| /* |
| * (C) Copyright 2006 |
| * Heiko Schocher, DENX Software Engineering, hs@denx.de |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| |
| #if (CONFIG_COMMANDS & CFG_CMD_NAND) |
| |
| #include <nand.h> |
| |
| #if 0 |
| #define HS_printf(fmt,arg...) \ |
| printf("HS %s %s: " fmt,__FILE__, __FUNCTION__, ##arg) |
| #else |
| #define HS_printf(fmt,arg...) \ |
| do { } while (0) |
| #endif |
| |
| #if 0 |
| #define CPLD_REG uchar |
| #else |
| #define CPLD_REG u16 |
| #endif |
| |
| struct alpr_ndfc_regs { |
| CPLD_REG cmd[4]; |
| CPLD_REG addr_wait; |
| CPLD_REG term; |
| CPLD_REG dummy; |
| uchar dum2[2]; |
| CPLD_REG data; |
| }; |
| |
| static u8 hwctl; |
| static struct alpr_ndfc_regs *alpr_ndfc; |
| static int alpr_chip = 0; |
| |
| #if 1 |
| static int pdnb3_nand_dev_ready(struct mtd_info *mtd); |
| |
| #if 1 |
| static u_char alpr_read (void *padr) { |
| return (u_char )*((u16 *)(padr)); |
| } |
| #else |
| static u_char alpr_read (void *padr) { |
| u16 hilf; |
| u_char ret = 0; |
| hilf = *((u16 *)(padr)); |
| ret = hilf; |
| printf("%p hilf: %x ret: %x\n", padr, hilf, ret); |
| return ret; |
| } |
| #endif |
| |
| static void alpr_write (u_char byte, void *padr) { |
| HS_printf("%p Byte: %x\n", padr, byte); |
| *(volatile u16 *)padr = (u16)(byte); |
| } |
| |
| #elif 0 |
| #define alpr_read(a) (*(volatile u16 *) (a)) |
| #define alpr_write(a, b) ((*(volatile u16 *) (a)) = (b)) |
| #else |
| #define alpr_read(a) readw(a) |
| #define alpr_write(a, b) writew(a, b) |
| #endif |
| /* |
| * The ALPR has a NAND Flash Controller (NDFC) that handles all accesses to |
| * the NAND devices. The NDFC has command, address and data registers that |
| * when accessed will set up the NAND flash pins appropriately. We'll use the |
| * hwcontrol function to save the configuration in a global variable. |
| * We can then use this information in the read and write functions to |
| * determine which NDFC register to access. |
| * |
| * There are 2 NAND devices on the board, a Hynix HY27US08561A (32 MByte). |
| */ |
| static void pdnb3_nand_hwcontrol(struct mtd_info *mtd, int cmd) |
| { |
| HS_printf("cmd: %x\n", cmd); |
| switch (cmd) { |
| case NAND_CTL_SETCLE: |
| hwctl |= 0x1; |
| break; |
| case NAND_CTL_CLRCLE: |
| hwctl &= ~0x1; |
| break; |
| case NAND_CTL_SETALE: |
| hwctl |= 0x2; |
| break; |
| case NAND_CTL_CLRALE: |
| hwctl &= ~0x2; |
| break; |
| case NAND_CTL_SETNCE: |
| break; |
| case NAND_CTL_CLRNCE: |
| alpr_write(0x00, &(alpr_ndfc->term)); |
| break; |
| } |
| } |
| |
| static void pdnb3_nand_write_byte(struct mtd_info *mtd, u_char byte) |
| { |
| HS_printf("hwctl: %x %x %x %x\n", hwctl, byte, &(alpr_ndfc->cmd[alpr_chip]), &(alpr_ndfc->addr_wait)); |
| if (hwctl & 0x1) |
| alpr_write(byte, &(alpr_ndfc->cmd[alpr_chip])); |
| else if (hwctl & 0x2) { |
| alpr_write(byte, &(alpr_ndfc->addr_wait)); |
| } else |
| alpr_write(byte, &(alpr_ndfc->data)); |
| } |
| |
| static u_char pdnb3_nand_read_byte(struct mtd_info *mtd) |
| { |
| return alpr_read(&(alpr_ndfc->data)); |
| } |
| |
| static void pdnb3_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| int i; |
| |
| /*printf("%s chip:%d hwctl:%x size:%d\n", __FUNCTION__, alpr_chip, hwctl, len);*/ |
| for (i = 0; i < len; i++) { |
| if (hwctl & 0x1) |
| alpr_write(buf[i], &(alpr_ndfc->cmd[alpr_chip])); |
| else if (hwctl & 0x2) { |
| alpr_write(buf[i], &(alpr_ndfc->addr_wait)); |
| } else { |
| alpr_write(buf[i], &(alpr_ndfc->data)); |
| /*printf("i: %d\n", i);*/ |
| } |
| } |
| } |
| |
| static void pdnb3_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) { |
| buf[i] = alpr_read(&(alpr_ndfc->data)); |
| } |
| } |
| |
| static int pdnb3_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) |
| { |
| int i; |
| |
| for (i = 0; i < len; i++) |
| if (buf[i] != alpr_read(&(alpr_ndfc->data))) |
| return i; |
| |
| return 0; |
| } |
| |
| static int pdnb3_nand_dev_ready(struct mtd_info *mtd) |
| { |
| #if 1 |
| volatile u_char val; |
| |
| /*printf("%s aufruf\n", __FUNCTION__);*/ |
| /* |
| * Blocking read to wait for NAND to be ready |
| */ |
| val = alpr_read(&(alpr_ndfc->addr_wait)); |
| |
| /* |
| * Return always true |
| */ |
| return 1; |
| #else |
| u8 hwctl_org = hwctl; |
| unsigned long timeo; |
| u8 val; |
| |
| hwctl = 0x01; |
| pdnb3_nand_write_byte (mtd, NAND_CMD_STATUS); |
| hwctl = hwctl_org; |
| |
| reset_timer(); |
| while (1) { |
| if (get_timer(0) > timeo) { |
| printf("Timeout!"); |
| return 0; |
| } |
| |
| val = pdnb3_nand_read_byte(mtd); |
| /*printf("%s val: %x\n", __FUNCTION__, val);*/ |
| if (val & NAND_STATUS_READY) |
| break; |
| } |
| return 1; |
| #endif |
| |
| } |
| |
| static void alpr_select_chip(struct mtd_info *mtd, int chip) |
| { |
| alpr_chip = chip; |
| } |
| |
| static int alpr_nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) |
| { |
| unsigned long timeo; |
| |
| if (state == FL_ERASING) |
| timeo = CFG_HZ * 400; |
| else |
| timeo = CFG_HZ * 20; |
| |
| if ((state == FL_ERASING) && (this->options & NAND_IS_AND)) |
| this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); |
| else |
| this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); |
| |
| reset_timer(); |
| |
| while (1) { |
| if (get_timer(0) > timeo) { |
| printf("Timeout!"); |
| return 0; |
| } |
| |
| if (this->read_byte(mtd) & NAND_STATUS_READY) |
| break; |
| } |
| return this->read_byte(mtd); |
| } |
| |
| void board_nand_init(struct nand_chip *nand) |
| { |
| alpr_ndfc = (struct alpr_ndfc_regs *)CFG_NAND_BASE; |
| |
| nand->eccmode = NAND_ECC_SOFT; |
| |
| /* Set address of NAND IO lines (Using Linear Data Access Region) */ |
| nand->IO_ADDR_R = (void __iomem *) ((ulong) alpr_ndfc + 0x10); |
| nand->IO_ADDR_W = (void __iomem *) ((ulong) alpr_ndfc + 0x10); |
| /* Reference hardware control function */ |
| nand->hwcontrol = pdnb3_nand_hwcontrol; |
| /* Set command delay time */ |
| nand->hwcontrol = pdnb3_nand_hwcontrol; |
| nand->write_byte = pdnb3_nand_write_byte; |
| nand->read_byte = pdnb3_nand_read_byte; |
| nand->write_buf = pdnb3_nand_write_buf; |
| nand->read_buf = pdnb3_nand_read_buf; |
| nand->verify_buf = pdnb3_nand_verify_buf; |
| nand->dev_ready = pdnb3_nand_dev_ready; |
| nand->select_chip = alpr_select_chip; |
| nand->waitfunc = alpr_nand_wait; |
| } |
| #endif |