| /* |
| * Freescale i.MX28 clock setup code |
| * |
| * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| * on behalf of DENX Software Engineering GmbH |
| * |
| * Based on code from LTIB: |
| * Copyright (C) 2010 Freescale Semiconductor, Inc. |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <asm/errno.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/imx-regs.h> |
| |
| /* The PLL frequency is always 480MHz, see section 10.2 in iMX28 datasheet. */ |
| #define PLL_FREQ_KHZ 480000 |
| #define PLL_FREQ_COEF 18 |
| /* The XTAL frequency is always 24MHz, see section 10.2 in iMX28 datasheet. */ |
| #define XTAL_FREQ_KHZ 24000 |
| |
| #define PLL_FREQ_MHZ (PLL_FREQ_KHZ / 1000) |
| #define XTAL_FREQ_MHZ (XTAL_FREQ_KHZ / 1000) |
| |
| static uint32_t mx28_get_pclk(void) |
| { |
| struct mx28_clkctrl_regs *clkctrl_regs = |
| (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| uint32_t clkctrl, clkseq, clkfrac; |
| uint32_t frac, div; |
| |
| clkctrl = readl(&clkctrl_regs->hw_clkctrl_cpu); |
| |
| /* No support of fractional divider calculation */ |
| if (clkctrl & |
| (CLKCTRL_CPU_DIV_XTAL_FRAC_EN | CLKCTRL_CPU_DIV_CPU_FRAC_EN)) { |
| return 0; |
| } |
| |
| clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| |
| /* XTAL Path */ |
| if (clkseq & CLKCTRL_CLKSEQ_BYPASS_CPU) { |
| div = (clkctrl & CLKCTRL_CPU_DIV_XTAL_MASK) >> |
| CLKCTRL_CPU_DIV_XTAL_OFFSET; |
| return XTAL_FREQ_MHZ / div; |
| } |
| |
| /* REF Path */ |
| clkfrac = readl(&clkctrl_regs->hw_clkctrl_frac0); |
| frac = clkfrac & CLKCTRL_FRAC0_CPUFRAC_MASK; |
| div = clkctrl & CLKCTRL_CPU_DIV_CPU_MASK; |
| return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; |
| } |
| |
| static uint32_t mx28_get_hclk(void) |
| { |
| struct mx28_clkctrl_regs *clkctrl_regs = |
| (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| uint32_t div; |
| uint32_t clkctrl; |
| |
| clkctrl = readl(&clkctrl_regs->hw_clkctrl_hbus); |
| |
| /* No support of fractional divider calculation */ |
| if (clkctrl & CLKCTRL_HBUS_DIV_FRAC_EN) |
| return 0; |
| |
| div = clkctrl & CLKCTRL_HBUS_DIV_MASK; |
| return mx28_get_pclk() / div; |
| } |
| |
| static uint32_t mx28_get_emiclk(void) |
| { |
| struct mx28_clkctrl_regs *clkctrl_regs = |
| (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| uint32_t frac, div; |
| uint32_t clkctrl, clkseq, clkfrac; |
| |
| clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| clkctrl = readl(&clkctrl_regs->hw_clkctrl_emi); |
| |
| /* XTAL Path */ |
| if (clkseq & CLKCTRL_CLKSEQ_BYPASS_EMI) { |
| div = (clkctrl & CLKCTRL_EMI_DIV_XTAL_MASK) >> |
| CLKCTRL_EMI_DIV_XTAL_OFFSET; |
| return XTAL_FREQ_MHZ / div; |
| } |
| |
| clkfrac = readl(&clkctrl_regs->hw_clkctrl_frac0); |
| |
| /* REF Path */ |
| frac = (clkfrac & CLKCTRL_FRAC0_EMIFRAC_MASK) >> |
| CLKCTRL_FRAC0_EMIFRAC_OFFSET; |
| div = clkctrl & CLKCTRL_EMI_DIV_EMI_MASK; |
| return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; |
| } |
| |
| static uint32_t mx28_get_gpmiclk(void) |
| { |
| struct mx28_clkctrl_regs *clkctrl_regs = |
| (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| |
| uint32_t frac, div; |
| uint32_t clkctrl, clkseq, clkfrac; |
| |
| clkseq = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| clkctrl = readl(&clkctrl_regs->hw_clkctrl_gpmi); |
| |
| /* XTAL Path */ |
| if (clkseq & CLKCTRL_CLKSEQ_BYPASS_GPMI) { |
| div = clkctrl & CLKCTRL_GPMI_DIV_MASK; |
| return XTAL_FREQ_MHZ / div; |
| } |
| |
| clkfrac = readl(&clkctrl_regs->hw_clkctrl_frac1); |
| |
| /* REF Path */ |
| frac = (clkfrac & CLKCTRL_FRAC1_GPMIFRAC_MASK) >> |
| CLKCTRL_FRAC1_GPMIFRAC_OFFSET; |
| div = clkctrl & CLKCTRL_GPMI_DIV_MASK; |
| return (PLL_FREQ_MHZ * PLL_FREQ_COEF / frac) / div; |
| } |
| |
| /* |
| * Set IO clock frequency, in kHz |
| */ |
| void mx28_set_ioclk(enum mxs_ioclock io, uint32_t freq) |
| { |
| struct mx28_clkctrl_regs *clkctrl_regs = |
| (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| uint32_t div; |
| |
| if (freq == 0) |
| return; |
| |
| if (io > MXC_IOCLK1) |
| return; |
| |
| div = (PLL_FREQ_KHZ * PLL_FREQ_COEF) / freq; |
| |
| if (div < 18) |
| div = 18; |
| |
| if (div > 35) |
| div = 35; |
| |
| if (io == MXC_IOCLK0) { |
| writel(CLKCTRL_FRAC0_CLKGATEIO0, |
| &clkctrl_regs->hw_clkctrl_frac0_set); |
| clrsetbits_le32(&clkctrl_regs->hw_clkctrl_frac0, |
| CLKCTRL_FRAC0_IO0FRAC_MASK, |
| div << CLKCTRL_FRAC0_IO0FRAC_OFFSET); |
| writel(CLKCTRL_FRAC0_CLKGATEIO0, |
| &clkctrl_regs->hw_clkctrl_frac0_clr); |
| } else { |
| writel(CLKCTRL_FRAC0_CLKGATEIO1, |
| &clkctrl_regs->hw_clkctrl_frac0_set); |
| clrsetbits_le32(&clkctrl_regs->hw_clkctrl_frac0, |
| CLKCTRL_FRAC0_IO1FRAC_MASK, |
| div << CLKCTRL_FRAC0_IO1FRAC_OFFSET); |
| writel(CLKCTRL_FRAC0_CLKGATEIO1, |
| &clkctrl_regs->hw_clkctrl_frac0_clr); |
| } |
| } |
| |
| /* |
| * Get IO clock, returns IO clock in kHz |
| */ |
| static uint32_t mx28_get_ioclk(enum mxs_ioclock io) |
| { |
| struct mx28_clkctrl_regs *clkctrl_regs = |
| (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| uint32_t tmp, ret; |
| |
| if (io > MXC_IOCLK1) |
| return 0; |
| |
| tmp = readl(&clkctrl_regs->hw_clkctrl_frac0); |
| |
| if (io == MXC_IOCLK0) |
| ret = (tmp & CLKCTRL_FRAC0_IO0FRAC_MASK) >> |
| CLKCTRL_FRAC0_IO0FRAC_OFFSET; |
| else |
| ret = (tmp & CLKCTRL_FRAC0_IO1FRAC_MASK) >> |
| CLKCTRL_FRAC0_IO1FRAC_OFFSET; |
| |
| return (PLL_FREQ_KHZ * PLL_FREQ_COEF) / ret; |
| } |
| |
| /* |
| * Configure SSP clock frequency, in kHz |
| */ |
| void mx28_set_sspclk(enum mxs_sspclock ssp, uint32_t freq, int xtal) |
| { |
| struct mx28_clkctrl_regs *clkctrl_regs = |
| (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| uint32_t clk, clkreg; |
| |
| if (ssp > MXC_SSPCLK3) |
| return; |
| |
| clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + |
| (ssp * sizeof(struct mx28_register)); |
| |
| clrbits_le32(clkreg, CLKCTRL_SSP_CLKGATE); |
| while (readl(clkreg) & CLKCTRL_SSP_CLKGATE) |
| ; |
| |
| if (xtal) |
| clk = XTAL_FREQ_KHZ; |
| else |
| clk = mx28_get_ioclk(ssp >> 1); |
| |
| if (freq > clk) |
| return; |
| |
| /* Calculate the divider and cap it if necessary */ |
| clk /= freq; |
| if (clk > CLKCTRL_SSP_DIV_MASK) |
| clk = CLKCTRL_SSP_DIV_MASK; |
| |
| clrsetbits_le32(clkreg, CLKCTRL_SSP_DIV_MASK, clk); |
| while (readl(clkreg) & CLKCTRL_SSP_BUSY) |
| ; |
| |
| if (xtal) |
| writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, |
| &clkctrl_regs->hw_clkctrl_clkseq_set); |
| else |
| writel(CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp, |
| &clkctrl_regs->hw_clkctrl_clkseq_clr); |
| } |
| |
| /* |
| * Return SSP frequency, in kHz |
| */ |
| static uint32_t mx28_get_sspclk(enum mxs_sspclock ssp) |
| { |
| struct mx28_clkctrl_regs *clkctrl_regs = |
| (struct mx28_clkctrl_regs *)MXS_CLKCTRL_BASE; |
| uint32_t clkreg; |
| uint32_t clk, tmp; |
| |
| if (ssp > MXC_SSPCLK3) |
| return 0; |
| |
| tmp = readl(&clkctrl_regs->hw_clkctrl_clkseq); |
| if (tmp & (CLKCTRL_CLKSEQ_BYPASS_SSP0 << ssp)) |
| return XTAL_FREQ_KHZ; |
| |
| clkreg = (uint32_t)(&clkctrl_regs->hw_clkctrl_ssp0) + |
| (ssp * sizeof(struct mx28_register)); |
| |
| tmp = readl(clkreg) & CLKCTRL_SSP_DIV_MASK; |
| |
| if (tmp == 0) |
| return 0; |
| |
| clk = mx28_get_ioclk(ssp >> 1); |
| |
| return clk / tmp; |
| } |
| |
| /* |
| * Set SSP/MMC bus frequency, in kHz) |
| */ |
| void mx28_set_ssp_busclock(unsigned int bus, uint32_t freq) |
| { |
| struct mx28_ssp_regs *ssp_regs; |
| const uint32_t sspclk = mx28_get_sspclk(bus); |
| uint32_t reg; |
| uint32_t divide, rate, tgtclk; |
| |
| ssp_regs = (struct mx28_ssp_regs *)(MXS_SSP0_BASE + (bus * 0x2000)); |
| |
| /* |
| * SSP bit rate = SSPCLK / (CLOCK_DIVIDE * (1 + CLOCK_RATE)), |
| * CLOCK_DIVIDE has to be an even value from 2 to 254, and |
| * CLOCK_RATE could be any integer from 0 to 255. |
| */ |
| for (divide = 2; divide < 254; divide += 2) { |
| rate = sspclk / freq / divide; |
| if (rate <= 256) |
| break; |
| } |
| |
| tgtclk = sspclk / divide / rate; |
| while (tgtclk > freq) { |
| rate++; |
| tgtclk = sspclk / divide / rate; |
| } |
| if (rate > 256) |
| rate = 256; |
| |
| /* Always set timeout the maximum */ |
| reg = SSP_TIMING_TIMEOUT_MASK | |
| (divide << SSP_TIMING_CLOCK_DIVIDE_OFFSET) | |
| ((rate - 1) << SSP_TIMING_CLOCK_RATE_OFFSET); |
| writel(reg, &ssp_regs->hw_ssp_timing); |
| |
| debug("SPI%d: Set freq rate to %d KHz (requested %d KHz)\n", |
| bus, tgtclk, freq); |
| } |
| |
| uint32_t mxc_get_clock(enum mxc_clock clk) |
| { |
| switch (clk) { |
| case MXC_ARM_CLK: |
| return mx28_get_pclk() * 1000000; |
| case MXC_GPMI_CLK: |
| return mx28_get_gpmiclk() * 1000000; |
| case MXC_AHB_CLK: |
| case MXC_IPG_CLK: |
| return mx28_get_hclk() * 1000000; |
| case MXC_EMI_CLK: |
| return mx28_get_emiclk(); |
| case MXC_IO0_CLK: |
| return mx28_get_ioclk(MXC_IOCLK0); |
| case MXC_IO1_CLK: |
| return mx28_get_ioclk(MXC_IOCLK1); |
| case MXC_SSP0_CLK: |
| return mx28_get_sspclk(MXC_SSPCLK0); |
| case MXC_SSP1_CLK: |
| return mx28_get_sspclk(MXC_SSPCLK1); |
| case MXC_SSP2_CLK: |
| return mx28_get_sspclk(MXC_SSPCLK2); |
| case MXC_SSP3_CLK: |
| return mx28_get_sspclk(MXC_SSPCLK3); |
| } |
| |
| return 0; |
| } |