| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * (C) Copyright 2013 |
| * David Feng <fenghua@phytium.com.cn> |
| * |
| * (C) Copyright 2016 |
| * Alexander Graf <agraf@suse.de> |
| */ |
| |
| #include <cpu_func.h> |
| #include <hang.h> |
| #include <log.h> |
| #include <asm/cache.h> |
| #include <asm/global_data.h> |
| #include <asm/system.h> |
| #include <asm/armv8/mmu.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #if !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) |
| |
| /* |
| * With 4k page granule, a virtual address is split into 4 lookup parts |
| * spanning 9 bits each: |
| * |
| * _______________________________________________ |
| * | | | | | | | |
| * | 0 | Lv0 | Lv1 | Lv2 | Lv3 | off | |
| * |_______|_______|_______|_______|_______|_______| |
| * 63-48 47-39 38-30 29-21 20-12 11-00 |
| * |
| * mask page size |
| * |
| * Lv0: FF8000000000 -- |
| * Lv1: 7FC0000000 1G |
| * Lv2: 3FE00000 2M |
| * Lv3: 1FF000 4K |
| * off: FFF |
| */ |
| |
| static int get_effective_el(void) |
| { |
| int el = current_el(); |
| |
| if (el == 2) { |
| u64 hcr_el2; |
| |
| /* |
| * If we are using the EL2&0 translation regime, the TCR_EL2 |
| * looks like the EL1 version, even though we are in EL2. |
| */ |
| __asm__ ("mrs %0, HCR_EL2\n" : "=r" (hcr_el2)); |
| if (hcr_el2 & BIT(HCR_EL2_E2H_BIT)) |
| return 1; |
| } |
| |
| return el; |
| } |
| |
| u64 get_tcr(u64 *pips, u64 *pva_bits) |
| { |
| int el = get_effective_el(); |
| u64 max_addr = 0; |
| u64 ips, va_bits; |
| u64 tcr; |
| int i; |
| |
| /* Find the largest address we need to support */ |
| for (i = 0; mem_map[i].size || mem_map[i].attrs; i++) |
| max_addr = max(max_addr, mem_map[i].virt + mem_map[i].size); |
| |
| /* Calculate the maximum physical (and thus virtual) address */ |
| if (max_addr > (1ULL << 44)) { |
| ips = 5; |
| va_bits = 48; |
| } else if (max_addr > (1ULL << 42)) { |
| ips = 4; |
| va_bits = 44; |
| } else if (max_addr > (1ULL << 40)) { |
| ips = 3; |
| va_bits = 42; |
| } else if (max_addr > (1ULL << 36)) { |
| ips = 2; |
| va_bits = 40; |
| } else if (max_addr > (1ULL << 32)) { |
| ips = 1; |
| va_bits = 36; |
| } else { |
| ips = 0; |
| va_bits = 32; |
| } |
| |
| if (el == 1) { |
| tcr = TCR_EL1_RSVD | (ips << 32) | TCR_EPD1_DISABLE; |
| } else if (el == 2) { |
| tcr = TCR_EL2_RSVD | (ips << 16); |
| } else { |
| tcr = TCR_EL3_RSVD | (ips << 16); |
| } |
| |
| /* PTWs cacheable, inner/outer WBWA and inner shareable */ |
| tcr |= TCR_TG0_4K | TCR_SHARED_INNER | TCR_ORGN_WBWA | TCR_IRGN_WBWA; |
| tcr |= TCR_T0SZ(va_bits); |
| |
| if (pips) |
| *pips = ips; |
| if (pva_bits) |
| *pva_bits = va_bits; |
| |
| return tcr; |
| } |
| |
| #define MAX_PTE_ENTRIES 512 |
| |
| static int pte_type(u64 *pte) |
| { |
| return *pte & PTE_TYPE_MASK; |
| } |
| |
| /* Returns the LSB number for a PTE on level <level> */ |
| static int level2shift(int level) |
| { |
| /* Page is 12 bits wide, every level translates 9 bits */ |
| return (12 + 9 * (3 - level)); |
| } |
| |
| static u64 *find_pte(u64 addr, int level) |
| { |
| int start_level = 0; |
| u64 *pte; |
| u64 idx; |
| u64 va_bits; |
| int i; |
| |
| debug("addr=%llx level=%d\n", addr, level); |
| |
| get_tcr(NULL, &va_bits); |
| if (va_bits < 39) |
| start_level = 1; |
| |
| if (level < start_level) |
| return NULL; |
| |
| /* Walk through all page table levels to find our PTE */ |
| pte = (u64*)gd->arch.tlb_addr; |
| for (i = start_level; i < 4; i++) { |
| idx = (addr >> level2shift(i)) & 0x1FF; |
| pte += idx; |
| debug("idx=%llx PTE %p at level %d: %llx\n", idx, pte, i, *pte); |
| |
| /* Found it */ |
| if (i == level) |
| return pte; |
| /* PTE is no table (either invalid or block), can't traverse */ |
| if (pte_type(pte) != PTE_TYPE_TABLE) |
| return NULL; |
| /* Off to the next level */ |
| pte = (u64*)(*pte & 0x0000fffffffff000ULL); |
| } |
| |
| /* Should never reach here */ |
| return NULL; |
| } |
| |
| #ifdef CONFIG_CMO_BY_VA_ONLY |
| static void __cmo_on_leaves(void (*cmo_fn)(unsigned long, unsigned long), |
| u64 pte, int level, u64 base) |
| { |
| u64 *ptep; |
| int i; |
| |
| ptep = (u64 *)(pte & GENMASK_ULL(47, PAGE_SHIFT)); |
| for (i = 0; i < PAGE_SIZE / sizeof(u64); i++) { |
| u64 end, va = base + i * BIT(level2shift(level)); |
| u64 type, attrs; |
| |
| pte = ptep[i]; |
| type = pte & PTE_TYPE_MASK; |
| attrs = pte & PMD_ATTRINDX_MASK; |
| debug("PTE %llx at level %d VA %llx\n", pte, level, va); |
| |
| /* Not valid? next! */ |
| if (!(type & PTE_TYPE_VALID)) |
| continue; |
| |
| /* Not a leaf? Recurse on the next level */ |
| if (!(type == PTE_TYPE_BLOCK || |
| (level == 3 && type == PTE_TYPE_PAGE))) { |
| __cmo_on_leaves(cmo_fn, pte, level + 1, va); |
| continue; |
| } |
| |
| /* |
| * From this point, this must be a leaf. |
| * |
| * Start excluding non memory mappings |
| */ |
| if (attrs != PTE_BLOCK_MEMTYPE(MT_NORMAL) && |
| attrs != PTE_BLOCK_MEMTYPE(MT_NORMAL_NC)) |
| continue; |
| |
| end = va + BIT(level2shift(level)) - 1; |
| |
| /* No intersection with RAM? */ |
| if (end < gd->ram_base || |
| va >= (gd->ram_base + gd->ram_size)) |
| continue; |
| |
| /* |
| * OK, we have a partial RAM mapping. However, this |
| * can cover *more* than the RAM. Yes, u-boot is |
| * *that* braindead. Compute the intersection we care |
| * about, and not a byte more. |
| */ |
| va = max(va, (u64)gd->ram_base); |
| end = min(end, gd->ram_base + gd->ram_size); |
| |
| debug("Flush PTE %llx at level %d: %llx-%llx\n", |
| pte, level, va, end); |
| cmo_fn(va, end); |
| } |
| } |
| |
| static void apply_cmo_to_mappings(void (*cmo_fn)(unsigned long, unsigned long)) |
| { |
| u64 va_bits; |
| int sl = 0; |
| |
| if (!gd->arch.tlb_addr) |
| return; |
| |
| get_tcr(NULL, &va_bits); |
| if (va_bits < 39) |
| sl = 1; |
| |
| __cmo_on_leaves(cmo_fn, gd->arch.tlb_addr, sl, 0); |
| } |
| #else |
| static inline void apply_cmo_to_mappings(void *dummy) {} |
| #endif |
| |
| /* Returns and creates a new full table (512 entries) */ |
| static u64 *create_table(void) |
| { |
| u64 *new_table = (u64*)gd->arch.tlb_fillptr; |
| u64 pt_len = MAX_PTE_ENTRIES * sizeof(u64); |
| |
| /* Allocate MAX_PTE_ENTRIES pte entries */ |
| gd->arch.tlb_fillptr += pt_len; |
| |
| if (gd->arch.tlb_fillptr - gd->arch.tlb_addr > gd->arch.tlb_size) |
| panic("Insufficient RAM for page table: 0x%lx > 0x%lx. " |
| "Please increase the size in get_page_table_size()", |
| gd->arch.tlb_fillptr - gd->arch.tlb_addr, |
| gd->arch.tlb_size); |
| |
| /* Mark all entries as invalid */ |
| memset(new_table, 0, pt_len); |
| |
| return new_table; |
| } |
| |
| static void set_pte_table(u64 *pte, u64 *table) |
| { |
| /* Point *pte to the new table */ |
| debug("Setting %p to addr=%p\n", pte, table); |
| *pte = PTE_TYPE_TABLE | (ulong)table; |
| } |
| |
| /* Splits a block PTE into table with subpages spanning the old block */ |
| static void split_block(u64 *pte, int level) |
| { |
| u64 old_pte = *pte; |
| u64 *new_table; |
| u64 i = 0; |
| /* level describes the parent level, we need the child ones */ |
| int levelshift = level2shift(level + 1); |
| |
| if (pte_type(pte) != PTE_TYPE_BLOCK) |
| panic("PTE %p (%llx) is not a block. Some driver code wants to " |
| "modify dcache settings for an range not covered in " |
| "mem_map.", pte, old_pte); |
| |
| new_table = create_table(); |
| debug("Splitting pte %p (%llx) into %p\n", pte, old_pte, new_table); |
| |
| for (i = 0; i < MAX_PTE_ENTRIES; i++) { |
| new_table[i] = old_pte | (i << levelshift); |
| |
| /* Level 3 block PTEs have the table type */ |
| if ((level + 1) == 3) |
| new_table[i] |= PTE_TYPE_TABLE; |
| |
| debug("Setting new_table[%lld] = %llx\n", i, new_table[i]); |
| } |
| |
| /* Set the new table into effect */ |
| set_pte_table(pte, new_table); |
| } |
| |
| static void map_range(u64 virt, u64 phys, u64 size, int level, |
| u64 *table, u64 attrs) |
| { |
| u64 map_size = BIT_ULL(level2shift(level)); |
| int i, idx; |
| |
| idx = (virt >> level2shift(level)) & (MAX_PTE_ENTRIES - 1); |
| for (i = idx; size; i++) { |
| u64 next_size, *next_table; |
| |
| if (level >= 1 && |
| size >= map_size && !(virt & (map_size - 1))) { |
| if (level == 3) |
| table[i] = phys | attrs | PTE_TYPE_PAGE; |
| else |
| table[i] = phys | attrs; |
| |
| virt += map_size; |
| phys += map_size; |
| size -= map_size; |
| |
| continue; |
| } |
| |
| /* Going one level down */ |
| if (pte_type(&table[i]) == PTE_TYPE_FAULT) |
| set_pte_table(&table[i], create_table()); |
| else if (pte_type(&table[i]) != PTE_TYPE_TABLE) |
| split_block(&table[i], level); |
| |
| next_table = (u64 *)(table[i] & GENMASK_ULL(47, PAGE_SHIFT)); |
| next_size = min(map_size - (virt & (map_size - 1)), size); |
| |
| map_range(virt, phys, next_size, level + 1, next_table, attrs); |
| |
| virt += next_size; |
| phys += next_size; |
| size -= next_size; |
| } |
| } |
| |
| static void add_map(struct mm_region *map) |
| { |
| u64 attrs = map->attrs | PTE_TYPE_BLOCK | PTE_BLOCK_AF; |
| u64 va_bits; |
| int level = 0; |
| |
| get_tcr(NULL, &va_bits); |
| if (va_bits < 39) |
| level = 1; |
| |
| map_range(map->virt, map->phys, map->size, level, |
| (u64 *)gd->arch.tlb_addr, attrs); |
| } |
| |
| static void count_range(u64 virt, u64 size, int level, int *cntp) |
| { |
| u64 map_size = BIT_ULL(level2shift(level)); |
| int i, idx; |
| |
| idx = (virt >> level2shift(level)) & (MAX_PTE_ENTRIES - 1); |
| for (i = idx; size; i++) { |
| u64 next_size; |
| |
| if (level >= 1 && |
| size >= map_size && !(virt & (map_size - 1))) { |
| virt += map_size; |
| size -= map_size; |
| |
| continue; |
| } |
| |
| /* Going one level down */ |
| (*cntp)++; |
| next_size = min(map_size - (virt & (map_size - 1)), size); |
| |
| count_range(virt, next_size, level + 1, cntp); |
| |
| virt += next_size; |
| size -= next_size; |
| } |
| } |
| |
| static int count_ranges(void) |
| { |
| int i, count = 0, level = 0; |
| u64 va_bits; |
| |
| get_tcr(NULL, &va_bits); |
| if (va_bits < 39) |
| level = 1; |
| |
| for (i = 0; mem_map[i].size || mem_map[i].attrs; i++) |
| count_range(mem_map[i].virt, mem_map[i].size, level, &count); |
| |
| return count; |
| } |
| |
| #define ALL_ATTRS (3 << 8 | PMD_ATTRINDX_MASK) |
| #define PTE_IS_TABLE(pte, level) (pte_type(&(pte)) == PTE_TYPE_TABLE && (level) < 3) |
| |
| enum walker_state { |
| WALKER_STATE_START = 0, |
| WALKER_STATE_TABLE, |
| WALKER_STATE_REGION, /* block or page, depending on level */ |
| }; |
| |
| |
| /** |
| * __pagetable_walk() - Walk through the pagetable and call cb() for each memory region |
| * |
| * This is a software implementation of the ARMv8-A MMU translation table walk. As per |
| * section D5.4 of the ARMv8-A Architecture Reference Manual. It recursively walks the |
| * 4 or 3 levels of the page table and calls the callback function for each discrete |
| * region of memory (that being the discovery of a new table, a collection of blocks |
| * with the same attributes, or of pages with the same attributes). |
| * |
| * U-Boot picks the smallest number of virtual address (VA) bits that it can based on the |
| * memory map configured by the board. If this is less than 39 then the MMU will only use |
| * 3 levels of translation instead of 3 - skipping level 0. |
| * |
| * Each level has 512 entries of 64-bits each. Each entry includes attribute bits and |
| * an address. When the attribute bits indicate a table, the address is the physical |
| * address of the table, so we can recursively call _pagetable_walk() on it (after calling |
| * @cb). If instead they indicate a block or page, we record the start address and attributes |
| * and continue walking until we find a region with different attributes, or the end of the |
| * table, in either case we call @cb with the start and end address of the region. |
| * |
| * This approach can be used to fully emulate the MMU's translation table walk, as per |
| * Figure D5-25 of the ARMv8-A Architecture Reference Manual. |
| * |
| * @addr: The address of the table to walk |
| * @tcr: The TCR register value |
| * @level: The current level of the table |
| * @cb: The callback function to call for each region |
| * @priv: Private data to pass to the callback function |
| */ |
| static void __pagetable_walk(u64 addr, u64 tcr, int level, pte_walker_cb_t cb, void *priv) |
| { |
| u64 *table = (u64 *)addr; |
| u64 attrs, last_attrs = 0, last_addr = 0, entry_start = 0; |
| int i; |
| u64 va_bits = 64 - (tcr & (BIT(6) - 1)); |
| static enum walker_state state[4] = { 0 }; |
| static bool exit; |
| |
| if (!level) { |
| exit = false; |
| if (va_bits < 39) |
| level = 1; |
| } |
| |
| state[level] = WALKER_STATE_START; |
| |
| /* Walk through the table entries */ |
| for (i = 0; i < MAX_PTE_ENTRIES; i++) { |
| u64 pte = table[i]; |
| u64 _addr = pte & GENMASK_ULL(va_bits, PAGE_SHIFT); |
| |
| if (exit) |
| return; |
| |
| if (pte_type(&pte) == PTE_TYPE_FAULT) |
| continue; |
| |
| attrs = pte & ALL_ATTRS; |
| /* If we're currently inside a block or set of pages */ |
| if (state[level] > WALKER_STATE_START && state[level] != WALKER_STATE_TABLE) { |
| /* |
| * Continue walking if this entry has the same attributes as the last and |
| * is one page/block away -- it's a contiguous region. |
| */ |
| if (attrs == last_attrs && _addr == last_addr + (1 << level2shift(level))) { |
| last_attrs = attrs; |
| last_addr = _addr; |
| continue; |
| } else { |
| /* We either hit a table or a new region */ |
| exit = cb(entry_start, last_addr + (1 << level2shift(level)), |
| va_bits, level, priv); |
| if (exit) |
| return; |
| state[level] = WALKER_STATE_START; |
| } |
| } |
| last_attrs = attrs; |
| last_addr = _addr; |
| |
| if (PTE_IS_TABLE(pte, level)) { |
| /* After the end of the table might be corrupted data */ |
| if (!_addr || (pte & 0xfff) > 0x3ff) |
| return; |
| state[level] = WALKER_STATE_TABLE; |
| /* Signify the start of a table */ |
| exit = cb(pte, 0, va_bits, level, priv); |
| if (exit) |
| return; |
| |
| /* Go down a level */ |
| __pagetable_walk(_addr, tcr, level + 1, cb, priv); |
| state[level] = WALKER_STATE_START; |
| } else if (pte_type(&pte) == PTE_TYPE_BLOCK || pte_type(&pte) == PTE_TYPE_PAGE) { |
| /* We foud a block or page, start walking */ |
| entry_start = pte; |
| state[level] = WALKER_STATE_REGION; |
| } |
| } |
| |
| if (state[level] > WALKER_STATE_START) |
| exit = cb(entry_start, last_addr + (1 << level2shift(level)), va_bits, level, priv); |
| } |
| |
| static void pretty_print_pte_type(u64 pte) |
| { |
| switch (pte_type(&pte)) { |
| case PTE_TYPE_FAULT: |
| printf(" %-5s", "Fault"); |
| break; |
| case PTE_TYPE_BLOCK: |
| printf(" %-5s", "Block"); |
| break; |
| case PTE_TYPE_PAGE: |
| printf(" %-5s", "Pages"); |
| break; |
| default: |
| printf(" %-5s", "Unk"); |
| } |
| } |
| |
| static void pretty_print_table_attrs(u64 pte) |
| { |
| int ap = (pte & PTE_TABLE_AP) >> 61; |
| |
| printf(" | %2s %10s", |
| (ap & 2) ? "RO" : "", |
| (ap & 1) ? "!EL0" : ""); |
| printf(" | %3s %2s %2s", |
| (pte & PTE_TABLE_PXN) ? "PXN" : "", |
| (pte & PTE_TABLE_XN) ? "XN" : "", |
| (pte & PTE_TABLE_NS) ? "NS" : ""); |
| } |
| |
| static void pretty_print_block_attrs(u64 pte) |
| { |
| u64 attrs = pte & PMD_ATTRINDX_MASK; |
| |
| switch (attrs) { |
| case PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRNE): |
| printf(" | %-13s", "Device-nGnRnE"); |
| break; |
| case PTE_BLOCK_MEMTYPE(MT_DEVICE_NGNRE): |
| printf(" | %-13s", "Device-nGnRE"); |
| break; |
| case PTE_BLOCK_MEMTYPE(MT_DEVICE_GRE): |
| printf(" | %-13s", "Device-GRE"); |
| break; |
| case PTE_BLOCK_MEMTYPE(MT_NORMAL_NC): |
| printf(" | %-13s", "Normal-NC"); |
| break; |
| case PTE_BLOCK_MEMTYPE(MT_NORMAL): |
| printf(" | %-13s", "Normal"); |
| break; |
| default: |
| printf(" | %-13s", "Unknown"); |
| } |
| } |
| |
| static void pretty_print_block_memtype(u64 pte) |
| { |
| u64 share = pte & (3 << 8); |
| |
| switch (share) { |
| case PTE_BLOCK_NON_SHARE: |
| printf(" | %-16s", "Non-shareable"); |
| break; |
| case PTE_BLOCK_OUTER_SHARE: |
| printf(" | %-16s", "Outer-shareable"); |
| break; |
| case PTE_BLOCK_INNER_SHARE: |
| printf(" | %-16s", "Inner-shareable"); |
| break; |
| default: |
| printf(" | %-16s", "Unknown"); |
| } |
| } |
| |
| static void print_pte(u64 pte, int level) |
| { |
| if (PTE_IS_TABLE(pte, level)) { |
| printf(" %-5s", "Table"); |
| pretty_print_table_attrs(pte); |
| } else { |
| pretty_print_pte_type(pte); |
| pretty_print_block_attrs(pte); |
| pretty_print_block_memtype(pte); |
| } |
| printf("\n"); |
| } |
| |
| /** |
| * pagetable_print_entry() - Callback function to print a single pagetable region |
| * |
| * This is the default callback used by @dump_pagetable(). It does some basic pretty |
| * printing (see example in the U-Boot arm64 documentation). It can be replaced by |
| * a custom callback function if more detailed information is needed. |
| * |
| * @start_attrs: The start address and attributes of the region (or table address) |
| * @end: The end address of the region (or 0 if it's a table) |
| * @va_bits: The number of bits used for the virtual address |
| * @level: The level of the region |
| * @priv: Private data for the callback (unused) |
| */ |
| static bool pagetable_print_entry(u64 start_attrs, u64 end, int va_bits, int level, void *priv) |
| { |
| u64 _addr = start_attrs & GENMASK_ULL(va_bits, PAGE_SHIFT); |
| int indent = va_bits < 39 ? level - 1 : level; |
| |
| printf("%*s", indent * 2, ""); |
| if (PTE_IS_TABLE(start_attrs, level)) |
| printf("[%#011llx]%14s", _addr, ""); |
| else |
| printf("[%#011llx - %#011llx]", _addr, end); |
| |
| printf("%*s | ", (3 - level) * 2, ""); |
| print_pte(start_attrs, level); |
| |
| return false; |
| } |
| |
| void walk_pagetable(u64 ttbr, u64 tcr, pte_walker_cb_t cb, void *priv) |
| { |
| __pagetable_walk(ttbr, tcr, 0, cb, priv); |
| } |
| |
| void dump_pagetable(u64 ttbr, u64 tcr) |
| { |
| u64 va_bits = 64 - (tcr & (BIT(6) - 1)); |
| |
| printf("Walking pagetable at %p, va_bits: %lld. Using %d levels\n", (void *)ttbr, |
| va_bits, va_bits < 39 ? 3 : 4); |
| walk_pagetable(ttbr, tcr, pagetable_print_entry, NULL); |
| } |
| |
| /* Returns the estimated required size of all page tables */ |
| __weak u64 get_page_table_size(void) |
| { |
| u64 one_pt = MAX_PTE_ENTRIES * sizeof(u64); |
| u64 size; |
| |
| /* Account for all page tables we would need to cover our memory map */ |
| size = one_pt * count_ranges(); |
| |
| /* |
| * We need to duplicate our page table once to have an emergency pt to |
| * resort to when splitting page tables later on |
| */ |
| size *= 2; |
| |
| /* |
| * We may need to split page tables later on if dcache settings change, |
| * so reserve up to 4 (random pick) page tables for that. |
| */ |
| size += one_pt * 4; |
| |
| return size; |
| } |
| |
| void setup_pgtables(void) |
| { |
| int i; |
| |
| if (!gd->arch.tlb_fillptr || !gd->arch.tlb_addr) |
| panic("Page table pointer not setup."); |
| |
| /* |
| * Allocate the first level we're on with invalidate entries. |
| * If the starting level is 0 (va_bits >= 39), then this is our |
| * Lv0 page table, otherwise it's the entry Lv1 page table. |
| */ |
| create_table(); |
| |
| /* Now add all MMU table entries one after another to the table */ |
| for (i = 0; mem_map[i].size || mem_map[i].attrs; i++) |
| add_map(&mem_map[i]); |
| } |
| |
| static void setup_all_pgtables(void) |
| { |
| u64 tlb_addr = gd->arch.tlb_addr; |
| u64 tlb_size = gd->arch.tlb_size; |
| |
| /* Reset the fill ptr */ |
| gd->arch.tlb_fillptr = tlb_addr; |
| |
| /* Create normal system page tables */ |
| setup_pgtables(); |
| |
| /* Create emergency page tables */ |
| gd->arch.tlb_size -= (uintptr_t)gd->arch.tlb_fillptr - |
| (uintptr_t)gd->arch.tlb_addr; |
| gd->arch.tlb_addr = gd->arch.tlb_fillptr; |
| setup_pgtables(); |
| gd->arch.tlb_emerg = gd->arch.tlb_addr; |
| gd->arch.tlb_addr = tlb_addr; |
| gd->arch.tlb_size = tlb_size; |
| } |
| |
| /* to activate the MMU we need to set up virtual memory */ |
| __weak void mmu_setup(void) |
| { |
| int el; |
| |
| /* Set up page tables only once */ |
| if (!gd->arch.tlb_fillptr) |
| setup_all_pgtables(); |
| |
| el = current_el(); |
| set_ttbr_tcr_mair(el, gd->arch.tlb_addr, get_tcr(NULL, NULL), |
| MEMORY_ATTRIBUTES); |
| |
| /* enable the mmu */ |
| set_sctlr(get_sctlr() | CR_M); |
| } |
| |
| /* |
| * Performs a invalidation of the entire data cache at all levels |
| */ |
| void invalidate_dcache_all(void) |
| { |
| #ifndef CONFIG_CMO_BY_VA_ONLY |
| __asm_invalidate_dcache_all(); |
| __asm_invalidate_l3_dcache(); |
| #else |
| apply_cmo_to_mappings(invalidate_dcache_range); |
| #endif |
| } |
| |
| /* |
| * Performs a clean & invalidation of the entire data cache at all levels. |
| * This function needs to be inline to avoid using stack. |
| * __asm_flush_l3_dcache return status of timeout |
| */ |
| inline void flush_dcache_all(void) |
| { |
| #ifndef CONFIG_CMO_BY_VA_ONLY |
| int ret; |
| |
| __asm_flush_dcache_all(); |
| ret = __asm_flush_l3_dcache(); |
| if (ret) |
| debug("flushing dcache returns 0x%x\n", ret); |
| else |
| debug("flushing dcache successfully.\n"); |
| #else |
| apply_cmo_to_mappings(flush_dcache_range); |
| #endif |
| } |
| |
| #ifndef CONFIG_SYS_DISABLE_DCACHE_OPS |
| /* |
| * Invalidates range in all levels of D-cache/unified cache |
| */ |
| void invalidate_dcache_range(unsigned long start, unsigned long stop) |
| { |
| __asm_invalidate_dcache_range(start, stop); |
| } |
| |
| /* |
| * Flush range(clean & invalidate) from all levels of D-cache/unified cache |
| */ |
| void flush_dcache_range(unsigned long start, unsigned long stop) |
| { |
| __asm_flush_dcache_range(start, stop); |
| } |
| #else |
| void invalidate_dcache_range(unsigned long start, unsigned long stop) |
| { |
| } |
| |
| void flush_dcache_range(unsigned long start, unsigned long stop) |
| { |
| } |
| #endif /* CONFIG_SYS_DISABLE_DCACHE_OPS */ |
| |
| void dcache_enable(void) |
| { |
| /* The data cache is not active unless the mmu is enabled */ |
| if (!(get_sctlr() & CR_M)) { |
| invalidate_dcache_all(); |
| __asm_invalidate_tlb_all(); |
| mmu_setup(); |
| } |
| |
| /* Set up page tables only once (it is done also by mmu_setup()) */ |
| if (!gd->arch.tlb_fillptr) |
| setup_all_pgtables(); |
| |
| set_sctlr(get_sctlr() | CR_C); |
| } |
| |
| void dcache_disable(void) |
| { |
| uint32_t sctlr; |
| |
| sctlr = get_sctlr(); |
| |
| /* if cache isn't enabled no need to disable */ |
| if (!(sctlr & CR_C)) |
| return; |
| |
| if (IS_ENABLED(CONFIG_CMO_BY_VA_ONLY)) { |
| /* |
| * When invalidating by VA, do it *before* turning the MMU |
| * off, so that at least our stack is coherent. |
| */ |
| flush_dcache_all(); |
| } |
| |
| set_sctlr(sctlr & ~(CR_C|CR_M)); |
| |
| if (!IS_ENABLED(CONFIG_CMO_BY_VA_ONLY)) |
| flush_dcache_all(); |
| |
| __asm_invalidate_tlb_all(); |
| } |
| |
| int dcache_status(void) |
| { |
| return (get_sctlr() & CR_C) != 0; |
| } |
| |
| u64 *__weak arch_get_page_table(void) { |
| puts("No page table offset defined\n"); |
| |
| return NULL; |
| } |
| |
| static bool is_aligned(u64 addr, u64 size, u64 align) |
| { |
| return !(addr & (align - 1)) && !(size & (align - 1)); |
| } |
| |
| /* Use flag to indicate if attrs has more than d-cache attributes */ |
| static u64 set_one_region(u64 start, u64 size, u64 attrs, bool flag, int level) |
| { |
| int levelshift = level2shift(level); |
| u64 levelsize = 1ULL << levelshift; |
| u64 *pte = find_pte(start, level); |
| |
| /* Can we can just modify the current level block PTE? */ |
| if (is_aligned(start, size, levelsize)) { |
| if (flag) { |
| *pte &= ~PMD_ATTRMASK; |
| *pte |= attrs & PMD_ATTRMASK; |
| } else { |
| *pte &= ~PMD_ATTRINDX_MASK; |
| *pte |= attrs & PMD_ATTRINDX_MASK; |
| } |
| debug("Set attrs=%llx pte=%p level=%d\n", attrs, pte, level); |
| |
| return levelsize; |
| } |
| |
| /* Unaligned or doesn't fit, maybe split block into table */ |
| debug("addr=%llx level=%d pte=%p (%llx)\n", start, level, pte, *pte); |
| |
| /* Maybe we need to split the block into a table */ |
| if (pte_type(pte) == PTE_TYPE_BLOCK) |
| split_block(pte, level); |
| |
| /* And then double-check it became a table or already is one */ |
| if (pte_type(pte) != PTE_TYPE_TABLE) |
| panic("PTE %p (%llx) for addr=%llx should be a table", |
| pte, *pte, start); |
| |
| /* Roll on to the next page table level */ |
| return 0; |
| } |
| |
| void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size, |
| enum dcache_option option) |
| { |
| u64 attrs = PMD_ATTRINDX(option >> 2); |
| u64 real_start = start; |
| u64 real_size = size; |
| |
| debug("start=%lx size=%lx\n", (ulong)start, (ulong)size); |
| |
| if (!gd->arch.tlb_emerg) |
| panic("Emergency page table not setup."); |
| |
| /* |
| * We can not modify page tables that we're currently running on, |
| * so we first need to switch to the "emergency" page tables where |
| * we can safely modify our primary page tables and then switch back |
| */ |
| __asm_switch_ttbr(gd->arch.tlb_emerg); |
| |
| /* |
| * Loop through the address range until we find a page granule that fits |
| * our alignment constraints, then set it to the new cache attributes |
| */ |
| while (size > 0) { |
| int level; |
| u64 r; |
| |
| for (level = 1; level < 4; level++) { |
| /* Set d-cache attributes only */ |
| r = set_one_region(start, size, attrs, false, level); |
| if (r) { |
| /* PTE successfully replaced */ |
| size -= r; |
| start += r; |
| break; |
| } |
| } |
| |
| } |
| |
| /* We're done modifying page tables, switch back to our primary ones */ |
| __asm_switch_ttbr(gd->arch.tlb_addr); |
| |
| /* |
| * Make sure there's nothing stale in dcache for a region that might |
| * have caches off now |
| */ |
| flush_dcache_range(real_start, real_start + real_size); |
| } |
| |
| /* |
| * Modify MMU table for a region with updated PXN/UXN/Memory type/valid bits. |
| * The procecess is break-before-make. The target region will be marked as |
| * invalid during the process of changing. |
| */ |
| void mmu_change_region_attr(phys_addr_t addr, size_t siz, u64 attrs) |
| { |
| int level; |
| u64 r, size, start; |
| |
| start = addr; |
| size = siz; |
| /* |
| * Loop through the address range until we find a page granule that fits |
| * our alignment constraints, then set it to "invalid". |
| */ |
| while (size > 0) { |
| for (level = 1; level < 4; level++) { |
| /* Set PTE to fault */ |
| r = set_one_region(start, size, PTE_TYPE_FAULT, true, |
| level); |
| if (r) { |
| /* PTE successfully invalidated */ |
| size -= r; |
| start += r; |
| break; |
| } |
| } |
| } |
| |
| flush_dcache_range(gd->arch.tlb_addr, |
| gd->arch.tlb_addr + gd->arch.tlb_size); |
| __asm_invalidate_tlb_all(); |
| |
| /* |
| * Loop through the address range until we find a page granule that fits |
| * our alignment constraints, then set it to the new cache attributes |
| */ |
| start = addr; |
| size = siz; |
| while (size > 0) { |
| for (level = 1; level < 4; level++) { |
| /* Set PTE to new attributes */ |
| r = set_one_region(start, size, attrs, true, level); |
| if (r) { |
| /* PTE successfully updated */ |
| size -= r; |
| start += r; |
| break; |
| } |
| } |
| } |
| flush_dcache_range(gd->arch.tlb_addr, |
| gd->arch.tlb_addr + gd->arch.tlb_size); |
| __asm_invalidate_tlb_all(); |
| } |
| |
| #else /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */ |
| |
| /* |
| * For SPL builds, we may want to not have dcache enabled. Any real U-Boot |
| * running however really wants to have dcache and the MMU active. Check that |
| * everything is sane and give the developer a hint if it isn't. |
| */ |
| #ifndef CONFIG_SPL_BUILD |
| #error Please describe your MMU layout in CONFIG_SYS_MEM_MAP and enable dcache. |
| #endif |
| |
| void invalidate_dcache_all(void) |
| { |
| } |
| |
| void flush_dcache_all(void) |
| { |
| } |
| |
| void dcache_enable(void) |
| { |
| } |
| |
| void dcache_disable(void) |
| { |
| } |
| |
| int dcache_status(void) |
| { |
| return 0; |
| } |
| |
| void mmu_set_region_dcache_behaviour(phys_addr_t start, size_t size, |
| enum dcache_option option) |
| { |
| } |
| |
| #endif /* !CONFIG_IS_ENABLED(SYS_DCACHE_OFF) */ |
| |
| #if !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) |
| |
| void icache_enable(void) |
| { |
| invalidate_icache_all(); |
| set_sctlr(get_sctlr() | CR_I); |
| } |
| |
| void icache_disable(void) |
| { |
| set_sctlr(get_sctlr() & ~CR_I); |
| } |
| |
| int icache_status(void) |
| { |
| return (get_sctlr() & CR_I) != 0; |
| } |
| |
| int mmu_status(void) |
| { |
| return (get_sctlr() & CR_M) != 0; |
| } |
| |
| void invalidate_icache_all(void) |
| { |
| __asm_invalidate_icache_all(); |
| __asm_invalidate_l3_icache(); |
| } |
| |
| #else /* !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) */ |
| |
| void icache_enable(void) |
| { |
| } |
| |
| void icache_disable(void) |
| { |
| } |
| |
| int icache_status(void) |
| { |
| return 0; |
| } |
| |
| int mmu_status(void) |
| { |
| return 0; |
| } |
| |
| void invalidate_icache_all(void) |
| { |
| } |
| |
| #endif /* !CONFIG_IS_ENABLED(SYS_ICACHE_OFF) */ |
| |
| /* |
| * Enable dCache & iCache, whether cache is actually enabled |
| * depend on CONFIG_SYS_DCACHE_OFF and CONFIG_SYS_ICACHE_OFF |
| */ |
| void __weak enable_caches(void) |
| { |
| icache_enable(); |
| dcache_enable(); |
| } |