blob: c3f8dac648ba4c4e6f3b1e802433534cbece3171 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2013
* David Feng <fenghua@phytium.com.cn>
*
* (C) Copyright 2016
* Alexander Graf <agraf@suse.de>
*/
#include <cpu_func.h>
#include <hang.h>
#include <log.h>
#include <asm/cache.h>
#include <asm/global_data.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
DECLARE_GLOBAL_DATA_PTR;
#if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF)
/*
* With 4k page granule, a virtual address is split into 4 lookup parts
* spanning 9 bits each:
*
* _______________________________________________
* | | | | | | |
* | 0 | Lv0 | Lv1 | Lv2 | Lv3 | off |
* |_______|_______|_______|_______|_______|_______|
* 63-48 47-39 38-30 29-21 20-12 11-00
*
* mask page size
*
* Lv0: FF8000000000 --
* Lv1: 7FC0000000 1G
* Lv2: 3FE00000 2M
* Lv3: 1FF000 4K
* off: FFF
*/
static int get_effective_el(void)
{
int el = current_el();
if (el == 2) {
u64 hcr_el2;
/*
* If we are using the EL2&0 translation regime, the TCR_EL2
* looks like the EL1 version, even though we are in EL2.
*/
__asm__ ("mrs %0, HCR_EL2\n" : "=r" (hcr_el2));
if (hcr_el2 & BIT(HCR_EL2_E2H_BIT))
return 1;
}
return el;
}
u64 get_tcr(u64 *pips, u64 *pva_bits)
{
int el = get_effective_el();
u64 max_addr = 0;
u64 ips, va_bits;
u64 tcr;
int i;
/* Find the largest address we need to support */
for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
max_addr = max(max_addr, mem_map[i].virt + mem_map[i].size);
/* Calculate the maximum physical (and thus virtual) address */
if (max_addr > (1ULL << 44)) {
ips = 5;
va_bits = 48;
} else if (max_addr > (1ULL << 42)) {
ips = 4;
va_bits = 44;
} else if (max_addr > (1ULL << 40)) {
ips = 3;
va_bits = 42;
} else if (max_addr > (1ULL << 36)) {
ips = 2;
va_bits = 40;
} else if (max_addr > (1ULL << 32)) {
ips = 1;
va_bits = 36;
} else {
ips = 0;
va_bits = 32;
}
if (el == 1) {
tcr = TCR_EL1_RSVD | (ips << 32) | TCR_EPD1_DISABLE;
} else if (el == 2) {
tcr = TCR_EL2_RSVD | (ips << 16);
} else {
tcr = TCR_EL3_RSVD | (ips << 16);
}
/* PTWs cacheable, inner/outer WBWA and inner shareable */
tcr |= TCR_TG0_4K | TCR_SHARED_INNER | TCR_ORGN_WBWA | TCR_IRGN_WBWA;
tcr |= TCR_T0SZ(va_bits);
if (pips)
*pips = ips;
if (pva_bits)
*pva_bits = va_bits;
return tcr;
}
#define MAX_PTE_ENTRIES 512
static int pte_type(u64 *pte)
{
return *pte & PTE_TYPE_MASK;
}
/* Returns the LSB number for a PTE on level <level> */
static int level2shift(int level)
{
/* Page is 12 bits wide, every level translates 9 bits */
return (12 + 9 * (3 - level));
}
static u64 *find_pte(u64 addr, int level)
{
int start_level = 0;
u64 *pte;
u64 idx;
u64 va_bits;
int i;
debug("addr=%llx level=%d\n", addr, level);
get_tcr(NULL, &va_bits);
if (va_bits < 39)
start_level = 1;
if (level < start_level)
return NULL;
/* Walk through all page table levels to find our PTE */
pte = (u64*)gd->arch.tlb_addr;
for (i = start_level; i < 4; i++) {
idx = (addr >> level2shift(i)) & 0x1FF;
pte += idx;
debug("idx=%llx PTE %p at level %d: %llx\n", idx, pte, i, *pte);
/* Found it */
if (i == level)
return pte;
/* PTE is no table (either invalid or block), can't traverse */
if (pte_type(pte) != PTE_TYPE_TABLE)
return NULL;
/* Off to the next level */
pte = (u64*)(*pte & 0x0000fffffffff000ULL);
}
/* Should never reach here */
return NULL;
}
#ifdef CONFIG_CMO_BY_VA_ONLY
static void __cmo_on_leaves(void (*cmo_fn)(unsigned long, unsigned long),
u64 pte, int level, u64 base)
{
u64 *ptep;
int i;
ptep = (u64 *)(pte & GENMASK_ULL(47, PAGE_SHIFT));
for (i = 0; i < PAGE_SIZE / sizeof(u64); i++) {
u64 end, va = base + i * BIT(level2shift(level));
u64 type, attrs;
pte = ptep[i];
type = pte & PTE_TYPE_MASK;
attrs = pte & PMD_ATTRINDX_MASK;
debug("PTE %llx at level %d VA %llx\n", pte, level, va);
/* Not valid? next! */
if (!(type & PTE_TYPE_VALID))
continue;
/* Not a leaf? Recurse on the next level */
if (!(type == PTE_TYPE_BLOCK ||
(level == 3 && type == PTE_TYPE_PAGE))) {
__cmo_on_leaves(cmo_fn, pte, level + 1, va);
continue;
}
/*
* From this point, this must be a leaf.
*
* Start excluding non memory mappings
*/
if (attrs != PTE_BLOCK_MEMTYPE(MT_NORMAL) &&
attrs != PTE_BLOCK_MEMTYPE(MT_NORMAL_NC))
continue;
end = va + BIT(level2shift(level)) - 1;
/* No intersection with RAM? */
if (end < gd->ram_base ||
va >= (gd->ram_base + gd->ram_size))
continue;
/*
* OK, we have a partial RAM mapping. However, this
* can cover *more* than the RAM. Yes, u-boot is
* *that* braindead. Compute the intersection we care
* about, and not a byte more.
*/
va = max(va, (u64)gd->ram_base);
end = min(end, gd->ram_base + gd->ram_size);
debug("Flush PTE %llx at level %d: %llx-%llx\n",
pte, level, va, end);
cmo_fn(va, end);
}
}
static void apply_cmo_to_mappings(void (*cmo_fn)(unsigned long, unsigned long))
{
u64 va_bits;
int sl = 0;
if (!gd->arch.tlb_addr)
return;
get_tcr(NULL, &va_bits);
if (va_bits < 39)
sl = 1;
__cmo_on_leaves(cmo_fn, gd->arch.tlb_addr, sl, 0);
}
#else
static inline void apply_cmo_to_mappings(void *dummy) {}
#endif
/* Returns and creates a new full table (512 entries) */
static u64 *create_table(void)
{
u64 *new_table = (u64*)gd->arch.tlb_fillptr;
u64 pt_len = MAX_PTE_ENTRIES * sizeof(u64);
/* Allocate MAX_PTE_ENTRIES pte entries */
gd->arch.tlb_fillptr += pt_len;
if (gd->arch.tlb_fillptr - gd->arch.tlb_addr > gd->arch.tlb_size)
panic("Insufficient RAM for page table: 0x%lx > 0x%lx. "
"Please increase the size in get_page_table_size()",
gd->arch.tlb_fillptr - gd->arch.tlb_addr,
gd->arch.tlb_size);
/* Mark all entries as invalid */
memset(new_table, 0, pt_len);
return new_table;
}
static void set_pte_table(u64 *pte, u64 *table)
{
/* Point *pte to the new table */
debug("Setting %p to addr=%p\n", pte, table);
*pte = PTE_TYPE_TABLE | (ulong)table;
}
/* Splits a block PTE into table with subpages spanning the old block */
static void split_block(u64 *pte, int level)
{
u64 old_pte = *pte;
u64 *new_table;
u64 i = 0;
/* level describes the parent level, we need the child ones */
int levelshift = level2shift(level + 1);
if (pte_type(pte) != PTE_TYPE_BLOCK)
panic("PTE %p (%llx) is not a block. Some driver code wants to "
"modify dcache settings for an range not covered in "
"mem_map.", pte, old_pte);
new_table = create_table();
debug("Splitting pte %p (%llx) into %p\n", pte, old_pte, new_table);
for (i = 0; i < MAX_PTE_ENTRIES; i++) {
new_table[i] = old_pte | (i << levelshift);
/* Level 3 block PTEs have the table type */
if ((level + 1) == 3)
new_table[i] |= PTE_TYPE_TABLE;
debug("Setting new_table[%lld] = %llx\n", i, new_table[i]);
}
/* Set the new table into effect */
set_pte_table(pte, new_table);
}
static void map_range(u64 virt, u64 phys, u64 size, int level,
u64 *table, u64 attrs)
{
u64 map_size = BIT_ULL(level2shift(level));
int i, idx;
idx = (virt >> level2shift(level)) & (MAX_PTE_ENTRIES - 1);
for (i = idx; size; i++) {
u64 next_size, *next_table;
if (level >= 1 &&
size >= map_size && !(virt & (map_size - 1))) {
if (level == 3)
table[i] = phys | attrs | PTE_TYPE_PAGE;
else
table[i] = phys | attrs;
virt += map_size;
phys += map_size;
size -= map_size;
continue;
}
/* Going one level down */
if (pte_type(&table[i]) == PTE_TYPE_FAULT)
set_pte_table(&table[i], create_table());
else if (pte_type(&table[i]) != PTE_TYPE_TABLE)
split_block(&table[i], level);
next_table = (u64 *)(table[i] & GENMASK_ULL(47, PAGE_SHIFT));
next_size = min(map_size - (virt & (map_size - 1)), size);
map_range(virt, phys, next_size, level + 1, next_table, attrs);
virt += next_size;
phys += next_size;
size -= next_size;
}
}
static void add_map(struct mm_region *map)
{
u64 attrs = map->attrs | PTE_TYPE_BLOCK | PTE_BLOCK_AF;
u64 va_bits;
int level = 0;
get_tcr(NULL, &va_bits);
if (va_bits < 39)
level = 1;
map_range(map->virt, map->phys, map->size, level,
(u64 *)gd->arch.tlb_addr, attrs);
}
static void count_range(u64 virt, u64 size, int level, int *cntp)
{
u64 map_size = BIT_ULL(level2shift(level));
int i, idx;
idx = (virt >> level2shift(level)) & (MAX_PTE_ENTRIES - 1);
for (i = idx; size; i++) {
u64 next_size;
if (level >= 1 &&
size >= map_size && !(virt & (map_size - 1))) {
virt += map_size;
size -= map_size;
continue;
}
/* Going one level down */
(*cntp)++;
next_size = min(map_size - (virt & (map_size - 1)), size);
count_range(virt, next_size, level + 1, cntp);
virt += next_size;
size -= next_size;
}
}
static int count_ranges(void)
{
int i, count = 0, level = 0;
u64 va_bits;
get_tcr(NULL, &va_bits);
if (va_bits < 39)
level = 1;
for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
count_range(mem_map[i].virt, mem_map[i].size, level, &count);
return count;
}
#define ALL_ATTRS (3 << 8 | PMD_ATTRINDX_MASK)
#define PTE_IS_TABLE(pte, level) (pte_type(&(pte)) == PTE_TYPE_TABLE && (level) < 3)
enum walker_state {
WALKER_STATE_START = 0,
WALKER_STATE_TABLE,
WALKER_STATE_REGION, /* block or page, depending on level */
};
/**
* __pagetable_walk() - Walk through the pagetable and call cb() for each memory region
*
* This is a software implementation of the ARMv8-A MMU translation table walk. As per
* section D5.4 of the ARMv8-A Architecture Reference Manual. It recursively walks the
* 4 or 3 levels of the page table and calls the callback function for each discrete
* region of memory (that being the discovery of a new table, a collection of blocks
* with the same attributes, or of pages with the same attributes).
*
* U-Boot picks the smallest number of virtual address (VA) bits that it can based on the
* memory map configured by the board. If this is less than 39 then the MMU will only use
* 3 levels of translation instead of 3 - skipping level 0.
*
* Each level has 512 entries of 64-bits each. Each entry includes attribute bits and
* an address. When the attribute bits indicate a table, the address is the physical
* address of the table, so we can recursively call _pagetable_walk() on it (after calling
* @cb). If instead they indicate a block or page, we record the start address and attributes
* and continue walking until we find a region with different attributes, or the end of the
* table, in either case we call @cb with the start and end address of the region.
*
* This approach can be used to fully emulate the MMU's translation table walk, as per
* Figure D5-25 of the ARMv8-A Architecture Reference Manual.
*
* @addr: The address of the table to walk
* @tcr: The TCR register value
* @level: The current level of the table
* @cb: The callback function to call for each region
* @priv: Private data to pass to the callback function
*/
static void __pagetable_walk(u64 addr, u64 tcr, int level, pte_walker_cb_t cb, void *priv)
{
u64 *table = (u64 *)addr;
u64 attrs, last_attrs = 0, last_addr = 0, entry_start = 0;
int i;
u64 va_bits = 64 - (tcr & (BIT(6) - 1));
static enum walker_state state[4] = { 0 };
static bool exit;
if (!level) {
exit = false;
if (va_bits < 39)
level = 1;
}
state[level] = WALKER_STATE_START;
/* Walk through the table entries */
for (i = 0; i < MAX_PTE_ENTRIES; i++) {
u64 pte = table[i];
u64 _addr = pte & GENMASK_ULL(va_bits, PAGE_SHIFT);
if (exit)
return;
if (pte_type(&pte) == PTE_TYPE_FAULT)
continue;
attrs = pte & ALL_ATTRS;
/* If we're currently inside a block or set of pages */
if (state[level] > WALKER_STATE_START && state[level] != WALKER_STATE_TABLE) {
/*
* Continue walking if this entry has the same attributes as the last and
* is one page/block away -- it's a contiguous region.
*/
if (attrs == last_attrs && _addr == last_addr + (1 << level2shift(level))) {
last_attrs = attrs;
last_addr = _addr;
continue;
} else {
/* We either hit a table or a new region */
exit = cb(entry_start, last_addr + (1 << level2shift(level)),
va_bits, level, priv);
if (exit)
return;
state[level] = WALKER_STATE_START;
}
}
last_attrs = attrs;
last_addr = _addr;
if (PTE_IS_TABLE(pte, level)) {
/* After the end of the table might be corrupted data */
if (!_addr || (pte & 0xfff) > 0x3ff)
return;
state[level] = WALKER_STATE_TABLE;
/* Signify the start of a table */
exit = cb(pte, 0, va_bits, level, priv);
if (exit)
return;
/* Go down a level */
__pagetable_walk(_addr, tcr, level + 1, cb, priv);
state[level] = WALKER_STATE_START;
} else if (pte_type(&pte) == PTE_TYPE_BLOCK || pte_type(&pte) == PTE_TYPE_PAGE) {
/* We foud a block or page, start walking */
entry_start = pte;
state[level] = WALKER_STATE_REGION;
}
}
if (state[level] > WALKER_STATE_START)
exit = cb(entry_start, last_addr + (1 << level2shift(level)), va_bits, level, priv);
}
static void pretty_print_pte_type(u64 pte)
{
switch (pte_type(&pte)) {
case PTE_TYPE_FAULT:
printf(" %-5s", "Fault");
break;
case PTE_TYPE_BLOCK:
printf(" %-5s", "Block");
break;
case PTE_TYPE_PAGE:
printf(" %-5s", "Pages");
break;
default:
printf(" %-5s", "Unk");
}
}
static void pretty_print_table_attrs(u64 pte)
{
int ap = (pte & PTE_TABLE_AP) >> 61;
printf(" | %2s %10s",
(ap & 2) ? "RO" : "",
(ap & 1) ? "!EL0" : "");
printf(" | %3s %2s %2s",
(pte & PTE_TABLE_PXN) ? "PXN" : "",
(pte & PTE_TABLE_XN) ? "XN" : "",
(pte & PTE_TABLE_NS) ? "NS" : "");
}
static void pretty_print_block_attrs(u64 pte)
{
u64 attrs = pte & PMD_ATTRINDX_MASK;
switch (attrs) {
case PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE):
printf(" | %-13s", "Device-nGnRnE");
break;
case PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRE):
printf(" | %-13s", "Device-nGnRE");
break;
case PTE_BLOCK_MEMTYPE(MT_DEVICE_GRE):
printf(" | %-13s", "Device-GRE");
break;
case PTE_BLOCK_MEMTYPE(MT_NORMAL_NC):
printf(" | %-13s", "Normal-NC");
break;
case PTE_BLOCK_MEMTYPE(MT_NORMAL):
printf(" | %-13s", "Normal");
break;
default:
printf(" | %-13s", "Unknown");
}
}
static void pretty_print_block_memtype(u64 pte)
{
u64 share = pte & (3 << 8);
switch (share) {
case PTE_BLOCK_NON_SHARE:
printf(" | %-16s", "Non-shareable");
break;
case PTE_BLOCK_OUTER_SHARE:
printf(" | %-16s", "Outer-shareable");
break;
case PTE_BLOCK_INNER_SHARE:
printf(" | %-16s", "Inner-shareable");
break;
default:
printf(" | %-16s", "Unknown");
}
}
static void print_pte(u64 pte, int level)
{
if (PTE_IS_TABLE(pte, level)) {
printf(" %-5s", "Table");
pretty_print_table_attrs(pte);
} else {
pretty_print_pte_type(pte);
pretty_print_block_attrs(pte);
pretty_print_block_memtype(pte);
}
printf("\n");
}
/**
* pagetable_print_entry() - Callback function to print a single pagetable region
*
* This is the default callback used by @dump_pagetable(). It does some basic pretty
* printing (see example in the U-Boot arm64 documentation). It can be replaced by
* a custom callback function if more detailed information is needed.
*
* @start_attrs: The start address and attributes of the region (or table address)
* @end: The end address of the region (or 0 if it's a table)
* @va_bits: The number of bits used for the virtual address
* @level: The level of the region
* @priv: Private data for the callback (unused)
*/
static bool pagetable_print_entry(u64 start_attrs, u64 end, int va_bits, int level, void *priv)
{
u64 _addr = start_attrs & GENMASK_ULL(va_bits, PAGE_SHIFT);
int indent = va_bits < 39 ? level - 1 : level;
printf("%*s", indent * 2, "");
if (PTE_IS_TABLE(start_attrs, level))
printf("[%#011llx]%14s", _addr, "");
else
printf("[%#011llx - %#011llx]", _addr, end);
printf("%*s | ", (3 - level) * 2, "");
print_pte(start_attrs, level);
return false;
}
void walk_pagetable(u64 ttbr, u64 tcr, pte_walker_cb_t cb, void *priv)
{
__pagetable_walk(ttbr, tcr, 0, cb, priv);
}
void dump_pagetable(u64 ttbr, u64 tcr)
{
u64 va_bits = 64 - (tcr & (BIT(6) - 1));
printf("Walking pagetable at %p, va_bits: %lld. Using %d levels\n", (void *)ttbr,
va_bits, va_bits < 39 ? 3 : 4);
walk_pagetable(ttbr, tcr, pagetable_print_entry, NULL);
}
/* Returns the estimated required size of all page tables */
__weak u64 get_page_table_size(void)
{
u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64);
u64 size;
/* Account for all page tables we would need to cover our memory map */
size = one_pt * count_ranges();
/*
* We need to duplicate our page table once to have an emergency pt to
* resort to when splitting page tables later on
*/
size *= 2;
/*
* We may need to split page tables later on if dcache settings change,
* so reserve up to 4 (random pick) page tables for that.
*/
size += one_pt * 4;
return size;
}
void setup_pgtables(void)
{
int i;
if (!gd->arch.tlb_fillptr || !gd->arch.tlb_addr)
panic("Page table pointer not setup.");
/*
* Allocate the first level we're on with invalidate entries.
* If the starting level is 0 (va_bits >= 39), then this is our
* Lv0 page table, otherwise it's the entry Lv1 page table.
*/
create_table();
/* Now add all MMU table entries one after another to the table */
for (i = 0; mem_map[i].size || mem_map[i].attrs; i++)
add_map(&mem_map[i]);
}
static void setup_all_pgtables(void)
{
u64 tlb_addr = gd->arch.tlb_addr;
u64 tlb_size = gd->arch.tlb_size;
/* Reset the fill ptr */
gd->arch.tlb_fillptr = tlb_addr;
/* Create normal system page tables */
setup_pgtables();
/* Create emergency page tables */
gd->arch.tlb_size -= (uintptr_t)gd->arch.tlb_fillptr -
(uintptr_t)gd->arch.tlb_addr;
gd->arch.tlb_addr = gd->arch.tlb_fillptr;
setup_pgtables();
gd->arch.tlb_emerg = gd->arch.tlb_addr;
gd->arch.tlb_addr = tlb_addr;
gd->arch.tlb_size = tlb_size;
}
/* to activate the MMU we need to set up virtual memory */
__weak void mmu_setup(void)
{
int el;
/* Set up page tables only once */
if (!gd->arch.tlb_fillptr)
setup_all_pgtables();
el = current_el();
set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(NULL, NULL),
MEMORY_ATTRIBUTES);
/* enable the mmu */
set_sctlr(get_sctlr() | CR_M);
}
/*
* Performs a invalidation of the entire data cache at all levels
*/
void invalidate_dcache_all(void)
{
#ifndef CONFIG_CMO_BY_VA_ONLY
__asm_invalidate_dcache_all();
__asm_invalidate_l3_dcache();
#else
apply_cmo_to_mappings(invalidate_dcache_range);
#endif
}
/*
* Performs a clean & invalidation of the entire data cache at all levels.
* This function needs to be inline to avoid using stack.
* __asm_flush_l3_dcache return status of timeout
*/
inline void flush_dcache_all(void)
{
#ifndef CONFIG_CMO_BY_VA_ONLY
int ret;
__asm_flush_dcache_all();
ret = __asm_flush_l3_dcache();
if (ret)
debug("flushing dcache returns 0x%x\n", ret);
else
debug("flushing dcache successfully.\n");
#else
apply_cmo_to_mappings(flush_dcache_range);
#endif
}
#ifndef CONFIG_SYS_DISABLE_DCACHE_OPS
/*
* Invalidates range in all levels of D-cache/unified cache
*/
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
__asm_invalidate_dcache_range(start, stop);
}
/*
* Flush range(clean & invalidate) from all levels of D-cache/unified cache
*/
void flush_dcache_range(unsigned long start, unsigned long stop)
{
__asm_flush_dcache_range(start, stop);
}
#else
void invalidate_dcache_range(unsigned long start, unsigned long stop)
{
}
void flush_dcache_range(unsigned long start, unsigned long stop)
{
}
#endif /* CONFIG_SYS_DISABLE_DCACHE_OPS */
void dcache_enable(void)
{
/* The data cache is not active unless the mmu is enabled */
if (!(get_sctlr() & CR_M)) {
invalidate_dcache_all();
__asm_invalidate_tlb_all();
mmu_setup();
}
/* Set up page tables only once (it is done also by mmu_setup()) */
if (!gd->arch.tlb_fillptr)
setup_all_pgtables();
set_sctlr(get_sctlr() | CR_C);
}
void dcache_disable(void)
{
uint32_t sctlr;
sctlr = get_sctlr();
/* if cache isn't enabled no need to disable */
if (!(sctlr & CR_C))
return;
if (IS_ENABLED(CONFIG_CMO_BY_VA_ONLY)) {
/*
* When invalidating by VA, do it *before* turning the MMU
* off, so that at least our stack is coherent.
*/
flush_dcache_all();
}
set_sctlr(sctlr & ~(CR_C|CR_M));
if (!IS_ENABLED(CONFIG_CMO_BY_VA_ONLY))
flush_dcache_all();
__asm_invalidate_tlb_all();
}
int dcache_status(void)
{
return (get_sctlr() & CR_C) != 0;
}
u64 *__weak arch_get_page_table(void) {
puts("No page table offset defined\n");
return NULL;
}
static bool is_aligned(u64 addr, u64 size, u64 align)
{
return !(addr & (align - 1)) && !(size & (align - 1));
}
/* Use flag to indicate if attrs has more than d-cache attributes */
static u64 set_one_region(u64 start, u64 size, u64 attrs, bool flag, int level)
{
int levelshift = level2shift(level);
u64 levelsize = 1ULL << levelshift;
u64 *pte = find_pte(start, level);
/* Can we can just modify the current level block PTE? */
if (is_aligned(start, size, levelsize)) {
if (flag) {
*pte &= ~PMD_ATTRMASK;
*pte |= attrs & PMD_ATTRMASK;
} else {
*pte &= ~PMD_ATTRINDX_MASK;
*pte |= attrs & PMD_ATTRINDX_MASK;
}
debug("Set attrs=%llx pte=%p level=%d\n", attrs, pte, level);
return levelsize;
}
/* Unaligned or doesn't fit, maybe split block into table */
debug("addr=%llx level=%d pte=%p (%llx)\n", start, level, pte, *pte);
/* Maybe we need to split the block into a table */
if (pte_type(pte) == PTE_TYPE_BLOCK)
split_block(pte, level);
/* And then double-check it became a table or already is one */
if (pte_type(pte) != PTE_TYPE_TABLE)
panic("PTE %p (%llx) for addr=%llx should be a table",
pte, *pte, start);
/* Roll on to the next page table level */
return 0;
}
void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
enum dcache_option option)
{
u64 attrs = PMD_ATTRINDX(option >> 2);
u64 real_start = start;
u64 real_size = size;
debug("start=%lx size=%lx\n", (ulong)start, (ulong)size);
if (!gd->arch.tlb_emerg)
panic("Emergency page table not setup.");
/*
* We can not modify page tables that we're currently running on,
* so we first need to switch to the "emergency" page tables where
* we can safely modify our primary page tables and then switch back
*/
__asm_switch_ttbr(gd->arch.tlb_emerg);
/*
* Loop through the address range until we find a page granule that fits
* our alignment constraints, then set it to the new cache attributes
*/
while (size > 0) {
int level;
u64 r;
for (level = 1; level < 4; level++) {
/* Set d-cache attributes only */
r = set_one_region(start, size, attrs, false, level);
if (r) {
/* PTE successfully replaced */
size -= r;
start += r;
break;
}
}
}
/* We're done modifying page tables, switch back to our primary ones */
__asm_switch_ttbr(gd->arch.tlb_addr);
/*
* Make sure there's nothing stale in dcache for a region that might
* have caches off now
*/
flush_dcache_range(real_start, real_start + real_size);
}
/*
* Modify MMU table for a region with updated PXN/UXN/Memory type/valid bits.
* The procecess is break-before-make. The target region will be marked as
* invalid during the process of changing.
*/
void mmu_change_region_attr(phys_addr_t addr, size_t siz, u64 attrs)
{
int level;
u64 r, size, start;
start = addr;
size = siz;
/*
* Loop through the address range until we find a page granule that fits
* our alignment constraints, then set it to "invalid".
*/
while (size > 0) {
for (level = 1; level < 4; level++) {
/* Set PTE to fault */
r = set_one_region(start, size, PTE_TYPE_FAULT, true,
level);
if (r) {
/* PTE successfully invalidated */
size -= r;
start += r;
break;
}
}
}
flush_dcache_range(gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
__asm_invalidate_tlb_all();
/*
* Loop through the address range until we find a page granule that fits
* our alignment constraints, then set it to the new cache attributes
*/
start = addr;
size = siz;
while (size > 0) {
for (level = 1; level < 4; level++) {
/* Set PTE to new attributes */
r = set_one_region(start, size, attrs, true, level);
if (r) {
/* PTE successfully updated */
size -= r;
start += r;
break;
}
}
}
flush_dcache_range(gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
__asm_invalidate_tlb_all();
}
#else /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */
/*
* For SPL builds, we may want to not have dcache enabled. Any real U-Boot
* running however really wants to have dcache and the MMU active. Check that
* everything is sane and give the developer a hint if it isn't.
*/
#ifndef CONFIG_SPL_BUILD
#error Please describe your MMU layout in CONFIG_SYS_MEM_MAP and enable dcache.
#endif
void invalidate_dcache_all(void)
{
}
void flush_dcache_all(void)
{
}
void dcache_enable(void)
{
}
void dcache_disable(void)
{
}
int dcache_status(void)
{
return 0;
}
void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size,
enum dcache_option option)
{
}
#endif /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */
#if !CONFIG_IS_ENABLED(SYS_ICACHE_OFF)
void icache_enable(void)
{
invalidate_icache_all();
set_sctlr(get_sctlr() | CR_I);
}
void icache_disable(void)
{
set_sctlr(get_sctlr() & ~CR_I);
}
int icache_status(void)
{
return (get_sctlr() & CR_I) != 0;
}
int mmu_status(void)
{
return (get_sctlr() & CR_M) != 0;
}
void invalidate_icache_all(void)
{
__asm_invalidate_icache_all();
__asm_invalidate_l3_icache();
}
#else /* !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) */
void icache_enable(void)
{
}
void icache_disable(void)
{
}
int icache_status(void)
{
return 0;
}
int mmu_status(void)
{
return 0;
}
void invalidate_icache_all(void)
{
}
#endif /* !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) */
/*
* Enable dCache & iCache, whether cache is actually enabled
* depend on CONFIG_SYS_DCACHE_OFF and CONFIG_SYS_ICACHE_OFF
*/
void __weak enable_caches(void)
{
icache_enable();
dcache_enable();
}