blob: efcf4b390d35f97353f76daa579888cab5adaa4c [file] [log] [blame]
/*
* Copyright (C) 2011 Freescale Semiconductor, Inc.
* Jason Liu <r64343@freescale.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/arch/imx-regs.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/crm_regs.h>
#include <asm/arch/clock.h>
#include <asm/arch/iomux-mx53.h>
#include <asm/arch/clock.h>
#include <asm/errno.h>
#include <asm/imx-common/mx5_video.h>
#include <netdev.h>
#include <i2c.h>
#include <mmc.h>
#include <fsl_esdhc.h>
#include <asm/gpio.h>
#include <power/pmic.h>
#include <dialog_pmic.h>
#include <fsl_pmic.h>
#include <linux/fb.h>
#include <ipu_pixfmt.h>
#define MX53LOCO_LCD_POWER IMX_GPIO_NR(3, 24)
DECLARE_GLOBAL_DATA_PTR;
static uint32_t mx53_dram_size[2];
phys_size_t get_effective_memsize(void)
{
/*
* WARNING: We must override get_effective_memsize() function here
* to report only the size of the first DRAM bank. This is to make
* U-Boot relocator place U-Boot into valid memory, that is, at the
* end of the first DRAM bank. If we did not override this function
* like so, U-Boot would be placed at the address of the first DRAM
* bank + total DRAM size - sizeof(uboot), which in the setup where
* each DRAM bank contains 512MiB of DRAM would result in placing
* U-Boot into invalid memory area close to the end of the first
* DRAM bank.
*/
return mx53_dram_size[0];
}
int dram_init(void)
{
mx53_dram_size[0] = get_ram_size((void *)PHYS_SDRAM_1, 1 << 30);
mx53_dram_size[1] = get_ram_size((void *)PHYS_SDRAM_2, 1 << 30);
gd->ram_size = mx53_dram_size[0] + mx53_dram_size[1];
return 0;
}
void dram_init_banksize(void)
{
gd->bd->bi_dram[0].start = PHYS_SDRAM_1;
gd->bd->bi_dram[0].size = mx53_dram_size[0];
gd->bd->bi_dram[1].start = PHYS_SDRAM_2;
gd->bd->bi_dram[1].size = mx53_dram_size[1];
}
u32 get_board_rev(void)
{
struct iim_regs *iim = (struct iim_regs *)IMX_IIM_BASE;
struct fuse_bank *bank = &iim->bank[0];
struct fuse_bank0_regs *fuse =
(struct fuse_bank0_regs *)bank->fuse_regs;
int rev = readl(&fuse->gp[6]);
if (!i2c_probe(CONFIG_SYS_DIALOG_PMIC_I2C_ADDR))
rev = 0;
return (get_cpu_rev() & ~(0xF << 8)) | (rev & 0xF) << 8;
}
#define UART_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_DSE_HIGH | \
PAD_CTL_PUS_100K_UP | PAD_CTL_ODE)
static void setup_iomux_uart(void)
{
static const iomux_v3_cfg_t uart_pads[] = {
NEW_PAD_CTRL(MX53_PAD_CSI0_DAT11__UART1_RXD_MUX, UART_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_CSI0_DAT10__UART1_TXD_MUX, UART_PAD_CTRL),
};
imx_iomux_v3_setup_multiple_pads(uart_pads, ARRAY_SIZE(uart_pads));
}
#ifdef CONFIG_USB_EHCI_MX5
int board_ehci_hcd_init(int port)
{
/* request VBUS power enable pin, GPIO7_8 */
imx_iomux_v3_setup_pad(MX53_PAD_PATA_DA_2__GPIO7_8);
gpio_direction_output(IMX_GPIO_NR(7, 8), 1);
return 0;
}
#endif
static void setup_iomux_fec(void)
{
static const iomux_v3_cfg_t fec_pads[] = {
NEW_PAD_CTRL(MX53_PAD_FEC_MDIO__FEC_MDIO, PAD_CTL_HYS |
PAD_CTL_DSE_HIGH | PAD_CTL_PUS_22K_UP | PAD_CTL_ODE),
NEW_PAD_CTRL(MX53_PAD_FEC_MDC__FEC_MDC, PAD_CTL_DSE_HIGH),
NEW_PAD_CTRL(MX53_PAD_FEC_RXD1__FEC_RDATA_1,
PAD_CTL_HYS | PAD_CTL_PKE),
NEW_PAD_CTRL(MX53_PAD_FEC_RXD0__FEC_RDATA_0,
PAD_CTL_HYS | PAD_CTL_PKE),
NEW_PAD_CTRL(MX53_PAD_FEC_TXD1__FEC_TDATA_1, PAD_CTL_DSE_HIGH),
NEW_PAD_CTRL(MX53_PAD_FEC_TXD0__FEC_TDATA_0, PAD_CTL_DSE_HIGH),
NEW_PAD_CTRL(MX53_PAD_FEC_TX_EN__FEC_TX_EN, PAD_CTL_DSE_HIGH),
NEW_PAD_CTRL(MX53_PAD_FEC_REF_CLK__FEC_TX_CLK,
PAD_CTL_HYS | PAD_CTL_PKE),
NEW_PAD_CTRL(MX53_PAD_FEC_RX_ER__FEC_RX_ER,
PAD_CTL_HYS | PAD_CTL_PKE),
NEW_PAD_CTRL(MX53_PAD_FEC_CRS_DV__FEC_RX_DV,
PAD_CTL_HYS | PAD_CTL_PKE),
};
imx_iomux_v3_setup_multiple_pads(fec_pads, ARRAY_SIZE(fec_pads));
}
#ifdef CONFIG_FSL_ESDHC
struct fsl_esdhc_cfg esdhc_cfg[2] = {
{MMC_SDHC1_BASE_ADDR},
{MMC_SDHC3_BASE_ADDR},
};
int board_mmc_getcd(struct mmc *mmc)
{
struct fsl_esdhc_cfg *cfg = (struct fsl_esdhc_cfg *)mmc->priv;
int ret;
imx_iomux_v3_setup_pad(MX53_PAD_EIM_DA11__GPIO3_11);
gpio_direction_input(IMX_GPIO_NR(3, 11));
imx_iomux_v3_setup_pad(MX53_PAD_EIM_DA13__GPIO3_13);
gpio_direction_input(IMX_GPIO_NR(3, 13));
if (cfg->esdhc_base == MMC_SDHC1_BASE_ADDR)
ret = !gpio_get_value(IMX_GPIO_NR(3, 13));
else
ret = !gpio_get_value(IMX_GPIO_NR(3, 11));
return ret;
}
#define SD_CMD_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_DSE_HIGH | \
PAD_CTL_PUS_100K_UP)
#define SD_PAD_CTRL (PAD_CTL_HYS | PAD_CTL_PUS_47K_UP | \
PAD_CTL_DSE_HIGH)
int board_mmc_init(bd_t *bis)
{
static const iomux_v3_cfg_t sd1_pads[] = {
NEW_PAD_CTRL(MX53_PAD_SD1_CMD__ESDHC1_CMD, SD_CMD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_SD1_CLK__ESDHC1_CLK, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_SD1_DATA0__ESDHC1_DAT0, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_SD1_DATA1__ESDHC1_DAT1, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_SD1_DATA2__ESDHC1_DAT2, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_SD1_DATA3__ESDHC1_DAT3, SD_PAD_CTRL),
MX53_PAD_EIM_DA13__GPIO3_13,
};
static const iomux_v3_cfg_t sd2_pads[] = {
NEW_PAD_CTRL(MX53_PAD_PATA_RESET_B__ESDHC3_CMD,
SD_CMD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_PATA_IORDY__ESDHC3_CLK, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_PATA_DATA8__ESDHC3_DAT0, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_PATA_DATA9__ESDHC3_DAT1, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_PATA_DATA10__ESDHC3_DAT2, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_PATA_DATA11__ESDHC3_DAT3, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_PATA_DATA0__ESDHC3_DAT4, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_PATA_DATA1__ESDHC3_DAT5, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_PATA_DATA2__ESDHC3_DAT6, SD_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_PATA_DATA3__ESDHC3_DAT7, SD_PAD_CTRL),
MX53_PAD_EIM_DA11__GPIO3_11,
};
u32 index;
int ret;
esdhc_cfg[0].sdhc_clk = mxc_get_clock(MXC_ESDHC_CLK);
esdhc_cfg[1].sdhc_clk = mxc_get_clock(MXC_ESDHC3_CLK);
for (index = 0; index < CONFIG_SYS_FSL_ESDHC_NUM; index++) {
switch (index) {
case 0:
imx_iomux_v3_setup_multiple_pads(sd1_pads,
ARRAY_SIZE(sd1_pads));
break;
case 1:
imx_iomux_v3_setup_multiple_pads(sd2_pads,
ARRAY_SIZE(sd2_pads));
break;
default:
printf("Warning: you configured more ESDHC controller"
"(%d) as supported by the board(2)\n",
CONFIG_SYS_FSL_ESDHC_NUM);
return -EINVAL;
}
ret = fsl_esdhc_initialize(bis, &esdhc_cfg[index]);
if (ret)
return ret;
}
return 0;
}
#endif
#define I2C_PAD_CTRL (PAD_CTL_SRE_FAST | PAD_CTL_DSE_HIGH | \
PAD_CTL_PUS_100K_UP | PAD_CTL_ODE)
static void setup_iomux_i2c(void)
{
static const iomux_v3_cfg_t i2c1_pads[] = {
NEW_PAD_CTRL(MX53_PAD_CSI0_DAT8__I2C1_SDA, I2C_PAD_CTRL),
NEW_PAD_CTRL(MX53_PAD_CSI0_DAT9__I2C1_SCL, I2C_PAD_CTRL),
};
imx_iomux_v3_setup_multiple_pads(i2c1_pads, ARRAY_SIZE(i2c1_pads));
}
static int power_init(void)
{
unsigned int val;
int ret;
struct pmic *p;
if (!i2c_probe(CONFIG_SYS_DIALOG_PMIC_I2C_ADDR)) {
ret = pmic_dialog_init(I2C_PMIC);
if (ret)
return ret;
p = pmic_get("DIALOG_PMIC");
if (!p)
return -ENODEV;
setenv("fdt_file", "imx53-qsb.dtb");
/* Set VDDA to 1.25V */
val = DA9052_BUCKCORE_BCOREEN | DA_BUCKCORE_VBCORE_1_250V;
ret = pmic_reg_write(p, DA9053_BUCKCORE_REG, val);
if (ret) {
printf("Writing to BUCKCORE_REG failed: %d\n", ret);
return ret;
}
pmic_reg_read(p, DA9053_SUPPLY_REG, &val);
val |= DA9052_SUPPLY_VBCOREGO;
ret = pmic_reg_write(p, DA9053_SUPPLY_REG, val);
if (ret) {
printf("Writing to SUPPLY_REG failed: %d\n", ret);
return ret;
}
/* Set Vcc peripheral to 1.30V */
ret = pmic_reg_write(p, DA9053_BUCKPRO_REG, 0x62);
if (ret) {
printf("Writing to BUCKPRO_REG failed: %d\n", ret);
return ret;
}
ret = pmic_reg_write(p, DA9053_SUPPLY_REG, 0x62);
if (ret) {
printf("Writing to SUPPLY_REG failed: %d\n", ret);
return ret;
}
return ret;
}
if (!i2c_probe(CONFIG_SYS_FSL_PMIC_I2C_ADDR)) {
ret = pmic_init(I2C_0);
if (ret)
return ret;
p = pmic_get("FSL_PMIC");
if (!p)
return -ENODEV;
setenv("fdt_file", "imx53-qsrb.dtb");
/* Set VDDGP to 1.25V for 1GHz on SW1 */
pmic_reg_read(p, REG_SW_0, &val);
val = (val & ~SWx_VOLT_MASK_MC34708) | SWx_1_250V_MC34708;
ret = pmic_reg_write(p, REG_SW_0, val);
if (ret) {
printf("Writing to REG_SW_0 failed: %d\n", ret);
return ret;
}
/* Set VCC as 1.30V on SW2 */
pmic_reg_read(p, REG_SW_1, &val);
val = (val & ~SWx_VOLT_MASK_MC34708) | SWx_1_300V_MC34708;
ret = pmic_reg_write(p, REG_SW_1, val);
if (ret) {
printf("Writing to REG_SW_1 failed: %d\n", ret);
return ret;
}
/* Set global reset timer to 4s */
pmic_reg_read(p, REG_POWER_CTL2, &val);
val = (val & ~TIMER_MASK_MC34708) | TIMER_4S_MC34708;
ret = pmic_reg_write(p, REG_POWER_CTL2, val);
if (ret) {
printf("Writing to REG_POWER_CTL2 failed: %d\n", ret);
return ret;
}
/* Set VUSBSEL and VUSBEN for USB PHY supply*/
pmic_reg_read(p, REG_MODE_0, &val);
val |= (VUSBSEL_MC34708 | VUSBEN_MC34708);
ret = pmic_reg_write(p, REG_MODE_0, val);
if (ret) {
printf("Writing to REG_MODE_0 failed: %d\n", ret);
return ret;
}
/* Set SWBST to 5V in auto mode */
val = SWBST_AUTO;
ret = pmic_reg_write(p, SWBST_CTRL, val);
if (ret) {
printf("Writing to SWBST_CTRL failed: %d\n", ret);
return ret;
}
return ret;
}
return -1;
}
static void clock_1GHz(void)
{
int ret;
u32 ref_clk = MXC_HCLK;
/*
* After increasing voltage to 1.25V, we can switch
* CPU clock to 1GHz and DDR to 400MHz safely
*/
ret = mxc_set_clock(ref_clk, 1000, MXC_ARM_CLK);
if (ret)
printf("CPU: Switch CPU clock to 1GHZ failed\n");
ret = mxc_set_clock(ref_clk, 400, MXC_PERIPH_CLK);
ret |= mxc_set_clock(ref_clk, 400, MXC_DDR_CLK);
if (ret)
printf("CPU: Switch DDR clock to 400MHz failed\n");
}
int board_early_init_f(void)
{
setup_iomux_uart();
setup_iomux_fec();
setup_iomux_lcd();
return 0;
}
#if defined(CONFIG_DISPLAY_CPUINFO)
int print_cpuinfo(void)
{
u32 cpurev;
cpurev = get_cpu_rev();
printf("CPU: Freescale i.MX%x family rev%d.%d at %d MHz\n",
(cpurev & 0xFF000) >> 12,
(cpurev & 0x000F0) >> 4,
(cpurev & 0x0000F) >> 0,
mxc_get_clock(MXC_ARM_CLK) / 1000000);
printf("Reset cause: %s\n", get_reset_cause());
return 0;
}
#endif
/*
* Do not overwrite the console
* Use always serial for U-Boot console
*/
int overwrite_console(void)
{
return 1;
}
int board_init(void)
{
gd->bd->bi_boot_params = PHYS_SDRAM_1 + 0x100;
mxc_set_sata_internal_clock();
setup_iomux_i2c();
return 0;
}
int board_late_init(void)
{
if (!power_init())
clock_1GHz();
print_cpuinfo();
return 0;
}
int checkboard(void)
{
puts("Board: MX53 LOCO\n");
return 0;
}