blob: 302abe86c6e9251ea268b61435b6b3f6baded0d4 [file] [log] [blame]
/*
* (C) Copyright 2009
* Marvell Semiconductor <www.marvell.com>
* Prafulla Wadaskar <prafulla@marvell.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <netdev.h>
#include "mv88e61xx.h"
/*
* Uncomment either of the following line for local debug control;
* otherwise global debug control will apply.
*/
/* #undef DEBUG */
/* #define DEBUG */
#ifdef CONFIG_MV88E61XX_MULTICHIP_ADRMODE
/* Chip Address mode
* The Switch support two modes of operation
* 1. single chip mode and
* 2. Multi-chip mode
* Refer section 9.2 &9.3 in chip datasheet-02 for more details
*
* By default single chip mode is configured
* multichip mode operation can be configured in board header
*/
static int mv88e61xx_busychk_multic(char *name, u32 devaddr)
{
u16 reg = 0;
u32 timeout = MV88E61XX_PHY_TIMEOUT;
/* Poll till SMIBusy bit is clear */
do {
miiphy_read(name, devaddr, 0x0, &reg);
if (timeout-- == 0) {
printf("SMI busy timeout\n");
return -1;
}
} while (reg & (1 << 15));
return 0;
}
static void mv88e61xx_switch_write(char *name, u32 phy_adr,
u32 reg_ofs, u16 data)
{
u16 mii_dev_addr;
/* command to read PHY dev address */
if (miiphy_read(name, 0xEE, 0xEE, &mii_dev_addr)) {
printf("Error..could not read PHY dev address\n");
return;
}
mv88e61xx_busychk_multic(name, mii_dev_addr);
/* Write data to Switch indirect data register */
miiphy_write(name, mii_dev_addr, 0x1, data);
/* Write command to Switch indirect command register (write) */
miiphy_write(name, mii_dev_addr, 0x0,
reg_ofs | (phy_adr << 5) | (1 << 10) | (1 << 12) | (1 <<
15));
}
static void mv88e61xx_switch_read(char *name, u32 phy_adr,
u32 reg_ofs, u16 *data)
{
u16 mii_dev_addr;
/* command to read PHY dev address */
if (miiphy_read(name, 0xEE, 0xEE, &mii_dev_addr)) {
printf("Error..could not read PHY dev address\n");
return;
}
mv88e61xx_busychk_multic(name, mii_dev_addr);
/* Write command to Switch indirect command register (read) */
miiphy_write(name, mii_dev_addr, 0x0,
reg_ofs | (phy_adr << 5) | (1 << 11) | (1 << 12) | (1 <<
15));
mv88e61xx_busychk_multic(name, mii_dev_addr);
/* Read data from Switch indirect data register */
miiphy_read(name, mii_dev_addr, 0x1, data);
}
#endif /* CONFIG_MV88E61XX_MULTICHIP_ADRMODE */
/*
* Convenience macros for switch device/port reads/writes
* These macros output valid 'mv88e61xx' U_BOOT_CMDs
*/
#ifndef DEBUG
#define WR_SWITCH_REG wr_switch_reg
#define RD_SWITCH_REG rd_switch_reg
#define WR_SWITCH_PORT_REG(n, p, r, d) \
WR_SWITCH_REG(n, (MV88E61XX_PRT_OFST+p), r, d)
#define RD_SWITCH_PORT_REG(n, p, r, d) \
RD_SWITCH_REG(n, (MV88E61XX_PRT_OFST+p), r, d)
#else
static void WR_SWITCH_REG(char *name, u32 dev_adr, u32 reg_ofs, u16 data)
{
printf("mv88e61xx %s dev %02x reg %02x write %04x\n",
name, dev_adr, reg_ofs, data);
wr_switch_reg(name, dev_adr, reg_ofs, data);
}
static void RD_SWITCH_REG(char *name, u32 dev_adr, u32 reg_ofs, u16 *data)
{
rd_switch_reg(name, dev_adr, reg_ofs, data);
printf("mv88e61xx %s dev %02x reg %02x read %04x\n",
name, dev_adr, reg_ofs, *data);
}
static void WR_SWITCH_PORT_REG(char *name, u32 prt_adr, u32 reg_ofs,
u16 data)
{
printf("mv88e61xx %s port %02x reg %02x write %04x\n",
name, prt_adr, reg_ofs, data);
wr_switch_reg(name, (MV88E61XX_PRT_OFST+prt_adr), reg_ofs, data);
}
static void RD_SWITCH_PORT_REG(char *name, u32 prt_adr, u32 reg_ofs,
u16 *data)
{
rd_switch_reg(name, (MV88E61XX_PRT_OFST+prt_adr), reg_ofs, data);
printf("mv88e61xx %s port %02x reg %02x read %04x\n",
name, prt_adr, reg_ofs, *data);
}
#endif
/*
* Local functions to read/write registers on the switch PHYs.
* NOTE! This goes through switch, not direct miiphy, writes and reads!
*/
/*
* Make sure SMIBusy bit cleared before another
* SMI operation can take place
*/
static int mv88e61xx_busychk(char *name)
{
u16 reg = 0;
u32 timeout = MV88E61XX_PHY_TIMEOUT;
do {
rd_switch_reg(name, MV88E61XX_GLB2REG_DEVADR,
MV88E61XX_PHY_CMD, &reg);
if (timeout-- == 0) {
printf("SMI busy timeout\n");
return -1;
}
} while (reg & 1 << 15); /* busy mask */
return 0;
}
static inline int mv88e61xx_switch_miiphy_write(char *name, u32 phy,
u32 reg, u16 data)
{
/* write switch data reg then cmd reg then check completion */
wr_switch_reg(name, MV88E61XX_GLB2REG_DEVADR, MV88E61XX_PHY_DATA,
data);
wr_switch_reg(name, MV88E61XX_GLB2REG_DEVADR, MV88E61XX_PHY_CMD,
(MV88E61XX_PHY_WRITE_CMD | (phy << 5) | reg));
return mv88e61xx_busychk(name);
}
static inline int mv88e61xx_switch_miiphy_read(char *name, u32 phy,
u32 reg, u16 *data)
{
/* write switch cmd reg, check for completion */
wr_switch_reg(name, MV88E61XX_GLB2REG_DEVADR, MV88E61XX_PHY_CMD,
(MV88E61XX_PHY_READ_CMD | (phy << 5) | reg));
if (mv88e61xx_busychk(name))
return -1;
/* read switch data reg and return success */
rd_switch_reg(name, MV88E61XX_GLB2REG_DEVADR, MV88E61XX_PHY_DATA, data);
return 0;
}
/*
* Convenience macros for switch PHY reads/writes
*/
#ifndef DEBUG
#define WR_SWITCH_PHY_REG mv88e61xx_switch_miiphy_write
#define RD_SWITCH_PHY_REG mv88e61xx_switch_miiphy_read
#else
static inline int WR_SWITCH_PHY_REG(char *name, u32 phy_adr,
u32 reg_ofs, u16 data)
{
int r = mv88e61xx_switch_miiphy_write(name, phy_adr, reg_ofs, data);
if (r)
printf("** ERROR writing mv88e61xx %s phy %02x reg %02x\n",
name, phy_adr, reg_ofs);
else
printf("mv88e61xx %s phy %02x reg %02x write %04x\n",
name, phy_adr, reg_ofs, data);
return r;
}
static inline int RD_SWITCH_PHY_REG(char *name, u32 phy_adr,
u32 reg_ofs, u16 *data)
{
int r = mv88e61xx_switch_miiphy_read(name, phy_adr, reg_ofs, data);
if (r)
printf("** ERROR reading mv88e61xx %s phy %02x reg %02x\n",
name, phy_adr, reg_ofs);
else
printf("mv88e61xx %s phy %02x reg %02x read %04x\n",
name, phy_adr, reg_ofs, *data);
return r;
}
#endif
static void mv88e61xx_port_vlan_config(struct mv88e61xx_config *swconfig)
{
u32 prt;
u16 reg;
char *name = swconfig->name;
u32 port_mask = swconfig->ports_enabled;
/* apply internal vlan config */
for (prt = 0; prt < MV88E61XX_MAX_PORTS_NUM; prt++) {
/* only for enabled ports */
if ((1 << prt) & port_mask) {
/* take vlan map from swconfig */
u8 vlanmap = swconfig->vlancfg[prt];
/* remove disabled ports from vlan map */
vlanmap &= swconfig->ports_enabled;
/* apply vlan map to port */
RD_SWITCH_PORT_REG(name, prt,
MV88E61XX_PRT_VMAP_REG, &reg);
reg &= ~((1 << MV88E61XX_MAX_PORTS_NUM) - 1);
reg |= vlanmap;
WR_SWITCH_PORT_REG(name, prt,
MV88E61XX_PRT_VMAP_REG, reg);
}
}
}
/*
* Power up the specified port and reset PHY
*/
static int mv88361xx_powerup(struct mv88e61xx_config *swconfig, u32 phy)
{
char *name = swconfig->name;
/* Write Copper Specific control reg1 (0x10) for-
* Enable Phy power up
* Energy Detect on (sense&Xmit NLP Periodically
* reset other settings default
*/
if (WR_SWITCH_PHY_REG(name, phy, 0x10, 0x3360))
return -1;
/* Write PHY ctrl reg (0x0) to apply
* Phy reset (set bit 15 low)
* reset other default values
*/
if (WR_SWITCH_PHY_REG(name, phy, 0x00, 0x9140))
return -1;
return 0;
}
/*
* Default Setup for LED[0]_Control (ref: Table 46 Datasheet-3)
* is set to "On-1000Mb/s Link, Off Else"
* This function sets it to "On-Link, Blink-Activity, Off-NoLink"
*
* This is optional settings may be needed on some boards
* to setup PHY LEDs default configuration to detect 10/100/1000Mb/s
* Link status
*/
static int mv88361xx_led_init(struct mv88e61xx_config *swconfig, u32 phy)
{
char *name = swconfig->name;
if (swconfig->led_init != MV88E61XX_LED_INIT_EN)
return 0;
/* set page address to 3 */
if (WR_SWITCH_PHY_REG(name, phy, 0x16, 0x0003))
return -1;
/*
* set LED Func Ctrl reg
* value 0x0001 = LED[0] On-Link, Blink-Activity, Off-NoLink
*/
if (WR_SWITCH_PHY_REG(name, phy, 0x10, 0x0001))
return -1;
/* set page address to 0 */
if (WR_SWITCH_PHY_REG(name, phy, 0x16, 0x0000))
return -1;
return 0;
}
/*
* Reverse Transmit polarity for Media Dependent Interface
* Pins (MDIP) bits in Copper Specific Control Register 3
* (Page 0, Reg 20 for each phy (except cpu port)
* Reference: Section 1.1 Switch datasheet-3
*
* This is optional settings may be needed on some boards
* for PHY<->magnetics h/w tuning
*/
static int mv88361xx_reverse_mdipn(struct mv88e61xx_config *swconfig, u32 phy)
{
char *name = swconfig->name;
if (swconfig->mdip != MV88E61XX_MDIP_REVERSE)
return 0;
/*Reverse MDIP/N[3:0] bits */
if (WR_SWITCH_PHY_REG(name, phy, 0x14, 0x000f))
return -1;
return 0;
}
/*
* Marvell 88E61XX Switch initialization
*/
int mv88e61xx_switch_initialize(struct mv88e61xx_config *swconfig)
{
u32 prt;
u16 reg;
char *idstr;
char *name = swconfig->name;
int time;
if (miiphy_set_current_dev(name)) {
printf("%s failed\n", __FUNCTION__);
return -1;
}
if (!(swconfig->cpuport & ((1 << 4) | (1 << 5)))) {
swconfig->cpuport = (1 << 5);
printf("Invalid cpu port config, using default port5\n");
}
RD_SWITCH_PORT_REG(name, 0, MII_PHYSID2, &reg);
switch (reg &= 0xfff0) {
case 0x1610:
idstr = "88E6161";
break;
case 0x1650:
idstr = "88E6165";
break;
case 0x1210:
idstr = "88E6123";
/* ports 2,3,4 not available */
swconfig->ports_enabled &= 0x023;
break;
default:
/* Could not detect switch id */
idstr = "88E61??";
break;
}
/* be sure all ports are disabled */
for (prt = 0; prt < MV88E61XX_MAX_PORTS_NUM; prt++) {
RD_SWITCH_PORT_REG(name, prt, MV88E61XX_PRT_CTRL_REG, &reg);
reg &= ~0x3;
WR_SWITCH_PORT_REG(name, prt, MV88E61XX_PRT_CTRL_REG, reg);
}
/* wait 2 ms for queues to drain */
udelay(2000);
/* reset switch */
RD_SWITCH_REG(name, MV88E61XX_GLBREG_DEVADR, MV88E61XX_SGCR, &reg);
reg |= 0x8000;
WR_SWITCH_REG(name, MV88E61XX_GLBREG_DEVADR, MV88E61XX_SGCR, reg);
/* wait up to 1 second for switch reset complete */
for (time = 1000; time; time--) {
RD_SWITCH_REG(name, MV88E61XX_GLBREG_DEVADR, MV88E61XX_SGSR,
&reg);
if ((reg & 0xc800) == 0xc800)
break;
udelay(1000);
}
if (!time)
return -1;
/* Port based VLANs configuration */
mv88e61xx_port_vlan_config(swconfig);
if (swconfig->rgmii_delay == MV88E61XX_RGMII_DELAY_EN) {
/*
* Enable RGMII delay on Tx and Rx for CPU port
* Ref: sec 9.5 of chip datasheet-02
*/
/*Force port link down */
WR_SWITCH_PORT_REG(name, 5, MV88E61XX_PCS_CTRL_REG, 0x10);
/* configure port RGMII delay */
WR_SWITCH_PORT_REG(name, 4,
MV88E61XX_RGMII_TIMECTRL_REG, 0x81e7);
RD_SWITCH_PORT_REG(name, 5,
MV88E61XX_RGMII_TIMECTRL_REG, &reg);
WR_SWITCH_PORT_REG(name, 5,
MV88E61XX_RGMII_TIMECTRL_REG, reg | 0x18);
WR_SWITCH_PORT_REG(name, 4,
MV88E61XX_RGMII_TIMECTRL_REG, 0xc1e7);
/* Force port to RGMII FDX 1000Base then up */
WR_SWITCH_PORT_REG(name, 5, MV88E61XX_PCS_CTRL_REG, 0x1e);
WR_SWITCH_PORT_REG(name, 5, MV88E61XX_PCS_CTRL_REG, 0x3e);
}
for (prt = 0; prt < MV88E61XX_MAX_PORTS_NUM; prt++) {
/* configure port's PHY */
if (!((1 << prt) & swconfig->cpuport)) {
/* port 4 has phy 6, not 4 */
int phy = (prt == 4) ? 6 : prt;
if (mv88361xx_powerup(swconfig, phy))
return -1;
if (mv88361xx_reverse_mdipn(swconfig, phy))
return -1;
if (mv88361xx_led_init(swconfig, phy))
return -1;
}
/* set port VID to port+1 except for cpu port */
if (!((1 << prt) & swconfig->cpuport)) {
RD_SWITCH_PORT_REG(name, prt,
MV88E61XX_PRT_VID_REG, &reg);
WR_SWITCH_PORT_REG(name, prt,
MV88E61XX_PRT_VID_REG,
(reg & ~1023) | (prt+1));
}
/*Program port state */
RD_SWITCH_PORT_REG(name, prt,
MV88E61XX_PRT_CTRL_REG, &reg);
WR_SWITCH_PORT_REG(name, prt,
MV88E61XX_PRT_CTRL_REG,
reg | (swconfig->portstate & 0x03));
}
printf("%s Initialized on %s\n", idstr, name);
return 0;
}
#ifdef CONFIG_MV88E61XX_CMD
static int
do_switch(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
char *name, *endp;
int write = 0;
enum { dev, prt, phy } target = dev;
u32 addrlo, addrhi, addr;
u32 reglo, reghi, reg;
u16 data, rdata;
if (argc < 7)
return -1;
name = argv[1];
if (strcmp(argv[2], "phy") == 0)
target = phy;
else if (strcmp(argv[2], "port") == 0)
target = prt;
else if (strcmp(argv[2], "dev") != 0)
return 1;
addrlo = simple_strtoul(argv[3], &endp, 16);
if (!*endp) {
addrhi = addrlo;
} else {
while (*endp < '0' || *endp > '9')
endp++;
addrhi = simple_strtoul(endp, NULL, 16);
}
reglo = simple_strtoul(argv[5], &endp, 16);
if (!*endp) {
reghi = reglo;
} else {
while (*endp < '0' || *endp > '9')
endp++;
reghi = simple_strtoul(endp, NULL, 16);
}
if (strcmp(argv[6], "write") == 0)
write = 1;
else if (strcmp(argv[6], "read") != 0)
return 1;
data = simple_strtoul(argv[7], NULL, 16);
for (addr = addrlo; addr <= addrhi; addr++) {
for (reg = reglo; reg <= reghi; reg++) {
if (write) {
if (target == phy)
mv88e61xx_switch_miiphy_write(
name, addr, reg, data);
else if (target == prt)
wr_switch_reg(name,
addr+MV88E61XX_PRT_OFST,
reg, data);
else
wr_switch_reg(name, addr, reg, data);
} else {
if (target == phy)
mv88e61xx_switch_miiphy_read(
name, addr, reg, &rdata);
else if (target == prt)
rd_switch_reg(name,
addr+MV88E61XX_PRT_OFST,
reg, &rdata);
else
rd_switch_reg(name, addr, reg, &rdata);
printf("%s %s %s %02x %s %02x %s %04x\n",
argv[0], argv[1], argv[2], addr,
argv[4], reg, argv[6], rdata);
if (write && argc == 7 && rdata != data)
return 1;
}
}
}
return 0;
}
U_BOOT_CMD(mv88e61xx, 8, 0, do_switch,
"Read or write mv88e61xx switch registers",
"<ethdevice> dev|port|phy <addr> reg <reg> write <data>\n"
"<ethdevice> dev|port|phy <addr> reg <reg> read [<data>]\n"
" - read/write switch device, port or phy at (addr,reg)\n"
" addr=0..0x1C for dev, 0..5 for port or phy.\n"
" reg=0..0x1F.\n"
" data=0..0xFFFF (tested if present against actual read).\n"
" All numeric parameters are assumed to be hex.\n"
" <addr> and <<reg> arguments can be ranges (x..y)"
);
#endif /* CONFIG_MV88E61XX_CMD */