| /* |
| * I/O device access primitives. Based on early versions from the Linux kernel. |
| * |
| * Copyright (C) 1996-2000 Russell King |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #ifndef __ASM_ARM_IO_H |
| #define __ASM_ARM_IO_H |
| |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <asm/byteorder.h> |
| #include <asm/memory.h> |
| #include <asm/barriers.h> |
| |
| static inline void sync(void) |
| { |
| } |
| |
| /* Generic virtual read/write. */ |
| #define __arch_getb(a) (*(volatile unsigned char *)(a)) |
| #define __arch_getw(a) (*(volatile unsigned short *)(a)) |
| #define __arch_getl(a) (*(volatile unsigned int *)(a)) |
| #define __arch_getq(a) (*(volatile unsigned long long *)(a)) |
| |
| #define __arch_putb(v,a) (*(volatile unsigned char *)(a) = (v)) |
| #define __arch_putw(v,a) (*(volatile unsigned short *)(a) = (v)) |
| #define __arch_putl(v,a) (*(volatile unsigned int *)(a) = (v)) |
| #define __arch_putq(v,a) (*(volatile unsigned long long *)(a) = (v)) |
| |
| static inline void __raw_writesb(unsigned long addr, const void *data, |
| int bytelen) |
| { |
| uint8_t *buf = (uint8_t *)data; |
| while(bytelen--) |
| __arch_putb(*buf++, addr); |
| } |
| |
| static inline void __raw_writesw(unsigned long addr, const void *data, |
| int wordlen) |
| { |
| uint16_t *buf = (uint16_t *)data; |
| while(wordlen--) |
| __arch_putw(*buf++, addr); |
| } |
| |
| static inline void __raw_writesl(unsigned long addr, const void *data, |
| int longlen) |
| { |
| uint32_t *buf = (uint32_t *)data; |
| while(longlen--) |
| __arch_putl(*buf++, addr); |
| } |
| |
| static inline void __raw_readsb(unsigned long addr, void *data, int bytelen) |
| { |
| uint8_t *buf = (uint8_t *)data; |
| while(bytelen--) |
| *buf++ = __arch_getb(addr); |
| } |
| |
| static inline void __raw_readsw(unsigned long addr, void *data, int wordlen) |
| { |
| uint16_t *buf = (uint16_t *)data; |
| while(wordlen--) |
| *buf++ = __arch_getw(addr); |
| } |
| |
| static inline void __raw_readsl(unsigned long addr, void *data, int longlen) |
| { |
| uint32_t *buf = (uint32_t *)data; |
| while(longlen--) |
| *buf++ = __arch_getl(addr); |
| } |
| |
| #define __raw_writeb(v,a) __arch_putb(v,a) |
| #define __raw_writew(v,a) __arch_putw(v,a) |
| #define __raw_writel(v,a) __arch_putl(v,a) |
| #define __raw_writeq(v,a) __arch_putq(v,a) |
| |
| #define __raw_readb(a) __arch_getb(a) |
| #define __raw_readw(a) __arch_getw(a) |
| #define __raw_readl(a) __arch_getl(a) |
| #define __raw_readq(a) __arch_getq(a) |
| |
| /* |
| * TODO: The kernel offers some more advanced versions of barriers, it might |
| * have some advantages to use them instead of the simple one here. |
| */ |
| #define mb() dsb() |
| #define rmb() dsb() |
| #define wmb() dsb() |
| #define __iormb() dmb() |
| #define __iowmb() dmb() |
| |
| #define smp_processor_id() 0 |
| |
| #define writeb(v,c) ({ u8 __v = v; __iowmb(); __arch_putb(__v,c); __v; }) |
| #define writew(v,c) ({ u16 __v = v; __iowmb(); __arch_putw(__v,c); __v; }) |
| #define writel(v,c) ({ u32 __v = v; __iowmb(); __arch_putl(__v,c); __v; }) |
| #define writeq(v,c) ({ u64 __v = v; __iowmb(); __arch_putq(__v,c); __v; }) |
| |
| #define readb(c) ({ u8 __v = __arch_getb(c); __iormb(); __v; }) |
| #define readw(c) ({ u16 __v = __arch_getw(c); __iormb(); __v; }) |
| #define readl(c) ({ u32 __v = __arch_getl(c); __iormb(); __v; }) |
| #define readq(c) ({ u64 __v = __arch_getq(c); __iormb(); __v; }) |
| |
| /* |
| * Relaxed I/O memory access primitives. These follow the Device memory |
| * ordering rules but do not guarantee any ordering relative to Normal memory |
| * accesses. |
| */ |
| #define readb_relaxed(c) ({ u8 __r = __raw_readb(c); __r; }) |
| #define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \ |
| __raw_readw(c)); __r; }) |
| #define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \ |
| __raw_readl(c)); __r; }) |
| #define readq_relaxed(c) ({ u64 __r = le64_to_cpu((__force __le64) \ |
| __raw_readq(c)); __r; }) |
| |
| #define writeb_relaxed(v, c) ((void)__raw_writeb((v), (c))) |
| #define writew_relaxed(v, c) ((void)__raw_writew((__force u16) \ |
| cpu_to_le16(v), (c))) |
| #define writel_relaxed(v, c) ((void)__raw_writel((__force u32) \ |
| cpu_to_le32(v), (c))) |
| #define writeq_relaxed(v, c) ((void)__raw_writeq((__force u64) \ |
| cpu_to_le64(v), (c))) |
| |
| /* |
| * The compiler seems to be incapable of optimising constants |
| * properly. Spell it out to the compiler in some cases. |
| * These are only valid for small values of "off" (< 1<<12) |
| */ |
| #define __raw_base_writeb(val,base,off) __arch_base_putb(val,base,off) |
| #define __raw_base_writew(val,base,off) __arch_base_putw(val,base,off) |
| #define __raw_base_writel(val,base,off) __arch_base_putl(val,base,off) |
| |
| #define __raw_base_readb(base,off) __arch_base_getb(base,off) |
| #define __raw_base_readw(base,off) __arch_base_getw(base,off) |
| #define __raw_base_readl(base,off) __arch_base_getl(base,off) |
| |
| /* |
| * Clear and set bits in one shot. These macros can be used to clear and |
| * set multiple bits in a register using a single call. These macros can |
| * also be used to set a multiple-bit bit pattern using a mask, by |
| * specifying the mask in the 'clear' parameter and the new bit pattern |
| * in the 'set' parameter. |
| */ |
| |
| #define out_arch(type,endian,a,v) __raw_write##type(cpu_to_##endian(v),a) |
| #define in_arch(type,endian,a) endian##_to_cpu(__raw_read##type(a)) |
| |
| #define out_le64(a,v) out_arch(q,le64,a,v) |
| #define out_le32(a,v) out_arch(l,le32,a,v) |
| #define out_le16(a,v) out_arch(w,le16,a,v) |
| |
| #define in_le64(a) in_arch(q,le64,a) |
| #define in_le32(a) in_arch(l,le32,a) |
| #define in_le16(a) in_arch(w,le16,a) |
| |
| #define out_be64(a,v) out_arch(l,be64,a,v) |
| #define out_be32(a,v) out_arch(l,be32,a,v) |
| #define out_be16(a,v) out_arch(w,be16,a,v) |
| |
| #define in_be64(a) in_arch(l,be64,a) |
| #define in_be32(a) in_arch(l,be32,a) |
| #define in_be16(a) in_arch(w,be16,a) |
| |
| #define out_64(a,v) __raw_writeq(v,a) |
| #define out_32(a,v) __raw_writel(v,a) |
| #define out_16(a,v) __raw_writew(v,a) |
| #define out_8(a,v) __raw_writeb(v,a) |
| |
| #define in_64(a) __raw_readq(a) |
| #define in_32(a) __raw_readl(a) |
| #define in_16(a) __raw_readw(a) |
| #define in_8(a) __raw_readb(a) |
| |
| #define clrbits(type, addr, clear) \ |
| out_##type((addr), in_##type(addr) & ~(clear)) |
| |
| #define setbits(type, addr, set) \ |
| out_##type((addr), in_##type(addr) | (set)) |
| |
| #define clrsetbits(type, addr, clear, set) \ |
| out_##type((addr), (in_##type(addr) & ~(clear)) | (set)) |
| |
| #define clrbits_be32(addr, clear) clrbits(be32, addr, clear) |
| #define setbits_be32(addr, set) setbits(be32, addr, set) |
| #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set) |
| |
| #define clrbits_le32(addr, clear) clrbits(le32, addr, clear) |
| #define setbits_le32(addr, set) setbits(le32, addr, set) |
| #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set) |
| |
| #define clrbits_32(addr, clear) clrbits(32, addr, clear) |
| #define setbits_32(addr, set) setbits(32, addr, set) |
| #define clrsetbits_32(addr, clear, set) clrsetbits(32, addr, clear, set) |
| |
| #define clrbits_be16(addr, clear) clrbits(be16, addr, clear) |
| #define setbits_be16(addr, set) setbits(be16, addr, set) |
| #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set) |
| |
| #define clrbits_le16(addr, clear) clrbits(le16, addr, clear) |
| #define setbits_le16(addr, set) setbits(le16, addr, set) |
| #define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set) |
| |
| #define clrbits_16(addr, clear) clrbits(16, addr, clear) |
| #define setbits_16(addr, set) setbits(16, addr, set) |
| #define clrsetbits_16(addr, clear, set) clrsetbits(16, addr, clear, set) |
| |
| #define clrbits_8(addr, clear) clrbits(8, addr, clear) |
| #define setbits_8(addr, set) setbits(8, addr, set) |
| #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set) |
| |
| #define clrbits_be64(addr, clear) clrbits(be64, addr, clear) |
| #define setbits_be64(addr, set) setbits(be64, addr, set) |
| #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set) |
| |
| #define clrbits_le64(addr, clear) clrbits(le64, addr, clear) |
| #define setbits_le64(addr, set) setbits(le64, addr, set) |
| #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set) |
| |
| #define clrbits_64(addr, clear) clrbits(64, addr, clear) |
| #define setbits_64(addr, set) setbits(64, addr, set) |
| #define clrsetbits_64(addr, clear, set) clrsetbits(64, addr, clear, set) |
| |
| /* |
| * IO port access primitives |
| * ------------------------- |
| * |
| * The ARM doesn't have special IO access instructions; all IO is memory |
| * mapped. Note that these are defined to perform little endian accesses |
| * only. Their primary purpose is to access PCI and ISA peripherals. |
| * |
| * Note that for a big endian machine, this implies that the following |
| * big endian mode connectivity is in place, as described by numerous |
| * ARM documents: |
| * |
| * PCI: D0-D7 D8-D15 D16-D23 D24-D31 |
| * ARM: D24-D31 D16-D23 D8-D15 D0-D7 |
| * |
| * The machine specific io.h include defines __io to translate an "IO" |
| * address to a memory address. |
| * |
| * Note that we prevent GCC re-ordering or caching values in expressions |
| * by introducing sequence points into the in*() definitions. Note that |
| * __raw_* do not guarantee this behaviour. |
| * |
| * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space. |
| */ |
| #ifdef __io |
| #define outb(v,p) __raw_writeb(v,__io(p)) |
| #define outw(v,p) __raw_writew(cpu_to_le16(v),__io(p)) |
| #define outl(v,p) __raw_writel(cpu_to_le32(v),__io(p)) |
| |
| #define inb(p) ({ unsigned int __v = __raw_readb(__io(p)); __v; }) |
| #define inw(p) ({ unsigned int __v = le16_to_cpu(__raw_readw(__io(p))); __v; }) |
| #define inl(p) ({ unsigned int __v = le32_to_cpu(__raw_readl(__io(p))); __v; }) |
| |
| #define outsb(p,d,l) __raw_writesb(__io(p),d,l) |
| #define outsw(p,d,l) __raw_writesw(__io(p),d,l) |
| #define outsl(p,d,l) __raw_writesl(__io(p),d,l) |
| |
| #define insb(p,d,l) __raw_readsb(__io(p),d,l) |
| #define insw(p,d,l) __raw_readsw(__io(p),d,l) |
| #define insl(p,d,l) __raw_readsl(__io(p),d,l) |
| #endif |
| |
| #define outb_p(val,port) outb((val),(port)) |
| #define outw_p(val,port) outw((val),(port)) |
| #define outl_p(val,port) outl((val),(port)) |
| #define inb_p(port) inb((port)) |
| #define inw_p(port) inw((port)) |
| #define inl_p(port) inl((port)) |
| |
| #define outsb_p(port,from,len) outsb(port,from,len) |
| #define outsw_p(port,from,len) outsw(port,from,len) |
| #define outsl_p(port,from,len) outsl(port,from,len) |
| #define insb_p(port,to,len) insb(port,to,len) |
| #define insw_p(port,to,len) insw(port,to,len) |
| #define insl_p(port,to,len) insl(port,to,len) |
| |
| #define writesl(a, d, s) __raw_writesl((unsigned long)a, d, s) |
| #define readsl(a, d, s) __raw_readsl((unsigned long)a, d, s) |
| #define writesw(a, d, s) __raw_writesw((unsigned long)a, d, s) |
| #define readsw(a, d, s) __raw_readsw((unsigned long)a, d, s) |
| #define writesb(a, d, s) __raw_writesb((unsigned long)a, d, s) |
| #define readsb(a, d, s) __raw_readsb((unsigned long)a, d, s) |
| |
| /* |
| * String version of IO memory access ops: |
| */ |
| extern void _memcpy_fromio(void *, unsigned long, size_t); |
| extern void _memcpy_toio(unsigned long, const void *, size_t); |
| extern void _memset_io(unsigned long, int, size_t); |
| |
| /* Optimized copy functions to read from/write to IO sapce */ |
| #ifdef CONFIG_ARM64 |
| #include <cpu_func.h> |
| /* |
| * Copy data from IO memory space to "real" memory space. |
| */ |
| static inline |
| void __memcpy_fromio(void *to, const volatile void __iomem *from, size_t count) |
| { |
| while (count && !IS_ALIGNED((unsigned long)from, 8)) { |
| *(u8 *)to = __raw_readb(from); |
| from++; |
| to++; |
| count--; |
| } |
| |
| if (mmu_status()) { |
| while (count >= 8) { |
| *(u64 *)to = __raw_readq(from); |
| from += 8; |
| to += 8; |
| count -= 8; |
| } |
| } |
| |
| while (count) { |
| *(u8 *)to = __raw_readb(from); |
| from++; |
| to++; |
| count--; |
| } |
| } |
| |
| /* |
| * Copy data from "real" memory space to IO memory space. |
| */ |
| static inline |
| void __memcpy_toio(volatile void __iomem *to, const void *from, size_t count) |
| { |
| while (count && !IS_ALIGNED((unsigned long)to, 8)) { |
| __raw_writeb(*(u8 *)from, to); |
| from++; |
| to++; |
| count--; |
| } |
| |
| if (mmu_status()) { |
| while (count >= 8) { |
| __raw_writeq(*(u64 *)from, to); |
| from += 8; |
| to += 8; |
| count -= 8; |
| } |
| } |
| |
| while (count) { |
| __raw_writeb(*(u8 *)from, to); |
| from++; |
| to++; |
| count--; |
| } |
| } |
| |
| /* |
| * "memset" on IO memory space. |
| */ |
| static inline |
| void __memset_io(volatile void __iomem *dst, int c, size_t count) |
| { |
| u64 qc = (u8)c; |
| |
| qc |= qc << 8; |
| qc |= qc << 16; |
| qc |= qc << 32; |
| |
| while (count && !IS_ALIGNED((unsigned long)dst, 8)) { |
| __raw_writeb(c, dst); |
| dst++; |
| count--; |
| } |
| |
| while (count >= 8) { |
| __raw_writeq(qc, dst); |
| dst += 8; |
| count -= 8; |
| } |
| |
| while (count) { |
| __raw_writeb(c, dst); |
| dst++; |
| count--; |
| } |
| } |
| #endif /* CONFIG_ARM64 */ |
| |
| #ifdef CONFIG_ARM64 |
| #define memset_io(a, b, c) __memset_io((a), (b), (c)) |
| #define memcpy_fromio(a, b, c) __memcpy_fromio((a), (b), (c)) |
| #define memcpy_toio(a, b, c) __memcpy_toio((a), (b), (c)) |
| #else |
| #define memset_io(a, b, c) memset((void *)(a), (b), (c)) |
| #define memcpy_fromio(a, b, c) memcpy((a), (void *)(b), (c)) |
| #define memcpy_toio(a, b, c) memcpy((void *)(a), (b), (c)) |
| #endif |
| |
| #include <asm-generic/io.h> |
| #include <iotrace.h> |
| |
| #endif /* __ASM_ARM_IO_H */ |