blob: 21498e89570f666b3fa0e1d0ce70158168028f3b [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* (C) Copyright 2018 Rockchip Electronics Co., Ltd.
*/
#include <common.h>
#include <debug_uart.h>
#include <dm.h>
#include <init.h>
#include <log.h>
#include <ram.h>
#include <syscon.h>
#include <asm/arch-rockchip/clock.h>
#include <asm/arch-rockchip/cru_px30.h>
#include <asm/arch-rockchip/grf_px30.h>
#include <asm/arch-rockchip/hardware.h>
#include <asm/arch-rockchip/sdram.h>
#include <asm/arch-rockchip/sdram_px30.h>
#include <linux/delay.h>
struct dram_info {
#ifdef CONFIG_TPL_BUILD
struct ddr_pctl_regs *pctl;
struct ddr_phy_regs *phy;
struct px30_cru *cru;
struct msch_regs *msch;
struct px30_ddr_grf_regs *ddr_grf;
struct px30_grf *grf;
#endif
struct ram_info info;
struct px30_pmugrf *pmugrf;
};
#ifdef CONFIG_TPL_BUILD
u8 ddr_cfg_2_rbc[] = {
/*
* [6:4] max row: 13+n
* [3] bank(0:4bank,1:8bank)
* [2:0] col(10+n)
*/
((5 << 4) | (1 << 3) | 0), /* 0 */
((5 << 4) | (1 << 3) | 1), /* 1 */
((4 << 4) | (1 << 3) | 2), /* 2 */
((3 << 4) | (1 << 3) | 3), /* 3 */
((2 << 4) | (1 << 3) | 4), /* 4 */
((5 << 4) | (0 << 3) | 2), /* 5 */
((4 << 4) | (1 << 3) | 2), /* 6 */
/*((0<<3)|3),*/ /* 12 for ddr4 */
/*((1<<3)|1),*/ /* 13 B,C exchange for rkvdec */
};
/*
* for ddr4 if ddrconfig=7, upctl should set 7 and noc should
* set to 1 for more efficient.
* noc ddrconf, upctl addrmap
* 1 7
* 2 8
* 3 9
* 12 10
* 5 11
*/
u8 d4_rbc_2_d3_rbc[] = {
1, /* 7 */
2, /* 8 */
3, /* 9 */
12, /* 10 */
5, /* 11 */
};
/*
* row higher than cs should be disabled by set to 0xf
* rank addrmap calculate by real cap.
*/
u32 addrmap[][8] = {
/* map0 map1, map2, map3, map4, map5
* map6, map7, map8
* -------------------------------------------------------
* bk2-0 col 5-2 col 9-6 col 11-10 row 11-0
* row 15-12 row 17-16 bg1,0
* -------------------------------------------------------
* 4,3,2 5-2 9-6 6
* 3,2
*/
{0x00060606, 0x00000000, 0x1f1f0000, 0x00001f1f, 0x05050505,
0x05050505, 0x00000505, 0x3f3f}, /* 0 */
{0x00070707, 0x00000000, 0x1f000000, 0x00001f1f, 0x06060606,
0x06060606, 0x06060606, 0x3f3f}, /* 1 */
{0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f3f}, /* 2 */
{0x00090909, 0x00000000, 0x00000000, 0x00001f00, 0x08080808,
0x08080808, 0x00000f0f, 0x3f3f}, /* 3 */
{0x000a0a0a, 0x00000000, 0x00000000, 0x00000000, 0x09090909,
0x0f090909, 0x00000f0f, 0x3f3f}, /* 4 */
{0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000606, 0x3f3f}, /* 5 */
{0x00080808, 0x00000000, 0x00000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f0f, 0x3f3f}, /* 6 */
{0x003f0808, 0x00000006, 0x1f1f0000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000606, 0x0600}, /* 7 */
{0x003f0909, 0x00000007, 0x1f000000, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x0700}, /* 8 */
{0x003f0a0a, 0x01010100, 0x01010101, 0x00001f1f, 0x08080808,
0x08080808, 0x00000f0f, 0x0801}, /* 9 */
{0x003f0909, 0x01010100, 0x01010101, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f01}, /* 10 */
{0x003f0808, 0x00000007, 0x1f000000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000606, 0x3f00}, /* 11 */
/* when ddr4 12 map to 10, when ddr3 12 unused */
{0x003f0909, 0x01010100, 0x01010101, 0x00001f1f, 0x07070707,
0x07070707, 0x00000f07, 0x3f01}, /* 10 */
{0x00070706, 0x00000000, 0x1f010000, 0x00001f1f, 0x06060606,
0x06060606, 0x00000606, 0x3f3f}, /* 13 */
};
#define PMUGRF_BASE_ADDR 0xFF010000
#define CRU_BASE_ADDR 0xFF2B0000
#define GRF_BASE_ADDR 0xFF140000
#define DDRC_BASE_ADDR 0xFF600000
#define DDR_PHY_BASE_ADDR 0xFF2A0000
#define SERVER_MSCH0_BASE_ADDR 0xFF530000
#define DDR_GRF_BASE_ADDR 0xff630000
struct dram_info dram_info;
struct px30_sdram_params sdram_configs[] = {
#if defined(CONFIG_RAM_ROCKCHIP_DDR4)
#include "sdram-px30-ddr4-detect-333.inc"
#elif defined(CONFIG_RAM_ROCKCHIP_LPDDR2)
#include "sdram-px30-lpddr2-detect-333.inc"
#elif defined(CONFIG_RAM_ROCKCHIP_LPDDR3)
#include "sdram-px30-lpddr3-detect-333.inc"
#else
#include "sdram-px30-ddr3-detect-333.inc"
#endif
};
struct ddr_phy_skew skew = {
#include "sdram-px30-ddr_skew.inc"
};
static void rkclk_ddr_reset(struct dram_info *dram,
u32 ctl_srstn, u32 ctl_psrstn,
u32 phy_srstn, u32 phy_psrstn)
{
writel(upctl2_srstn_req(ctl_srstn) | upctl2_psrstn_req(ctl_psrstn) |
upctl2_asrstn_req(ctl_srstn),
&dram->cru->softrst_con[1]);
writel(ddrphy_srstn_req(phy_srstn) | ddrphy_psrstn_req(phy_psrstn),
&dram->cru->softrst_con[2]);
}
static void rkclk_set_dpll(struct dram_info *dram, unsigned int hz)
{
unsigned int refdiv, postdiv1, postdiv2, fbdiv;
int delay = 1000;
u32 mhz = hz / MHz;
refdiv = 1;
if (mhz <= 300) {
postdiv1 = 4;
postdiv2 = 2;
} else if (mhz <= 400) {
postdiv1 = 6;
postdiv2 = 1;
} else if (mhz <= 600) {
postdiv1 = 4;
postdiv2 = 1;
} else if (mhz <= 800) {
postdiv1 = 3;
postdiv2 = 1;
} else if (mhz <= 1600) {
postdiv1 = 2;
postdiv2 = 1;
} else {
postdiv1 = 1;
postdiv2 = 1;
}
fbdiv = (mhz * refdiv * postdiv1 * postdiv2) / 24;
writel(DPLL_MODE(CLOCK_FROM_XIN_OSC), &dram->cru->mode);
writel(POSTDIV1(postdiv1) | FBDIV(fbdiv), &dram->cru->pll[1].con0);
writel(DSMPD(1) | POSTDIV2(postdiv2) | REFDIV(refdiv),
&dram->cru->pll[1].con1);
while (delay > 0) {
udelay(1);
if (LOCK(readl(&dram->cru->pll[1].con1)))
break;
delay--;
}
writel(DPLL_MODE(CLOCK_FROM_PLL), &dram->cru->mode);
}
static void rkclk_configure_ddr(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
/* for inno ddr phy need 2*freq */
rkclk_set_dpll(dram, sdram_params->base.ddr_freq * MHz * 2);
}
/* return ddrconfig value
* (-1), find ddrconfig fail
* other, the ddrconfig value
* only support cs0_row >= cs1_row
*/
static unsigned int calculate_ddrconfig(struct px30_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 bw, die_bw, col, bank;
u32 i, tmp;
u32 ddrconf = -1;
bw = cap_info->bw;
die_bw = cap_info->dbw;
col = cap_info->col;
bank = cap_info->bk;
if (sdram_params->base.dramtype == DDR4) {
if (die_bw == 0)
ddrconf = 7 + bw;
else
ddrconf = 12 - bw;
ddrconf = d4_rbc_2_d3_rbc[ddrconf - 7];
} else {
tmp = ((bank - 2) << 3) | (col + bw - 10);
for (i = 0; i < 7; i++)
if ((ddr_cfg_2_rbc[i] & 0xf) == tmp) {
ddrconf = i;
break;
}
if (i > 6)
printascii("calculate ddrconfig error\n");
}
return ddrconf;
}
/*
* calculate controller dram address map, and setting to register.
* argument sdram_params->ch.ddrconf must be right value before
* call this function.
*/
static void set_ctl_address_map(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *pctl_base = dram->pctl;
u32 cs_pst, bg, max_row, ddrconf;
u32 i;
if (sdram_params->base.dramtype == DDR4)
/*
* DDR4 8bit dram BG = 2(4bank groups),
* 16bit dram BG = 1 (2 bank groups)
*/
bg = (cap_info->dbw == 0) ? 2 : 1;
else
bg = 0;
cs_pst = cap_info->bw + cap_info->col +
bg + cap_info->bk + cap_info->cs0_row;
if (cs_pst >= 32 || cap_info->rank == 1)
writel(0x1f, pctl_base + DDR_PCTL2_ADDRMAP0);
else
writel(cs_pst - 8, pctl_base + DDR_PCTL2_ADDRMAP0);
ddrconf = cap_info->ddrconfig;
if (sdram_params->base.dramtype == DDR4) {
for (i = 0; i < ARRAY_SIZE(d4_rbc_2_d3_rbc); i++) {
if (d4_rbc_2_d3_rbc[i] == ddrconf) {
ddrconf = 7 + i;
break;
}
}
}
sdram_copy_to_reg((u32 *)(pctl_base + DDR_PCTL2_ADDRMAP1),
&addrmap[ddrconf][0], 8 * 4);
max_row = cs_pst - 1 - 8 - (addrmap[ddrconf][5] & 0xf);
if (max_row < 12)
printascii("set addrmap fail\n");
/* need to disable row ahead of rank by set to 0xf */
for (i = 17; i > max_row; i--)
clrsetbits_le32(pctl_base + DDR_PCTL2_ADDRMAP6 +
((i - 12) * 8 / 32) * 4,
0xf << ((i - 12) * 8 % 32),
0xf << ((i - 12) * 8 % 32));
if ((sdram_params->base.dramtype == LPDDR3 ||
sdram_params->base.dramtype == LPDDR2) &&
cap_info->row_3_4)
setbits_le32(pctl_base + DDR_PCTL2_ADDRMAP6, 1 << 31);
if (sdram_params->base.dramtype == DDR4 && cap_info->bw != 0x2)
setbits_le32(pctl_base + DDR_PCTL2_PCCFG, 1 << 8);
}
/*
* rank = 1: cs0
* rank = 2: cs1
*/
int read_mr(struct dram_info *dram, u32 rank, u32 mr_num)
{
void __iomem *ddr_grf_base = dram->ddr_grf;
pctl_read_mr(dram->pctl, rank, mr_num);
return (readl(ddr_grf_base + DDR_GRF_STATUS(0)) & 0xff);
}
#define MIN(a, b) (((a) > (b)) ? (b) : (a))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
static u32 check_rd_gate(struct dram_info *dram)
{
void __iomem *phy_base = dram->phy;
u32 max_val = 0;
u32 min_val = 0xff;
u32 gate[4];
u32 i, bw;
bw = (readl(PHY_REG(phy_base, 0x0)) >> 4) & 0xf;
switch (bw) {
case 0x1:
bw = 1;
break;
case 0x3:
bw = 2;
break;
case 0xf:
default:
bw = 4;
break;
}
for (i = 0; i < bw; i++) {
gate[i] = readl(PHY_REG(phy_base, 0xfb + i));
max_val = MAX(max_val, gate[i]);
min_val = MIN(min_val, gate[i]);
}
if (max_val > 0x80 || min_val < 0x20)
return -1;
else
return 0;
}
static int data_training(struct dram_info *dram, u32 cs, u32 dramtype)
{
void __iomem *pctl_base = dram->pctl;
u32 dis_auto_zq = 0;
u32 pwrctl;
u32 ret;
/* disable auto low-power */
pwrctl = readl(pctl_base + DDR_PCTL2_PWRCTL);
writel(0, pctl_base + DDR_PCTL2_PWRCTL);
dis_auto_zq = pctl_dis_zqcs_aref(dram->pctl);
ret = phy_data_training(dram->phy, cs, dramtype);
pctl_rest_zqcs_aref(dram->pctl, dis_auto_zq);
/* restore auto low-power */
writel(pwrctl, pctl_base + DDR_PCTL2_PWRCTL);
return ret;
}
static void dram_set_bw(struct dram_info *dram, u32 bw)
{
phy_dram_set_bw(dram->phy, bw);
}
static void set_ddrconfig(struct dram_info *dram, u32 ddrconfig)
{
writel(ddrconfig | (ddrconfig << 8), &dram->msch->deviceconf);
rk_clrsetreg(&dram->grf->soc_noc_con[1], 0x3 << 14, 0 << 14);
}
static void sdram_msch_config(struct msch_regs *msch,
struct sdram_msch_timings *noc_timings,
struct sdram_cap_info *cap_info,
struct sdram_base_params *base)
{
u64 cs_cap[2];
cs_cap[0] = sdram_get_cs_cap(cap_info, 0, base->dramtype);
cs_cap[1] = sdram_get_cs_cap(cap_info, 1, base->dramtype);
writel(((((cs_cap[1] >> 20) / 64) & 0xff) << 8) |
(((cs_cap[0] >> 20) / 64) & 0xff),
&msch->devicesize);
writel(noc_timings->ddrtiminga0.d32,
&msch->ddrtiminga0);
writel(noc_timings->ddrtimingb0.d32,
&msch->ddrtimingb0);
writel(noc_timings->ddrtimingc0.d32,
&msch->ddrtimingc0);
writel(noc_timings->devtodev0.d32,
&msch->devtodev0);
writel(noc_timings->ddrmode.d32, &msch->ddrmode);
writel(noc_timings->ddr4timing.d32,
&msch->ddr4timing);
writel(noc_timings->agingx0, &msch->agingx0);
writel(noc_timings->agingx0, &msch->aging0);
writel(noc_timings->agingx0, &msch->aging1);
writel(noc_timings->agingx0, &msch->aging2);
writel(noc_timings->agingx0, &msch->aging3);
}
static void dram_all_config(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 sys_reg2 = 0;
u32 sys_reg3 = 0;
set_ddrconfig(dram, cap_info->ddrconfig);
sdram_org_config(cap_info, &sdram_params->base, &sys_reg2,
&sys_reg3, 0);
writel(sys_reg2, &dram->pmugrf->os_reg[2]);
writel(sys_reg3, &dram->pmugrf->os_reg[3]);
sdram_msch_config(dram->msch, &sdram_params->ch.noc_timings, cap_info,
&sdram_params->base);
}
static void enable_low_power(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
void __iomem *pctl_base = dram->pctl;
void __iomem *phy_base = dram->phy;
void __iomem *ddr_grf_base = dram->ddr_grf;
u32 grf_lp_con;
/*
* bit0: grf_upctl_axi_cg_en = 1 enable upctl2 axi clk auto gating
* bit1: grf_upctl_apb_cg_en = 1 ungated axi,core clk for apb access
* bit2: grf_upctl_core_cg_en = 1 enable upctl2 core clk auto gating
* bit3: grf_selfref_type2_en = 0 disable core clk gating when type2 sr
* bit4: grf_upctl_syscreq_cg_en = 1
* ungating coreclk when c_sysreq assert
* bit8-11: grf_auto_sr_dly = 6
*/
writel(0x1f1f0617, &dram->ddr_grf->ddr_grf_con[1]);
if (sdram_params->base.dramtype == DDR4)
grf_lp_con = (0x7 << 16) | (1 << 1);
else if (sdram_params->base.dramtype == DDR3)
grf_lp_con = (0x7 << 16) | (1 << 0);
else
grf_lp_con = (0x7 << 16) | (1 << 2);
/* en lpckdis_en */
grf_lp_con = grf_lp_con | (0x1 << (9 + 16)) | (0x1 << 9);
writel(grf_lp_con, ddr_grf_base + DDR_GRF_LP_CON);
/* off digit module clock when enter power down */
setbits_le32(PHY_REG(phy_base, 7), 1 << 7);
/* enable sr, pd */
if (PD_IDLE == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 1));
if (SR_IDLE == 0)
clrbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
else
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, 1);
setbits_le32(pctl_base + DDR_PCTL2_PWRCTL, (1 << 3));
}
/*
* pre_init: 0: pre init for dram cap detect
* 1: detect correct cap(except cs1 row)info, than reinit
* 2: after reinit, we detect cs1_row, if cs1_row not equal
* to cs0_row and cs is in middle on ddrconf map, we need
* to reinit dram, than set the correct ddrconf.
*/
static int sdram_init_(struct dram_info *dram,
struct px30_sdram_params *sdram_params, u32 pre_init)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
void __iomem *pctl_base = dram->pctl;
rkclk_ddr_reset(dram, 1, 1, 1, 1);
udelay(10);
/*
* dereset ddr phy psrstn to config pll,
* if using phy pll psrstn must be dereset
* before config pll
*/
rkclk_ddr_reset(dram, 1, 1, 1, 0);
rkclk_configure_ddr(dram, sdram_params);
/* release phy srst to provide clk to ctrl */
rkclk_ddr_reset(dram, 1, 1, 0, 0);
udelay(10);
phy_soft_reset(dram->phy);
/* release ctrl presetn, and config ctl registers */
rkclk_ddr_reset(dram, 1, 0, 0, 0);
pctl_cfg(dram->pctl, &sdram_params->pctl_regs, SR_IDLE, PD_IDLE);
cap_info->ddrconfig = calculate_ddrconfig(sdram_params);
set_ctl_address_map(dram, sdram_params);
phy_cfg(dram->phy, &sdram_params->phy_regs, sdram_params->skew,
&sdram_params->base, cap_info->bw);
/* enable dfi_init_start to init phy after ctl srstn deassert */
setbits_le32(pctl_base + DDR_PCTL2_DFIMISC, (1 << 5) | (1 << 4));
rkclk_ddr_reset(dram, 0, 0, 0, 0);
/* wait for dfi_init_done and dram init complete */
while ((readl(pctl_base + DDR_PCTL2_STAT) & 0x7) == 0)
continue;
if (sdram_params->base.dramtype == LPDDR3)
pctl_write_mr(dram->pctl, 3, 11, 3, LPDDR3);
/* do ddr gate training */
redo_cs0_training:
if (data_training(dram, 0, sdram_params->base.dramtype) != 0) {
if (pre_init != 0)
printascii("DTT cs0 error\n");
return -1;
}
if (check_rd_gate(dram)) {
printascii("re training cs0");
goto redo_cs0_training;
}
if (sdram_params->base.dramtype == LPDDR3) {
if ((read_mr(dram, 1, 8) & 0x3) != 0x3)
return -1;
} else if (sdram_params->base.dramtype == LPDDR2) {
if ((read_mr(dram, 1, 8) & 0x3) != 0x0)
return -1;
}
/* for px30: when 2cs, both 2 cs should be training */
if (pre_init != 0 && cap_info->rank == 2) {
redo_cs1_training:
if (data_training(dram, 1, sdram_params->base.dramtype) != 0) {
printascii("DTT cs1 error\n");
return -1;
}
if (check_rd_gate(dram)) {
printascii("re training cs1");
goto redo_cs1_training;
}
}
if (sdram_params->base.dramtype == DDR4)
pctl_write_vrefdq(dram->pctl, 0x3, 5670,
sdram_params->base.dramtype);
dram_all_config(dram, sdram_params);
enable_low_power(dram, sdram_params);
return 0;
}
static int dram_detect_cap(struct dram_info *dram,
struct px30_sdram_params *sdram_params,
unsigned char channel)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
/*
* for ddr3: ddrconf = 3
* for ddr4: ddrconf = 12
* for lpddr3: ddrconf = 3
* default bw = 1
*/
u32 bk, bktmp;
u32 col, coltmp;
u32 rowtmp;
u32 cs;
u32 bw = 1;
u32 dram_type = sdram_params->base.dramtype;
if (dram_type != DDR4) {
/* detect col and bk for ddr3/lpddr3 */
coltmp = 12;
bktmp = 3;
if (dram_type == LPDDR2)
rowtmp = 15;
else
rowtmp = 16;
if (sdram_detect_col(cap_info, coltmp) != 0)
goto cap_err;
sdram_detect_bank(cap_info, coltmp, bktmp);
sdram_detect_dbw(cap_info, dram_type);
} else {
/* detect bg for ddr4 */
coltmp = 10;
bktmp = 4;
rowtmp = 17;
col = 10;
bk = 2;
cap_info->col = col;
cap_info->bk = bk;
sdram_detect_bg(cap_info, coltmp);
}
/* detect row */
if (sdram_detect_row(cap_info, coltmp, bktmp, rowtmp) != 0)
goto cap_err;
/* detect row_3_4 */
sdram_detect_row_3_4(cap_info, coltmp, bktmp);
/* bw and cs detect using data training */
if (data_training(dram, 1, dram_type) == 0)
cs = 1;
else
cs = 0;
cap_info->rank = cs + 1;
dram_set_bw(dram, 2);
if (data_training(dram, 0, dram_type) == 0)
bw = 2;
else
bw = 1;
cap_info->bw = bw;
cap_info->cs0_high16bit_row = cap_info->cs0_row;
if (cs) {
cap_info->cs1_row = cap_info->cs0_row;
cap_info->cs1_high16bit_row = cap_info->cs0_row;
} else {
cap_info->cs1_row = 0;
cap_info->cs1_high16bit_row = 0;
}
return 0;
cap_err:
return -1;
}
/* return: 0 = success, other = fail */
static int sdram_init_detect(struct dram_info *dram,
struct px30_sdram_params *sdram_params)
{
struct sdram_cap_info *cap_info = &sdram_params->ch.cap_info;
u32 ret;
u32 sys_reg = 0;
u32 sys_reg3 = 0;
if (sdram_init_(dram, sdram_params, 0) != 0)
return -1;
if (dram_detect_cap(dram, sdram_params, 0) != 0)
return -1;
/* modify bw, cs related timing */
pctl_remodify_sdram_params(&sdram_params->pctl_regs, cap_info,
sdram_params->base.dramtype);
/* reinit sdram by real dram cap */
ret = sdram_init_(dram, sdram_params, 1);
if (ret != 0)
goto out;
/* redetect cs1 row */
sdram_detect_cs1_row(cap_info, sdram_params->base.dramtype);
if (cap_info->cs1_row) {
sys_reg = readl(&dram->pmugrf->os_reg[2]);
sys_reg3 = readl(&dram->pmugrf->os_reg[3]);
SYS_REG_ENC_CS1_ROW(cap_info->cs1_row,
sys_reg, sys_reg3, 0);
writel(sys_reg, &dram->pmugrf->os_reg[2]);
writel(sys_reg3, &dram->pmugrf->os_reg[3]);
}
ret = sdram_detect_high_row(cap_info);
out:
return ret;
}
struct px30_sdram_params
*get_default_sdram_config(void)
{
sdram_configs[0].skew = &skew;
return &sdram_configs[0];
}
/* return: 0 = success, other = fail */
int sdram_init(void)
{
struct px30_sdram_params *sdram_params;
int ret = 0;
dram_info.phy = (void *)DDR_PHY_BASE_ADDR;
dram_info.pctl = (void *)DDRC_BASE_ADDR;
dram_info.grf = (void *)GRF_BASE_ADDR;
dram_info.cru = (void *)CRU_BASE_ADDR;
dram_info.msch = (void *)SERVER_MSCH0_BASE_ADDR;
dram_info.ddr_grf = (void *)DDR_GRF_BASE_ADDR;
dram_info.pmugrf = (void *)PMUGRF_BASE_ADDR;
sdram_params = get_default_sdram_config();
ret = sdram_init_detect(&dram_info, sdram_params);
if (ret)
goto error;
sdram_print_ddr_info(&sdram_params->ch.cap_info, &sdram_params->base, 0);
printascii("out\n");
return ret;
error:
return (-1);
}
#else
static int px30_dmc_probe(struct udevice *dev)
{
struct dram_info *priv = dev_get_priv(dev);
priv->pmugrf = syscon_get_first_range(ROCKCHIP_SYSCON_PMUGRF);
debug("%s: grf=%p\n", __func__, priv->pmugrf);
priv->info.base = CFG_SYS_SDRAM_BASE;
priv->info.size =
rockchip_sdram_size((phys_addr_t)&priv->pmugrf->os_reg[2]);
return 0;
}
static int px30_dmc_get_info(struct udevice *dev, struct ram_info *info)
{
struct dram_info *priv = dev_get_priv(dev);
*info = priv->info;
return 0;
}
static struct ram_ops px30_dmc_ops = {
.get_info = px30_dmc_get_info,
};
static const struct udevice_id px30_dmc_ids[] = {
{ .compatible = "rockchip,px30-dmc" },
{ }
};
U_BOOT_DRIVER(dmc_px30) = {
.name = "rockchip_px30_dmc",
.id = UCLASS_RAM,
.of_match = px30_dmc_ids,
.ops = &px30_dmc_ops,
.probe = px30_dmc_probe,
.priv_auto = sizeof(struct dram_info),
};
#endif /* CONFIG_TPL_BUILD */