| /* |
| * DDR3 mem setup file for board based on EXYNOS5 |
| * |
| * Copyright (C) 2012 Samsung Electronics |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <config.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/cpu.h> |
| #include <asm/arch/dmc.h> |
| #include <asm/arch/power.h> |
| #include "common_setup.h" |
| #include "exynos5_setup.h" |
| #include "clock_init.h" |
| |
| #define TIMEOUT_US 10000 |
| #define NUM_BYTE_LANES 4 |
| #define DEFAULT_DQS 8 |
| #define DEFAULT_DQS_X4 (DEFAULT_DQS << 24) || (DEFAULT_DQS << 16) \ |
| || (DEFAULT_DQS << 8) || (DEFAULT_DQS << 0) |
| |
| #ifdef CONFIG_EXYNOS5250 |
| static void reset_phy_ctrl(void) |
| { |
| struct exynos5_clock *clk = |
| (struct exynos5_clock *)samsung_get_base_clock(); |
| |
| writel(DDR3PHY_CTRL_PHY_RESET_OFF, &clk->lpddr3phy_ctrl); |
| writel(DDR3PHY_CTRL_PHY_RESET, &clk->lpddr3phy_ctrl); |
| } |
| |
| int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset) |
| { |
| unsigned int val; |
| struct exynos5_phy_control *phy0_ctrl, *phy1_ctrl; |
| struct exynos5_dmc *dmc; |
| int i; |
| |
| phy0_ctrl = (struct exynos5_phy_control *)samsung_get_base_dmc_phy(); |
| phy1_ctrl = (struct exynos5_phy_control *)(samsung_get_base_dmc_phy() |
| + DMC_OFFSET); |
| dmc = (struct exynos5_dmc *)samsung_get_base_dmc_ctrl(); |
| |
| if (reset) |
| reset_phy_ctrl(); |
| |
| /* Set Impedance Output Driver */ |
| val = (mem->impedance << CA_CK_DRVR_DS_OFFSET) | |
| (mem->impedance << CA_CKE_DRVR_DS_OFFSET) | |
| (mem->impedance << CA_CS_DRVR_DS_OFFSET) | |
| (mem->impedance << CA_ADR_DRVR_DS_OFFSET); |
| writel(val, &phy0_ctrl->phy_con39); |
| writel(val, &phy1_ctrl->phy_con39); |
| |
| /* Set Read Latency and Burst Length for PHY0 and PHY1 */ |
| val = (mem->ctrl_bstlen << PHY_CON42_CTRL_BSTLEN_SHIFT) | |
| (mem->ctrl_rdlat << PHY_CON42_CTRL_RDLAT_SHIFT); |
| writel(val, &phy0_ctrl->phy_con42); |
| writel(val, &phy1_ctrl->phy_con42); |
| |
| /* ZQ Calibration */ |
| if (dmc_config_zq(mem, &phy0_ctrl->phy_con16, &phy1_ctrl->phy_con16, |
| &phy0_ctrl->phy_con17, &phy1_ctrl->phy_con17)) |
| return SETUP_ERR_ZQ_CALIBRATION_FAILURE; |
| |
| /* DQ Signal */ |
| writel(mem->phy0_pulld_dqs, &phy0_ctrl->phy_con14); |
| writel(mem->phy1_pulld_dqs, &phy1_ctrl->phy_con14); |
| |
| writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT) |
| | (mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT), |
| &dmc->concontrol); |
| |
| update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3); |
| |
| /* DQS Signal */ |
| writel(mem->phy0_dqs, &phy0_ctrl->phy_con4); |
| writel(mem->phy1_dqs, &phy1_ctrl->phy_con4); |
| |
| writel(mem->phy0_dq, &phy0_ctrl->phy_con6); |
| writel(mem->phy1_dq, &phy1_ctrl->phy_con6); |
| |
| writel(mem->phy0_tFS, &phy0_ctrl->phy_con10); |
| writel(mem->phy1_tFS, &phy1_ctrl->phy_con10); |
| |
| val = (mem->ctrl_start_point << PHY_CON12_CTRL_START_POINT_SHIFT) | |
| (mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) | |
| (mem->ctrl_dll_on << PHY_CON12_CTRL_DLL_ON_SHIFT) | |
| (mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT); |
| writel(val, &phy0_ctrl->phy_con12); |
| writel(val, &phy1_ctrl->phy_con12); |
| |
| /* Start DLL locking */ |
| writel(val | (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT), |
| &phy0_ctrl->phy_con12); |
| writel(val | (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT), |
| &phy1_ctrl->phy_con12); |
| |
| update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3); |
| |
| writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT), |
| &dmc->concontrol); |
| |
| /* Memory Channel Inteleaving Size */ |
| writel(mem->iv_size, &dmc->ivcontrol); |
| |
| writel(mem->memconfig, &dmc->memconfig0); |
| writel(mem->memconfig, &dmc->memconfig1); |
| writel(mem->membaseconfig0, &dmc->membaseconfig0); |
| writel(mem->membaseconfig1, &dmc->membaseconfig1); |
| |
| /* Precharge Configuration */ |
| writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT, |
| &dmc->prechconfig); |
| |
| /* Power Down mode Configuration */ |
| writel(mem->dpwrdn_cyc << PWRDNCONFIG_DPWRDN_CYC_SHIFT | |
| mem->dsref_cyc << PWRDNCONFIG_DSREF_CYC_SHIFT, |
| &dmc->pwrdnconfig); |
| |
| /* TimingRow, TimingData, TimingPower and Timingaref |
| * values as per Memory AC parameters |
| */ |
| writel(mem->timing_ref, &dmc->timingref); |
| writel(mem->timing_row, &dmc->timingrow); |
| writel(mem->timing_data, &dmc->timingdata); |
| writel(mem->timing_power, &dmc->timingpower); |
| |
| /* Send PALL command */ |
| dmc_config_prech(mem, &dmc->directcmd); |
| |
| /* Send NOP, MRS and ZQINIT commands */ |
| dmc_config_mrs(mem, &dmc->directcmd); |
| |
| if (mem->gate_leveling_enable) { |
| val = PHY_CON0_RESET_VAL; |
| val |= P0_CMD_EN; |
| writel(val, &phy0_ctrl->phy_con0); |
| writel(val, &phy1_ctrl->phy_con0); |
| |
| val = PHY_CON2_RESET_VAL; |
| val |= INIT_DESKEW_EN; |
| writel(val, &phy0_ctrl->phy_con2); |
| writel(val, &phy1_ctrl->phy_con2); |
| |
| val = PHY_CON0_RESET_VAL; |
| val |= P0_CMD_EN; |
| val |= BYTE_RDLVL_EN; |
| writel(val, &phy0_ctrl->phy_con0); |
| writel(val, &phy1_ctrl->phy_con0); |
| |
| val = (mem->ctrl_start_point << |
| PHY_CON12_CTRL_START_POINT_SHIFT) | |
| (mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) | |
| (mem->ctrl_force << PHY_CON12_CTRL_FORCE_SHIFT) | |
| (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT) | |
| (mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT); |
| writel(val, &phy0_ctrl->phy_con12); |
| writel(val, &phy1_ctrl->phy_con12); |
| |
| val = PHY_CON2_RESET_VAL; |
| val |= INIT_DESKEW_EN; |
| val |= RDLVL_GATE_EN; |
| writel(val, &phy0_ctrl->phy_con2); |
| writel(val, &phy1_ctrl->phy_con2); |
| |
| val = PHY_CON0_RESET_VAL; |
| val |= P0_CMD_EN; |
| val |= BYTE_RDLVL_EN; |
| val |= CTRL_SHGATE; |
| writel(val, &phy0_ctrl->phy_con0); |
| writel(val, &phy1_ctrl->phy_con0); |
| |
| val = PHY_CON1_RESET_VAL; |
| val &= ~(CTRL_GATEDURADJ_MASK); |
| writel(val, &phy0_ctrl->phy_con1); |
| writel(val, &phy1_ctrl->phy_con1); |
| |
| writel(CTRL_RDLVL_GATE_ENABLE, &dmc->rdlvl_config); |
| i = TIMEOUT_US; |
| while ((readl(&dmc->phystatus) & |
| (RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1)) != |
| (RDLVL_COMPLETE_CHO | RDLVL_COMPLETE_CH1) && i > 0) { |
| /* |
| * TODO(waihong): Comment on how long this take to |
| * timeout |
| */ |
| sdelay(100); |
| i--; |
| } |
| if (!i) |
| return SETUP_ERR_RDLV_COMPLETE_TIMEOUT; |
| writel(CTRL_RDLVL_GATE_DISABLE, &dmc->rdlvl_config); |
| |
| writel(0, &phy0_ctrl->phy_con14); |
| writel(0, &phy1_ctrl->phy_con14); |
| |
| val = (mem->ctrl_start_point << |
| PHY_CON12_CTRL_START_POINT_SHIFT) | |
| (mem->ctrl_inc << PHY_CON12_CTRL_INC_SHIFT) | |
| (mem->ctrl_force << PHY_CON12_CTRL_FORCE_SHIFT) | |
| (mem->ctrl_start << PHY_CON12_CTRL_START_SHIFT) | |
| (mem->ctrl_dll_on << PHY_CON12_CTRL_DLL_ON_SHIFT) | |
| (mem->ctrl_ref << PHY_CON12_CTRL_REF_SHIFT); |
| writel(val, &phy0_ctrl->phy_con12); |
| writel(val, &phy1_ctrl->phy_con12); |
| |
| update_reset_dll(&dmc->phycontrol0, DDR_MODE_DDR3); |
| } |
| |
| /* Send PALL command */ |
| dmc_config_prech(mem, &dmc->directcmd); |
| |
| writel(mem->memcontrol, &dmc->memcontrol); |
| |
| /* Set DMC Concontrol and enable auto-refresh counter */ |
| writel(mem->concontrol | (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT) |
| | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT), &dmc->concontrol); |
| return 0; |
| } |
| #endif |
| |
| #ifdef CONFIG_EXYNOS5420 |
| /** |
| * RAM address to use in the test. |
| * |
| * We'll use 4 words at this address and 4 at this address + 0x80 (Ares |
| * interleaves channels every 128 bytes). This will allow us to evaluate all of |
| * the chips in a 1 chip per channel (2GB) system and half the chips in a 2 |
| * chip per channel (4GB) system. We can't test the 2nd chip since we need to |
| * do tests before the 2nd chip is enabled. Looking at the 2nd chip isn't |
| * critical because the 1st and 2nd chip have very similar timings (they'd |
| * better have similar timings, since there's only a single adjustment that is |
| * shared by both chips). |
| */ |
| const unsigned int test_addr = CONFIG_SYS_SDRAM_BASE; |
| |
| /* Test pattern with which RAM will be tested */ |
| static const unsigned int test_pattern[] = { |
| 0x5a5a5a5a, |
| 0xa5a5a5a5, |
| 0xf0f0f0f0, |
| 0x0f0f0f0f, |
| }; |
| |
| /** |
| * This function is a test vector for sw read leveling, |
| * it compares the read data with the written data. |
| * |
| * @param ch DMC channel number |
| * @param byte_lane which DQS byte offset, |
| * possible values are 0,1,2,3 |
| * @return TRUE if memory was good, FALSE if not. |
| */ |
| static bool dmc_valid_window_test_vector(int ch, int byte_lane) |
| { |
| unsigned int read_data; |
| unsigned int mask; |
| int i; |
| |
| mask = 0xFF << (8 * byte_lane); |
| |
| for (i = 0; i < ARRAY_SIZE(test_pattern); i++) { |
| read_data = readl(test_addr + i * 4 + ch * 0x80); |
| if ((read_data & mask) != (test_pattern[i] & mask)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /** |
| * This function returns current read offset value. |
| * |
| * @param phy_ctrl pointer to the current phy controller |
| */ |
| static unsigned int dmc_get_read_offset_value(struct exynos5420_phy_control |
| *phy_ctrl) |
| { |
| return readl(&phy_ctrl->phy_con4); |
| } |
| |
| /** |
| * This function performs resync, so that slave DLL is updated. |
| * |
| * @param phy_ctrl pointer to the current phy controller |
| */ |
| static void ddr_phy_set_do_resync(struct exynos5420_phy_control *phy_ctrl) |
| { |
| setbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3); |
| clrbits_le32(&phy_ctrl->phy_con10, PHY_CON10_CTRL_OFFSETR3); |
| } |
| |
| /** |
| * This function sets read offset value register with 'offset'. |
| * |
| * ...we also call call ddr_phy_set_do_resync(). |
| * |
| * @param phy_ctrl pointer to the current phy controller |
| * @param offset offset to read DQS |
| */ |
| static void dmc_set_read_offset_value(struct exynos5420_phy_control *phy_ctrl, |
| unsigned int offset) |
| { |
| writel(offset, &phy_ctrl->phy_con4); |
| ddr_phy_set_do_resync(phy_ctrl); |
| } |
| |
| /** |
| * Convert a 2s complement byte to a byte with a sign bit. |
| * |
| * NOTE: you shouldn't use normal math on the number returned by this function. |
| * As an example, -10 = 0xf6. After this function -10 = 0x8a. If you wanted |
| * to do math and get the average of 10 and -10 (should be 0): |
| * 0x8a + 0xa = 0x94 (-108) |
| * 0x94 / 2 = 0xca (-54) |
| * ...and 0xca = sign bit plus 0x4a, or -74 |
| * |
| * Also note that you lose the ability to represent -128 since there are two |
| * representations of 0. |
| * |
| * @param b The byte to convert in two's complement. |
| * @return The 7-bit value + sign bit. |
| */ |
| |
| unsigned char make_signed_byte(signed char b) |
| { |
| if (b < 0) |
| return 0x80 | -b; |
| else |
| return b; |
| } |
| |
| /** |
| * Test various shifts starting at 'start' and going to 'end'. |
| * |
| * For each byte lane, we'll walk through shift starting at 'start' and going |
| * to 'end' (inclusive). When we are finally able to read the test pattern |
| * we'll store the value in the results array. |
| * |
| * @param phy_ctrl pointer to the current phy controller |
| * @param ch channel number |
| * @param start the start shift. -127 to 127 |
| * @param end the end shift. -127 to 127 |
| * @param results we'll store results for each byte lane. |
| */ |
| |
| void test_shifts(struct exynos5420_phy_control *phy_ctrl, int ch, |
| int start, int end, int results[NUM_BYTE_LANES]) |
| { |
| int incr = (start < end) ? 1 : -1; |
| int byte_lane; |
| |
| for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) { |
| int shift; |
| |
| dmc_set_read_offset_value(phy_ctrl, DEFAULT_DQS_X4); |
| results[byte_lane] = DEFAULT_DQS; |
| |
| for (shift = start; shift != (end + incr); shift += incr) { |
| unsigned int byte_offsetr; |
| unsigned int offsetr; |
| |
| byte_offsetr = make_signed_byte(shift); |
| |
| offsetr = dmc_get_read_offset_value(phy_ctrl); |
| offsetr &= ~(0xFF << (8 * byte_lane)); |
| offsetr |= (byte_offsetr << (8 * byte_lane)); |
| dmc_set_read_offset_value(phy_ctrl, offsetr); |
| |
| if (dmc_valid_window_test_vector(ch, byte_lane)) { |
| results[byte_lane] = shift; |
| break; |
| } |
| } |
| } |
| } |
| |
| /** |
| * This function performs SW read leveling to compensate DQ-DQS skew at |
| * receiver it first finds the optimal read offset value on each DQS |
| * then applies the value to PHY. |
| * |
| * Read offset value has its min margin and max margin. If read offset |
| * value exceeds its min or max margin, read data will have corruption. |
| * To avoid this we are doing sw read leveling. |
| * |
| * SW read leveling is: |
| * 1> Finding offset value's left_limit and right_limit |
| * 2> and calculate its center value |
| * 3> finally programs that center value to PHY |
| * 4> then PHY gets its optimal offset value. |
| * |
| * @param phy_ctrl pointer to the current phy controller |
| * @param ch channel number |
| * @param coarse_lock_val The coarse lock value read from PHY_CON13. |
| * (0 - 0x7f) |
| */ |
| static void software_find_read_offset(struct exynos5420_phy_control *phy_ctrl, |
| int ch, unsigned int coarse_lock_val) |
| { |
| unsigned int offsetr_cent; |
| int byte_lane; |
| int left_limit; |
| int right_limit; |
| int left[NUM_BYTE_LANES]; |
| int right[NUM_BYTE_LANES]; |
| int i; |
| |
| /* Fill the memory with test patterns */ |
| for (i = 0; i < ARRAY_SIZE(test_pattern); i++) |
| writel(test_pattern[i], test_addr + i * 4 + ch * 0x80); |
| |
| /* Figure out the limits we'll test with; keep -127 < limit < 127 */ |
| left_limit = DEFAULT_DQS - coarse_lock_val; |
| right_limit = DEFAULT_DQS + coarse_lock_val; |
| if (right_limit > 127) |
| right_limit = 127; |
| |
| /* Fill in the location where reads were OK from left and right */ |
| test_shifts(phy_ctrl, ch, left_limit, right_limit, left); |
| test_shifts(phy_ctrl, ch, right_limit, left_limit, right); |
| |
| /* Make a final value by taking the center between the left and right */ |
| offsetr_cent = 0; |
| for (byte_lane = 0; byte_lane < NUM_BYTE_LANES; byte_lane++) { |
| int temp_center; |
| unsigned int vmwc; |
| |
| temp_center = (left[byte_lane] + right[byte_lane]) / 2; |
| vmwc = make_signed_byte(temp_center); |
| offsetr_cent |= vmwc << (8 * byte_lane); |
| } |
| dmc_set_read_offset_value(phy_ctrl, offsetr_cent); |
| } |
| |
| int ddr3_mem_ctrl_init(struct mem_timings *mem, int reset) |
| { |
| struct exynos5420_clock *clk = |
| (struct exynos5420_clock *)samsung_get_base_clock(); |
| struct exynos5420_power *power = |
| (struct exynos5420_power *)samsung_get_base_power(); |
| struct exynos5420_phy_control *phy0_ctrl, *phy1_ctrl; |
| struct exynos5420_dmc *drex0, *drex1; |
| struct exynos5420_tzasc *tzasc0, *tzasc1; |
| struct exynos5_power *pmu; |
| uint32_t val, n_lock_r, n_lock_w_phy0, n_lock_w_phy1; |
| uint32_t lock0_info, lock1_info; |
| int chip; |
| int i; |
| |
| phy0_ctrl = (struct exynos5420_phy_control *)samsung_get_base_dmc_phy(); |
| phy1_ctrl = (struct exynos5420_phy_control *)(samsung_get_base_dmc_phy() |
| + DMC_OFFSET); |
| drex0 = (struct exynos5420_dmc *)samsung_get_base_dmc_ctrl(); |
| drex1 = (struct exynos5420_dmc *)(samsung_get_base_dmc_ctrl() |
| + DMC_OFFSET); |
| tzasc0 = (struct exynos5420_tzasc *)samsung_get_base_dmc_tzasc(); |
| tzasc1 = (struct exynos5420_tzasc *)(samsung_get_base_dmc_tzasc() |
| + DMC_OFFSET); |
| pmu = (struct exynos5_power *)EXYNOS5420_POWER_BASE; |
| |
| if (CONFIG_NR_DRAM_BANKS > 4) { |
| /* Need both controllers. */ |
| mem->memcontrol |= DMC_MEMCONTROL_NUM_CHIP_2; |
| mem->chips_per_channel = 2; |
| mem->chips_to_configure = 2; |
| } else { |
| /* 2GB requires a single controller */ |
| mem->memcontrol |= DMC_MEMCONTROL_NUM_CHIP_1; |
| } |
| |
| /* Enable PAUSE for DREX */ |
| setbits_le32(&clk->pause, ENABLE_BIT); |
| |
| /* Enable BYPASS mode */ |
| setbits_le32(&clk->bpll_con1, BYPASS_EN); |
| |
| writel(MUX_BPLL_SEL_FOUTBPLL, &clk->src_cdrex); |
| do { |
| val = readl(&clk->mux_stat_cdrex); |
| val &= BPLL_SEL_MASK; |
| } while (val != FOUTBPLL); |
| |
| clrbits_le32(&clk->bpll_con1, BYPASS_EN); |
| |
| /* Specify the DDR memory type as DDR3 */ |
| val = readl(&phy0_ctrl->phy_con0); |
| val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT); |
| val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT); |
| writel(val, &phy0_ctrl->phy_con0); |
| |
| val = readl(&phy1_ctrl->phy_con0); |
| val &= ~(PHY_CON0_CTRL_DDR_MODE_MASK << PHY_CON0_CTRL_DDR_MODE_SHIFT); |
| val |= (DDR_MODE_DDR3 << PHY_CON0_CTRL_DDR_MODE_SHIFT); |
| writel(val, &phy1_ctrl->phy_con0); |
| |
| /* Set Read Latency and Burst Length for PHY0 and PHY1 */ |
| val = (mem->ctrl_bstlen << PHY_CON42_CTRL_BSTLEN_SHIFT) | |
| (mem->ctrl_rdlat << PHY_CON42_CTRL_RDLAT_SHIFT); |
| writel(val, &phy0_ctrl->phy_con42); |
| writel(val, &phy1_ctrl->phy_con42); |
| |
| val = readl(&phy0_ctrl->phy_con26); |
| val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET); |
| val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET); |
| writel(val, &phy0_ctrl->phy_con26); |
| |
| val = readl(&phy1_ctrl->phy_con26); |
| val &= ~(T_WRDATA_EN_MASK << T_WRDATA_EN_OFFSET); |
| val |= (T_WRDATA_EN_DDR3 << T_WRDATA_EN_OFFSET); |
| writel(val, &phy1_ctrl->phy_con26); |
| |
| /* |
| * Set Driver strength for CK, CKE, CS & CA to 0x7 |
| * Set Driver strength for Data Slice 0~3 to 0x7 |
| */ |
| val = (0x7 << CA_CK_DRVR_DS_OFFSET) | (0x7 << CA_CKE_DRVR_DS_OFFSET) | |
| (0x7 << CA_CS_DRVR_DS_OFFSET) | (0x7 << CA_ADR_DRVR_DS_OFFSET); |
| val |= (0x7 << DA_3_DS_OFFSET) | (0x7 << DA_2_DS_OFFSET) | |
| (0x7 << DA_1_DS_OFFSET) | (0x7 << DA_0_DS_OFFSET); |
| writel(val, &phy0_ctrl->phy_con39); |
| writel(val, &phy1_ctrl->phy_con39); |
| |
| /* ZQ Calibration */ |
| if (dmc_config_zq(mem, &phy0_ctrl->phy_con16, &phy1_ctrl->phy_con16, |
| &phy0_ctrl->phy_con17, &phy1_ctrl->phy_con17)) |
| return SETUP_ERR_ZQ_CALIBRATION_FAILURE; |
| |
| clrbits_le32(&phy0_ctrl->phy_con16, ZQ_CLK_DIV_EN); |
| clrbits_le32(&phy1_ctrl->phy_con16, ZQ_CLK_DIV_EN); |
| |
| /* DQ Signal */ |
| val = readl(&phy0_ctrl->phy_con14); |
| val |= mem->phy0_pulld_dqs; |
| writel(val, &phy0_ctrl->phy_con14); |
| val = readl(&phy1_ctrl->phy_con14); |
| val |= mem->phy1_pulld_dqs; |
| writel(val, &phy1_ctrl->phy_con14); |
| |
| val = MEM_TERM_EN | PHY_TERM_EN; |
| writel(val, &drex0->phycontrol0); |
| writel(val, &drex1->phycontrol0); |
| |
| writel(mem->concontrol | |
| (mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) | |
| (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT), |
| &drex0->concontrol); |
| writel(mem->concontrol | |
| (mem->dfi_init_start << CONCONTROL_DFI_INIT_START_SHIFT) | |
| (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT), |
| &drex1->concontrol); |
| |
| do { |
| val = readl(&drex0->phystatus); |
| } while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE); |
| do { |
| val = readl(&drex1->phystatus); |
| } while ((val & DFI_INIT_COMPLETE) != DFI_INIT_COMPLETE); |
| |
| clrbits_le32(&drex0->concontrol, DFI_INIT_START); |
| clrbits_le32(&drex1->concontrol, DFI_INIT_START); |
| |
| update_reset_dll(&drex0->phycontrol0, DDR_MODE_DDR3); |
| update_reset_dll(&drex1->phycontrol0, DDR_MODE_DDR3); |
| |
| /* |
| * Set Base Address: |
| * 0x2000_0000 ~ 0x5FFF_FFFF |
| * 0x6000_0000 ~ 0x9FFF_FFFF |
| */ |
| /* MEMBASECONFIG0 */ |
| val = DMC_MEMBASECONFIGX_CHIP_BASE(DMC_CHIP_BASE_0) | |
| DMC_MEMBASECONFIGX_CHIP_MASK(DMC_CHIP_MASK); |
| writel(val, &tzasc0->membaseconfig0); |
| writel(val, &tzasc1->membaseconfig0); |
| |
| /* MEMBASECONFIG1 */ |
| val = DMC_MEMBASECONFIGX_CHIP_BASE(DMC_CHIP_BASE_1) | |
| DMC_MEMBASECONFIGX_CHIP_MASK(DMC_CHIP_MASK); |
| writel(val, &tzasc0->membaseconfig1); |
| writel(val, &tzasc1->membaseconfig1); |
| |
| /* |
| * Memory Channel Inteleaving Size |
| * Ares Channel interleaving = 128 bytes |
| */ |
| /* MEMCONFIG0/1 */ |
| writel(mem->memconfig, &tzasc0->memconfig0); |
| writel(mem->memconfig, &tzasc1->memconfig0); |
| writel(mem->memconfig, &tzasc0->memconfig1); |
| writel(mem->memconfig, &tzasc1->memconfig1); |
| |
| /* Precharge Configuration */ |
| writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT, |
| &drex0->prechconfig0); |
| writel(mem->prechconfig_tp_cnt << PRECHCONFIG_TP_CNT_SHIFT, |
| &drex1->prechconfig0); |
| |
| /* |
| * TimingRow, TimingData, TimingPower and Timingaref |
| * values as per Memory AC parameters |
| */ |
| writel(mem->timing_ref, &drex0->timingref); |
| writel(mem->timing_ref, &drex1->timingref); |
| writel(mem->timing_row, &drex0->timingrow0); |
| writel(mem->timing_row, &drex1->timingrow0); |
| writel(mem->timing_data, &drex0->timingdata0); |
| writel(mem->timing_data, &drex1->timingdata0); |
| writel(mem->timing_power, &drex0->timingpower0); |
| writel(mem->timing_power, &drex1->timingpower0); |
| |
| if (reset) { |
| /* |
| * Send NOP, MRS and ZQINIT commands |
| * Sending MRS command will reset the DRAM. We should not be |
| * reseting the DRAM after resume, this will lead to memory |
| * corruption as DRAM content is lost after DRAM reset |
| */ |
| dmc_config_mrs(mem, &drex0->directcmd); |
| dmc_config_mrs(mem, &drex1->directcmd); |
| } |
| |
| /* |
| * Get PHY_CON13 from both phys. Gate CLKM around reading since |
| * PHY_CON13 is glitchy when CLKM is running. We're paranoid and |
| * wait until we get a "fine lock", though a coarse lock is probably |
| * OK (we only use the coarse numbers below). We try to gate the |
| * clock for as short a time as possible in case SDRAM is somehow |
| * sensitive. sdelay(10) in the loop is arbitrary to make sure |
| * there is some time for PHY_CON13 to get updated. In practice |
| * no delay appears to be needed. |
| */ |
| val = readl(&clk->gate_bus_cdrex); |
| while (true) { |
| writel(val & ~0x1, &clk->gate_bus_cdrex); |
| lock0_info = readl(&phy0_ctrl->phy_con13); |
| writel(val, &clk->gate_bus_cdrex); |
| |
| if ((lock0_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED) |
| break; |
| |
| sdelay(10); |
| } |
| while (true) { |
| writel(val & ~0x2, &clk->gate_bus_cdrex); |
| lock1_info = readl(&phy1_ctrl->phy_con13); |
| writel(val, &clk->gate_bus_cdrex); |
| |
| if ((lock1_info & CTRL_FINE_LOCKED) == CTRL_FINE_LOCKED) |
| break; |
| |
| sdelay(10); |
| } |
| |
| if (!reset) { |
| /* |
| * During Suspend-Resume & S/W-Reset, as soon as PMU releases |
| * pad retention, CKE goes high. This causes memory contents |
| * not to be retained during DRAM initialization. Therfore, |
| * there is a new control register(0x100431e8[28]) which lets us |
| * release pad retention and retain the memory content until the |
| * initialization is complete. |
| */ |
| writel(PAD_RETENTION_DRAM_COREBLK_VAL, |
| &power->pad_retention_dram_coreblk_option); |
| do { |
| val = readl(&power->pad_retention_dram_status); |
| } while (val != 0x1); |
| |
| /* |
| * CKE PAD retention disables DRAM self-refresh mode. |
| * Send auto refresh command for DRAM refresh. |
| */ |
| for (i = 0; i < 128; i++) { |
| for (chip = 0; chip < mem->chips_to_configure; chip++) { |
| writel(DIRECT_CMD_REFA | |
| (chip << DIRECT_CMD_CHIP_SHIFT), |
| &drex0->directcmd); |
| writel(DIRECT_CMD_REFA | |
| (chip << DIRECT_CMD_CHIP_SHIFT), |
| &drex1->directcmd); |
| } |
| } |
| } |
| |
| if (mem->gate_leveling_enable) { |
| writel(PHY_CON0_RESET_VAL, &phy0_ctrl->phy_con0); |
| writel(PHY_CON0_RESET_VAL, &phy1_ctrl->phy_con0); |
| |
| setbits_le32(&phy0_ctrl->phy_con0, P0_CMD_EN); |
| setbits_le32(&phy1_ctrl->phy_con0, P0_CMD_EN); |
| |
| val = PHY_CON2_RESET_VAL; |
| val |= INIT_DESKEW_EN; |
| writel(val, &phy0_ctrl->phy_con2); |
| writel(val, &phy1_ctrl->phy_con2); |
| |
| val = readl(&phy0_ctrl->phy_con1); |
| val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET); |
| writel(val, &phy0_ctrl->phy_con1); |
| |
| val = readl(&phy1_ctrl->phy_con1); |
| val |= (RDLVL_PASS_ADJ_VAL << RDLVL_PASS_ADJ_OFFSET); |
| writel(val, &phy1_ctrl->phy_con1); |
| |
| n_lock_w_phy0 = (lock0_info & CTRL_LOCK_COARSE_MASK) >> 2; |
| n_lock_r = readl(&phy0_ctrl->phy_con12); |
| n_lock_r &= ~CTRL_DLL_ON; |
| n_lock_r |= n_lock_w_phy0; |
| writel(n_lock_r, &phy0_ctrl->phy_con12); |
| |
| n_lock_w_phy1 = (lock1_info & CTRL_LOCK_COARSE_MASK) >> 2; |
| n_lock_r = readl(&phy1_ctrl->phy_con12); |
| n_lock_r &= ~CTRL_DLL_ON; |
| n_lock_r |= n_lock_w_phy1; |
| writel(n_lock_r, &phy1_ctrl->phy_con12); |
| |
| val = (0x3 << DIRECT_CMD_BANK_SHIFT) | 0x4; |
| for (chip = 0; chip < mem->chips_to_configure; chip++) { |
| writel(val | (chip << DIRECT_CMD_CHIP_SHIFT), |
| &drex0->directcmd); |
| writel(val | (chip << DIRECT_CMD_CHIP_SHIFT), |
| &drex1->directcmd); |
| } |
| |
| setbits_le32(&phy0_ctrl->phy_con2, RDLVL_GATE_EN); |
| setbits_le32(&phy1_ctrl->phy_con2, RDLVL_GATE_EN); |
| |
| setbits_le32(&phy0_ctrl->phy_con0, CTRL_SHGATE); |
| setbits_le32(&phy1_ctrl->phy_con0, CTRL_SHGATE); |
| |
| val = readl(&phy0_ctrl->phy_con1); |
| val &= ~(CTRL_GATEDURADJ_MASK); |
| writel(val, &phy0_ctrl->phy_con1); |
| |
| val = readl(&phy1_ctrl->phy_con1); |
| val &= ~(CTRL_GATEDURADJ_MASK); |
| writel(val, &phy1_ctrl->phy_con1); |
| |
| writel(CTRL_RDLVL_GATE_ENABLE, &drex0->rdlvl_config); |
| i = TIMEOUT_US; |
| while (((readl(&drex0->phystatus) & RDLVL_COMPLETE_CHO) != |
| RDLVL_COMPLETE_CHO) && (i > 0)) { |
| /* |
| * TODO(waihong): Comment on how long this take to |
| * timeout |
| */ |
| sdelay(100); |
| i--; |
| } |
| if (!i) |
| return SETUP_ERR_RDLV_COMPLETE_TIMEOUT; |
| writel(CTRL_RDLVL_GATE_DISABLE, &drex0->rdlvl_config); |
| |
| writel(CTRL_RDLVL_GATE_ENABLE, &drex1->rdlvl_config); |
| i = TIMEOUT_US; |
| while (((readl(&drex1->phystatus) & RDLVL_COMPLETE_CHO) != |
| RDLVL_COMPLETE_CHO) && (i > 0)) { |
| /* |
| * TODO(waihong): Comment on how long this take to |
| * timeout |
| */ |
| sdelay(100); |
| i--; |
| } |
| if (!i) |
| return SETUP_ERR_RDLV_COMPLETE_TIMEOUT; |
| writel(CTRL_RDLVL_GATE_DISABLE, &drex1->rdlvl_config); |
| |
| writel(0, &phy0_ctrl->phy_con14); |
| writel(0, &phy1_ctrl->phy_con14); |
| |
| val = (0x3 << DIRECT_CMD_BANK_SHIFT); |
| for (chip = 0; chip < mem->chips_to_configure; chip++) { |
| writel(val | (chip << DIRECT_CMD_CHIP_SHIFT), |
| &drex0->directcmd); |
| writel(val | (chip << DIRECT_CMD_CHIP_SHIFT), |
| &drex1->directcmd); |
| } |
| |
| /* Common Settings for Leveling */ |
| val = PHY_CON12_RESET_VAL; |
| writel((val + n_lock_w_phy0), &phy0_ctrl->phy_con12); |
| writel((val + n_lock_w_phy1), &phy1_ctrl->phy_con12); |
| |
| setbits_le32(&phy0_ctrl->phy_con2, DLL_DESKEW_EN); |
| setbits_le32(&phy1_ctrl->phy_con2, DLL_DESKEW_EN); |
| } |
| |
| /* |
| * Do software read leveling |
| * |
| * Do this before we turn on auto refresh since the auto refresh can |
| * be in conflict with the resync operation that's part of setting |
| * read leveling. |
| */ |
| if (!reset) { |
| /* restore calibrated value after resume */ |
| dmc_set_read_offset_value(phy0_ctrl, readl(&pmu->pmu_spare1)); |
| dmc_set_read_offset_value(phy1_ctrl, readl(&pmu->pmu_spare2)); |
| } else { |
| software_find_read_offset(phy0_ctrl, 0, |
| CTRL_LOCK_COARSE(lock0_info)); |
| software_find_read_offset(phy1_ctrl, 1, |
| CTRL_LOCK_COARSE(lock1_info)); |
| /* save calibrated value to restore after resume */ |
| writel(dmc_get_read_offset_value(phy0_ctrl), &pmu->pmu_spare1); |
| writel(dmc_get_read_offset_value(phy1_ctrl), &pmu->pmu_spare2); |
| } |
| |
| /* Send PALL command */ |
| dmc_config_prech(mem, &drex0->directcmd); |
| dmc_config_prech(mem, &drex1->directcmd); |
| |
| writel(mem->memcontrol, &drex0->memcontrol); |
| writel(mem->memcontrol, &drex1->memcontrol); |
| |
| /* |
| * Set DMC Concontrol: Enable auto-refresh counter, provide |
| * read data fetch cycles and enable DREX auto set powerdown |
| * for input buffer of I/O in none read memory state. |
| */ |
| writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) | |
| (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)| |
| DMC_CONCONTROL_IO_PD_CON(0x2), |
| &drex0->concontrol); |
| writel(mem->concontrol | (mem->aref_en << CONCONTROL_AREF_EN_SHIFT) | |
| (mem->rd_fetch << CONCONTROL_RD_FETCH_SHIFT)| |
| DMC_CONCONTROL_IO_PD_CON(0x2), |
| &drex1->concontrol); |
| |
| /* |
| * Enable Clock Gating Control for DMC |
| * this saves around 25 mw dmc power as compared to the power |
| * consumption without these bits enabled |
| */ |
| setbits_le32(&drex0->cgcontrol, DMC_INTERNAL_CG); |
| setbits_le32(&drex1->cgcontrol, DMC_INTERNAL_CG); |
| |
| /* |
| * As per Exynos5800 UM ver 0.00 section 17.13.2.1 |
| * CONCONTROL register bit 3 [update_mode], Exynos5800 does not |
| * support the PHY initiated update. And it is recommended to set |
| * this field to 1'b1 during initialization |
| * |
| * When we apply PHY-initiated mode, DLL lock value is determined |
| * once at DMC init time and not updated later when we change the MIF |
| * voltage based on ASV group in kernel. Applying MC-initiated mode |
| * makes sure that DLL tracing is ON so that silicon is able to |
| * compensate the voltage variation. |
| */ |
| val = readl(&drex0->concontrol); |
| val |= CONCONTROL_UPDATE_MODE; |
| writel(val , &drex0->concontrol); |
| val = readl(&drex1->concontrol); |
| val |= CONCONTROL_UPDATE_MODE; |
| writel(val , &drex1->concontrol); |
| |
| return 0; |
| } |
| #endif |