl(a,r,b,l) do{ int __i ; \
dword *__b2; \
__b2 = (dword *) b; \
for (__i = 0; __i < l; __i++) { \
*(__b2 + __i) = SMC_inl_nosw((a),(r)); \
}; \
}while(0)
#define SMC_insw(a,r,b,l) do{ int __i ; \
word *__b2; \
__b2 = (word *) b; \
for (__i = 0; __i < l; __i++) { \
*(__b2 + __i) = SMC_inw_nosw((a),(r)); \
}; \
}while(0)
#define SMC_insb(a,r,b,l) do{ int __i ; \
byte *__b2; \
__b2 = (byte *) b; \
for (__i = 0; __i < l; __i++) { \
*(__b2 + __i) = SMC_inb((a),(r)); \
}; \
}while(0)
#elif defined(CONFIG_MS7206SE)
#define SWAB7206(x) ({ word __x = x; ((__x << 8)|(__x >> 8)); })
#define SMC_inw(a, r) *((volatile word*)((a)->iobase + (r)))
#define SMC_inb(a, r) (*((volatile byte*)((a)->iobase + ((r) ^ 0x01))))
#define SMC_insw(a, r, b, l) \
do { \
int __i; \
word *__b2 = (word *)(b); \
for (__i = 0; __i < (l); __i++) { \
*__b2++ = SWAB7206(SMC_inw(a, r)); \
} \
} while (0)
#define SMC_outw(a, d, r) (*((volatile word *)((a)->iobase+(r))) = d)
#define SMC_outb(a, d, r) ({ word __d = (byte)(d); \
word __w = SMC_inw((a), ((r)&(~1))); \
if (((r) & 1)) \
__w = (__w & 0x00ff) | (__d << 8); \
else \
__w = (__w & 0xff00) | (__d); \
SMC_outw((a), __w, ((r)&(~1))); \
})
#define SMC_outsw(a, r, b, l) \
do { \
int __i; \
word *__b2 = (word *)(b); \
for (__i = 0; __i < (l); __i++) { \
SMC_outw(a, SWAB7206(*__b2), r); \
__b2++; \
} \
} while (0)
#else /* if not CONFIG_CPU_PXA25X and not CONFIG_LEON */
#ifndef CONFIG_SMC_USE_IOFUNCS /* these macros don't work on some boards */
/*
* We have only 16 Bit PCMCIA access on Socket 0
*/
#ifdef CONFIG_ADNPESC1
#define SMC_inw(a,r) (*((volatile word *)((a)->iobase+((r)<<1))))
#elif CONFIG_BLACKFIN
#define SMC_inw(a,r) ({ word __v = (*((volatile word *)((a)->iobase+(r)))); SSYNC(); __v;})
#elif CONFIG_ARM64
#define SMC_inw(a, r) (*((volatile word*)((a)->iobase+((dword)(r)))))
#else
#define SMC_inw(a, r) (*((volatile word*)((a)->iobase+(r))))
#endif
#define SMC_inb(a,r) (((r)&1) ? SMC_inw((a),(r)&~1)>>8 : SMC_inw((a),(r)&0xFF))
#ifdef CONFIG_ADNPESC1
#define SMC_outw(a,d,r) (*((volatile word *)((a)->iobase+((r)<<1))) = d)
#elif CONFIG_BLACKFIN
#define SMC_outw(a, d, r) \
({ (*((volatile word*)((a)->iobase+((r)))) = d); \
SSYNC(); \
})
#elif CONFIG_ARM64
#define SMC_outw(a, d, r) \
(*((volatile word*)((a)->iobase+((dword)(r)))) = d)
#else
#define SMC_outw(a, d, r) \
(*((volatile word*)((a)->iobase+(r))) = d)
#endif
#define SMC_outb(a,d,r) ({ word __d = (byte)(d); \
word __w = SMC_inw((a),(r)&~1); \
__w &= ((r)&1) ? 0x00FF : 0xFF00; \
__w |= ((r)&1) ? __d<<8 : __d; \
SMC_outw((a),__w,(r)&~1); \
})
#if 0
#define SMC_outsw(a,r,b,l) outsw((a)->iobase+(r), (b), (l))
#else
#define SMC_outsw(a,r,b,l) ({ int __i; \
word *__b2; \
__b2 = (word *) b; \
for (__i = 0; __i < l; __i++) { \
SMC_outw((a), *(__b2 + __i), r); \
} \
})
#endif
#if 0
#define SMC_insw(a,r,b,l) insw((a)->iobase+(r), (b), (l))
#else
#define SMC_insw(a,r,b,l) ({ int __i ; \
word *__b2; \
__b2 = (word *) b; \
for (__i = 0; __i < l; __i++) { \
*(__b2 + __i) = SMC_inw((a),(r)); \
SMC_inw((a),0); \
}; \
})
#endif
#endif /* CONFIG_SMC_USE_IOFUNCS */
#if defined(CONFIG_SMC_USE_32_BIT)
#ifdef CONFIG_XSENGINE
#define SMC_inl(a,r) (*((volatile dword *)((a)->iobase+(r<<1))))
#else
#define SMC_inl(a,r) (*((volatile dword *)((a)->iobase+(r))))
#endif
#define SMC_insl(a,r,b,l) ({ int __i ; \
dword *__b2; \
__b2 = (dword *) b; \
for (__i = 0; __i < l; __i++) { \
*(__b2 + __i) = SMC_inl((a),(r)); \
SMC_inl((a),0); \
}; \
})
#ifdef CONFIG_XSENGINE
#define SMC_outl(a,d,r) (*((volatile dword *)((a)->iobase+(r<<1))) = d)
#else
#define SMC_outl(a,d,r) (*((volatile dword *)((a)->iobase+(r))) = d)
#endif
#define SMC_outsl(a,r,b,l) ({ int __i; \
dword *__b2; \
__b2 = (dword *) b; \
for (__i = 0; __i < l; __i++) { \
SMC_outl((a), *(__b2 + __i), r); \
} \
})
#endif /* CONFIG_SMC_USE_32_BIT */
#endif
/*---------------------------------------------------------------
.
. A description of the SMSC registers is probably in order here,
. although for details, the SMC datasheet is invaluable.
.
. Basically, the chip has 4 banks of registers ( 0 to 3 ), which
. are accessed by writing a number into the BANK_SELECT register
. ( I also use a SMC_SELECT_BANK macro for this ).
.
. The banks are configured so that for most purposes, bank 2 is all
. that is needed for simple run time tasks.
-----------------------------------------------------------------------*/
/*
. Bank Select Register:
.
. yyyy yyyy 0000 00xx
. xx = bank number
. yyyy yyyy = 0x33, for identification purposes.
*/
#define BANK_SELECT 14
/* Transmit Control Register */
/* BANK 0 */
#define TCR_REG 0x0000 /* transmit control register */
#define TCR_ENABLE 0x0001 /* When 1 we can transmit */
#define TCR_LOOP 0x0002 /* Controls output pin LBK */
#define TCR_FORCOL 0x0004 /* When 1 will force a collision */
#define TCR_PAD_EN 0x0080 /* When 1 will pad tx frames < 64 bytes w/0 */
#define TCR_NOCRC 0x0100 /* When 1 will not append CRC to tx frames */
#define TCR_MON_CSN 0x0400 /* When 1 tx monitors carrier */
#define TCR_FDUPLX 0x0800 /* When 1 enables full duplex operation */
#define TCR_STP_SQET 0x1000 /* When 1 stops tx if Signal Quality Error */
#define TCR_EPH_LOOP 0x2000 /* When 1 enables EPH block loopback */
#define TCR_SWFDUP 0x8000 /* When 1 enables Switched Full Duplex mode */
#define TCR_CLEAR 0 /* do NOTHING */
/* the default settings for the TCR register : */
/* QUESTION: do I want to enable padding of short packets ? */
#define TCR_DEFAULT TCR_ENABLE
/* EPH Status Register */
/* BANK 0 */
#define EPH_STATUS_REG 0x0002
#define ES_TX_SUC 0x0001 /* Last TX was successful */
#define ES_SNGL_COL 0x0002 /* Single collision detected for last tx */
#define ES_MUL_COL 0x0004 /* Multiple collisions detected for last tx */
#define ES_LTX_MULT 0x0008 /* Last tx was a multicast */
#define ES_16COL 0x0010 /* 16 Collisions Reached */
#define ES_SQET 0x0020 /* Signal Quality Error Test */
#define ES_LTXBRD 0x0040 /* Last tx was a broadcast */
#define ES_TXDEFR 0x0080 /* Transmit Deferred */
#define ES_LATCOL 0x0200 /* Late collision detected on last tx */
#define ES_LOSTCARR 0x0400 /* Lost Carrier Sense */
#define ES_EXC_DEF 0x0800 /* Excessive Deferral */
#define ES_CTR_ROL 0x1000 /* Counter Roll Over indication */
#define ES_LINK_OK 0x4000 /* Driven by inverted value of nLNK pin */
#define ES_TXUNRN 0x8000 /* Tx Underrun */
/* Receive Control Register */
/* BANK 0 */
#define RCR_REG 0x0004
#define RCR_RX_ABORT 0x0001 /* Set if a rx frame was aborted */
#define RCR_PRMS 0x0002 /* Enable promiscuous mode */
#define RCR_ALMUL 0x0004 /* When set accepts all multicast frames */
#define RCR_RXEN 0x0100 /* IFF this is set, we can receive packets */
#define RCR_STRIP_CRC 0x0200 /* When set strips CRC from rx packets */
#define RCR_ABORT_ENB 0x0200 /* When set will abort rx on collision */
#define RCR_FILT_CAR 0x0400 /* When set filters leading 12 bit s of carrier */
#define RCR_SOFTRST 0x8000 /* resets the chip */
/* the normal settings for the RCR register : */
#define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
#define RCR_CLEAR 0x0 /* set it to a base state */
/* Counter Register */
/* BANK 0 */
#define COUNTER_REG 0x0006
/* Memory Information Register */
/* BANK 0 */
#define MIR_REG 0x0008
/* Receive/Phy Control Register */
/* BANK 0 */
#define RPC_REG 0x000A
#define RPC_SPEED 0x2000 /* When 1 PHY is in 100Mbps mode. */
#define RPC_DPLX 0x1000 /* When 1 PHY is in Full-Duplex Mode */
#define RPC_ANEG 0x0800 /* When 1 PHY is in Auto-Negotiate Mode */
#define RPC_LSXA_SHFT 5 /* Bits to shift LS2A,LS1A,LS0A to lsb */
#define RPC_LSXB_SHFT 2 /* Bits to get LS2B,LS1B,LS0B to lsb */
#define RPC_LED_100_10 (0x00) /* LED = 100Mbps OR's with 10Mbps link detect */
#define RPC_LED_RES (0x01) /* LED = Reserved */
#define RPC_LED_10 (0x02) /* LED = 10Mbps link detect */
#define RPC_LED_FD (0x03) /* LED = Full Duplex Mode */
#define RPC_LED_TX_RX (0x04) /* LED = TX or RX packet occurred */
#define RPC_LED_100 (0x05) /* LED = 100Mbps link dectect */
#define RPC_LED_TX (0x06) /* LED = TX packet occurred */
#define RPC_LED_RX (0x07) /* LED = RX packet occurred */
#if defined(CONFIG_DK1C20) || defined(CONFIG_DK1S10)
/* buggy schematic: LEDa -> yellow, LEDb --> green */
#define RPC_DEFAULT ( RPC_SPEED | RPC_DPLX | RPC_ANEG \
| (RPC_LED_TX_RX << RPC_LSXA_SHFT) \
| (RPC_LED_100_10 << RPC_LSXB_SHFT) )
#elif defined(CONFIG_ADNPESC1)
/* SSV ADNP/ESC1 has only one LED: LEDa -> Rx/Tx indicator */
#define RPC_DEFAULT ( RPC_SPEED | RPC_DPLX | RPC_ANEG \
| (RPC_LED_TX_RX << RPC_LSXA_SHFT) \
| (RPC_LED_100_10 << RPC_LSXB_SHFT) )
#else
/* SMSC reference design: LEDa --> green, LEDb --> yellow */
#define RPC_DEFAULT ( RPC_SPEED | RPC_DPLX | RPC_ANEG \
| (RPC_LED_100_10 << RPC_LSXA_SHFT) \
| (RPC_LED_TX_RX << RPC_LSXB_SHFT) )
#endif
/* Bank 0 0x000C is reserved */
/* Bank Select Register */
/* All Banks */
#define BSR_REG 0x000E
/* Configuration Reg */
/* BANK 1 */
#define CONFIG_REG 0x0000
#define CONFIG_EXT_PHY 0x0200 /* 1=external MII, 0=internal Phy */
#define CONFIG_GPCNTRL 0x0400 /* Inverse value drives pin nCNTRL */
#define CONFIG_NO_WAIT 0x1000 /* When 1 no extra wait states on ISA bus */
#define CONFIG_EPH_POWER_EN 0x8000 /* When 0 EPH is placed into low power mode. */
/* Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low */
#define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
/* Base Address Register */
/* BANK 1 */
#define BASE_REG 0x0002
/* Individual Address Registers */
/* BANK 1 */
#define ADDR0_REG 0x0004
#define ADDR1_REG 0x0006
#define ADDR2_REG 0x0008
/* General Purpose Register */
/* BANK 1 */
#define GP_REG 0x000A
/* Control Register */
/* BANK 1 */
#define CTL_REG 0x000C
#define CTL_RCV_BAD 0x4000 /* When 1 bad CRC packets are received */
#define CTL_AUTO_RELEASE 0x0800 /* When 1 tx pages are released automatically */
#define CTL_LE_ENABLE 0x0080 /* When 1 enables Link Error interrupt */
#define CTL_CR_ENABLE 0x0040 /* When 1 enables Counter Rollover interrupt */
#define CTL_TE_ENABLE 0x0020 /* When 1 enables Transmit Error interrupt */
#define CTL_EEPROM_SELECT 0x0004 /* Controls EEPROM reload & store */
#define CTL_RELOAD 0x0002 /* When set reads EEPROM into registers */
#define CTL_STORE 0x0001 /* When set stores registers into EEPROM */
#define CTL_DEFAULT (0x1A10) /* Autorelease enabled*/
/* MMU Command Register */
/* BANK 2 */
#define MMU_CMD_REG 0x0000
#define MC_BUSY 1 /* When 1 the last release has not completed */
#define MC_NOP (0<<5) /* No Op */
#define MC_ALLOC (1<<5) /* OR with number of 256 byte packets */
#define MC_RESET (2<<5) /* Reset MMU to initial state */
#define MC_REMOVE (3<<5) /* Remove the current rx packet */
#define MC_RELEASE (4<<5) /* Remove and release the current rx packet */
#define MC_FREEPKT (5<<5) /* Release packet in PNR register */
#define MC_ENQUEUE (6<<5) /* Enqueue the packet for transmit */
#define MC_RSTTXFIFO (7<<5) /* Reset the TX FIFOs */
/* Packet Number Register */
/* BANK 2 */
#define PN_REG 0x0002
/* Allocation Result Register */
/* BANK 2 */
#define AR_REG 0x0003
#define AR_FAILED 0x80 /* Alocation Failed */
/* RX FIFO Ports Register */
/* BANK 2 */
#define RXFIFO_REG 0x0004 /* Must be read as a word */
#define RXFIFO_REMPTY 0x8000 /* RX FIFO Empty */
/* TX FIFO Ports Register */
/* BANK 2 */
#define TXFIFO_REG RXFIFO_REG /* Must be read as a word */
#define TXFIFO_TEMPTY 0x80 /* TX FIFO Empty */
/* Pointer Register */
/* BANK 2 */
#define PTR_REG 0x0006
#define PTR_RCV 0x8000 /* 1=Receive area, 0=Transmit area */
#define PTR_AUTOINC 0x4000 /* Auto increment the pointer on each access */
#define PTR_READ 0x2000 /* When 1 the operation is a read */
#define PTR_NOTEMPTY 0x0800 /* When 1 _do not_ write fifo DATA REG */
/* Data Register */
/* BANK 2 */
#define SMC91111_DATA_REG 0x0008
/* Interrupt Status/Acknowledge Register */
/* BANK 2 */
#define SMC91111_INT_REG 0x000C
/* Interrupt Mask Register */
/* BANK 2 */
#define IM_REG 0x000D
#define IM_MDINT 0x80 /* PHY MI Register 18 Interrupt */
#define IM_ERCV_INT 0x40 /* Early Receive Interrupt */
#define IM_EPH_INT 0x20 /* Set by Etheret Protocol Handler section */
#define IM_RX_OVRN_INT 0x10 /* Set by Receiver Overruns */
#define IM_ALLOC_INT 0x08 /* Set when allocation request is completed */
#define IM_TX_EMPTY_INT 0x04 /* Set if the TX FIFO goes empty */
#define IM_TX_INT 0x02 /* Transmit Interrrupt */
#define IM_RCV_INT 0x01 /* Receive Interrupt */
/* Multicast Table Registers */
/* BANK 3 */
#define MCAST_REG1 0x0000
#define MCAST_REG2 0x0002
#define MCAST_REG3 0x0004
#define MCAST_REG4 0x0006
/* Management Interface Register (MII) */
/* BANK 3 */
#define MII_REG 0x0008
#define MII_MSK_CRS100 0x4000 /* Disables CRS100 detection during tx half dup */
#define MII_MDOE 0x0008 /* MII Output Enable */
#define MII_MCLK 0x0004 /* MII Clock, pin MDCLK */
#define MII_MDI 0x0002 /* MII Input, pin MDI */
#define MII_MDO 0x0001 /* MII Output, pin MDO */
/* Revision Register */
/* BANK 3 */
#define REV_REG 0x000A /* ( hi: chip id low: rev # ) */
/* Early RCV Register */
/* BANK 3 */
/* this is NOT on SMC9192 */
#define ERCV_REG 0x000C
#define ERCV_RCV_DISCRD 0x0080 /* When 1 discards a packet being received */
#define ERCV_THRESHOLD 0x001F /* ERCV Threshold Mask */
/* External Register */
/* BANK 7 */
#define EXT_REG 0x0000
#define CHIP_9192 3
#define CHIP_9194 4
#define CHIP_9195 5
#define CHIP_9196 6
#define CHIP_91100 7
#define CHIP_91100FD 8
#define CHIP_91111FD 9
#if 0
static const char * chip_ids[ 15 ] = {
NULL, NULL, NULL,
/* 3 */ "SMC91C90/91C92",
/* 4 */ "SMC91C94",
/* 5 */ "SMC91C95",
/* 6 */ "SMC91C96",
/* 7 */ "SMC91C100",
/* 8 */ "SMC91C100FD",
/* 9 */ "SMC91C111",
NULL, NULL,
NULL, NULL, NULL};
#endif
/*
. Transmit status bits
*/
#define TS_SUCCESS 0x0001
#define TS_LOSTCAR 0x0400
#define TS_LATCOL 0x0200
#define TS_16COL 0x0010
/*
. Receive status bits
*/
#define RS_ALGNERR 0x8000
#define RS_BRODCAST 0x4000
#define RS_BADCRC 0x2000
#define RS_ODDFRAME 0x1000 /* bug: the LAN91C111 never sets this on receive */
#define RS_TOOLONG 0x0800
#define RS_TOOSHORT 0x0400
#define RS_MULTICAST 0x0001
#define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
/* PHY Types */
enum {
PHY_LAN83C183 = 1, /* LAN91C111 Internal PHY */
PHY_LAN83C180
};
/* PHY Register Addresses (LAN91C111 Internal PHY) */
/* PHY Control Register */
#define PHY_CNTL_REG 0x00
#define PHY_CNTL_RST 0x8000 /* 1=PHY Reset */
#define PHY_CNTL_LPBK 0x4000 /* 1=PHY Loopback */
#define PHY_CNTL_SPEED 0x2000 /* 1=100Mbps, 0=10Mpbs */
#define PHY_CNTL_ANEG_EN 0x1000 /* 1=Enable Auto negotiation */
#define PHY_CNTL_PDN 0x0800 /* 1=PHY Power Down mode */
#define PHY_CNTL_MII_DIS 0x0400 /* 1=MII 4 bit interface disabled */
#define PHY_CNTL_ANEG_RST 0x0200 /* 1=Reset Auto negotiate */
#define PHY_CNTL_DPLX 0x0100 /* 1=Full Duplex, 0=Half Duplex */
#define PHY_CNTL_COLTST 0x0080 /* 1= MII Colision Test */
/* PHY Status Register */
#define PHY_STAT_REG 0x01
#define PHY_STAT_CAP_T4 0x8000 /* 1=100Base-T4 capable */
#define PHY_STAT_CAP_TXF 0x4000 /* 1=100Base-X full duplex capable */
#define PHY_STAT_CAP_TXH 0x2000 /* 1=100Base-X half duplex capable */
#define PHY_STAT_CAP_TF 0x1000 /* 1=10Mbps full duplex capable */
#define PHY_STAT_CAP_TH 0x0800 /* 1=10Mbps half duplex capable */
#define PHY_STAT_CAP_SUPR 0x0040 /* 1=recv mgmt frames with not preamble */
#define PHY_STAT_ANEG_ACK 0x0020 /* 1=ANEG has completed */
#define PHY_STAT_REM_FLT 0x0010 /* 1=Remote Fault detected */
#define PHY_STAT_CAP_ANEG 0x0008 /* 1=Auto negotiate capable */
#define PHY_STAT_LINK 0x0004 /* 1=valid link */
#define PHY_STAT_JAB 0x0002 /* 1=10Mbps jabber condition */
#define PHY_STAT_EXREG 0x0001 /* 1=extended registers implemented */
/* PHY Identifier Registers */
#define PHY_ID1_REG 0x02 /* PHY Identifier 1 */
#define PHY_ID2_REG 0x03 /* PHY Identifier 2 */
/* PHY Auto-Negotiation Advertisement Register */
#define PHY_AD_REG 0x04
#define PHY_AD_NP 0x8000 /* 1=PHY requests exchange of Next Page */
#define PHY_AD_ACK 0x4000 /* 1=got link code word from remote */
#define PHY_AD_RF 0x2000 /* 1=advertise remote fault */
#define PHY_AD_T4 0x0200 /* 1=PHY is capable of 100Base-T4 */
#define PHY_AD_TX_FDX 0x0100 /* 1=PHY is capable of 100Base-TX FDPLX */
#define PHY_AD_TX_HDX 0x0080 /* 1=PHY is capable of 100Base-TX HDPLX */
#define PHY_AD_10_FDX 0x0040 /* 1=PHY is capable of 10Base-T FDPLX */
#define PHY_AD_10_HDX 0x0020 /* 1=PHY is capable of 10Base-T HDPLX */
#define PHY_AD_CSMA 0x0001 /* 1=PHY is capable of 802.3 CMSA */
/* PHY Auto-negotiation Remote End Capability Register */
#define PHY_RMT_REG 0x05
/* Uses same bit definitions as PHY_AD_REG */
/* PHY Configuration Register 1 */
#define PHY_CFG1_REG 0x10
#define PHY_CFG1_LNKDIS 0x8000 /* 1=Rx Link Detect Function disabled */
#define PHY_CFG1_XMTDIS 0x4000 /* 1=TP Transmitter Disabled */
#define PHY_CFG1_XMTPDN 0x2000 /* 1=TP Transmitter Powered Down */
#define PHY_CFG1_BYPSCR 0x0400 /* 1=Bypass scrambler/descrambler */
#define PHY_CFG1_UNSCDS 0x0200 /* 1=Unscramble Idle Reception Disable */
#define PHY_CFG1_EQLZR 0x0100 /* 1=Rx Equalizer Disabled */
#define PHY_CFG1_CABLE 0x0080 /* 1=STP(150ohm), 0=UTP(100ohm) */
#define PHY_CFG1_RLVL0 0x0040 /* 1=Rx Squelch level reduced by 4.5db */
#define PHY_CFG1_TLVL_SHIFT 2 /* Transmit Output Level Adjust */
#define PHY_CFG1_TLVL_MASK 0x003C
#define PHY_CFG1_TRF_MASK 0x0003 /* Transmitter Rise/Fall time */
/* PHY Configuration Register 2 */
#define PHY_CFG2_REG 0x11
#define PHY_CFG2_APOLDIS 0x0020 /* 1=Auto Polarity Correction disabled */
#define PHY_CFG2_JABDIS 0x0010 /* 1=Jabber disabled */
#define PHY_CFG2_MREG 0x0008 /* 1=Multiple register access (MII mgt) */
#define PHY_CFG2_INTMDIO 0x0004 /* 1=Interrupt signaled with MDIO pulseo */
/* PHY Status Output (and Interrupt status) Register */
#define PHY_INT_REG 0x12 /* Status Output (Interrupt Status) */
#define PHY_INT_INT 0x8000 /* 1=bits have changed since last read */
#define PHY_INT_LNKFAIL 0x4000 /* 1=Link Not detected */
#define PHY_INT_LOSSSYNC 0x2000 /* 1=Descrambler has lost sync */
#define PHY_INT_CWRD 0x1000 /* 1=Invalid 4B5B code detected on rx */
#define PHY_INT_SSD 0x0800 /* 1=No Start Of Stream detected on rx */
#define PHY_INT_ESD 0x0400 /* 1=No End Of Stream detected on rx */
#define PHY_INT_RPOL 0x0200 /* 1=Reverse Polarity detected */
#define PHY_INT_JAB 0x0100 /* 1=Jabber detected */
#define PHY_INT_SPDDET 0x0080 /* 1=100Base-TX mode, 0=10Base-T mode */
#define PHY_INT_DPLXDET 0x0040 /* 1=Device in Full Duplex */
/* PHY Interrupt/Status Mask Register */
#define PHY_MASK_REG 0x13 /* Interrupt Mask */
/* Uses the same bit definitions as PHY_INT_REG */
/*-------------------------------------------------------------------------
. I define some macros to make it easier to do somewhat common
. or slightly complicated, repeated tasks.
--------------------------------------------------------------------------*/
/* select a register bank, 0 to 3 */
#define SMC_SELECT_BANK(a,x) { SMC_outw((a), (x), BANK_SELECT ); }
/* this enables an interrupt in the interrupt mask register */
#define SMC_ENABLE_INT(a,x) {\
unsigned char mask;\
SMC_SELECT_BANK((a),2);\
mask = SMC_inb((a), IM_REG );\
mask |= (x);\
SMC_outb( (a), mask, IM_REG ); \
}
/* this disables an interrupt from the interrupt mask register */
#define SMC_DISABLE_INT(a,x) {\
unsigned char mask;\
SMC_SELECT_BANK(2);\
mask = SMC_inb( (a), IM_REG );\
mask &= ~(x);\
SMC_outb( (a), mask, IM_REG ); \
}
/*----------------------------------------------------------------------
. Define the interrupts that I want to receive from the card
.
. I want:
. IM_EPH_INT, for nasty errors
. IM_RCV_INT, for happy received packets
. IM_RX_OVRN_INT, because I have to kick the receiver
. IM_MDINT, for PHY Register 18 Status Changes
--------------------------------------------------------------------------*/
#define SMC_INTERRUPT_MASK (IM_EPH_INT | IM_RX_OVRN_INT | IM_RCV_INT | \
IM_MDINT)
#endif /* _SMC_91111_H_ */