| /* |
| * Chromium OS cros_ec driver |
| * |
| * Copyright (c) 2012 The Chromium OS Authors. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| /* |
| * The Matrix Keyboard Protocol driver handles talking to the keyboard |
| * controller chip. Mostly this is for keyboard functions, but some other |
| * things have slipped in, so we provide generic services to talk to the |
| * KBC. |
| */ |
| |
| #include <common.h> |
| #include <command.h> |
| #include <i2c.h> |
| #include <cros_ec.h> |
| #include <fdtdec.h> |
| #include <malloc.h> |
| #include <spi.h> |
| #include <asm/io.h> |
| #include <asm-generic/gpio.h> |
| |
| #ifdef DEBUG_TRACE |
| #define debug_trace(fmt, b...) debug(fmt, #b) |
| #else |
| #define debug_trace(fmt, b...) |
| #endif |
| |
| enum { |
| /* Timeout waiting for a flash erase command to complete */ |
| CROS_EC_CMD_TIMEOUT_MS = 5000, |
| /* Timeout waiting for a synchronous hash to be recomputed */ |
| CROS_EC_CMD_HASH_TIMEOUT_MS = 2000, |
| }; |
| |
| static struct cros_ec_dev static_dev, *last_dev; |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* Note: depends on enum ec_current_image */ |
| static const char * const ec_current_image_name[] = {"unknown", "RO", "RW"}; |
| |
| void cros_ec_dump_data(const char *name, int cmd, const uint8_t *data, int len) |
| { |
| #ifdef DEBUG |
| int i; |
| |
| printf("%s: ", name); |
| if (cmd != -1) |
| printf("cmd=%#x: ", cmd); |
| for (i = 0; i < len; i++) |
| printf("%02x ", data[i]); |
| printf("\n"); |
| #endif |
| } |
| |
| /* |
| * Calculate a simple 8-bit checksum of a data block |
| * |
| * @param data Data block to checksum |
| * @param size Size of data block in bytes |
| * @return checksum value (0 to 255) |
| */ |
| int cros_ec_calc_checksum(const uint8_t *data, int size) |
| { |
| int csum, i; |
| |
| for (i = csum = 0; i < size; i++) |
| csum += data[i]; |
| return csum & 0xff; |
| } |
| |
| static int send_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, |
| const void *dout, int dout_len, |
| uint8_t **dinp, int din_len) |
| { |
| int ret; |
| |
| switch (dev->interface) { |
| #ifdef CONFIG_CROS_EC_SPI |
| case CROS_EC_IF_SPI: |
| ret = cros_ec_spi_command(dev, cmd, cmd_version, |
| (const uint8_t *)dout, dout_len, |
| dinp, din_len); |
| break; |
| #endif |
| #ifdef CONFIG_CROS_EC_I2C |
| case CROS_EC_IF_I2C: |
| ret = cros_ec_i2c_command(dev, cmd, cmd_version, |
| (const uint8_t *)dout, dout_len, |
| dinp, din_len); |
| break; |
| #endif |
| #ifdef CONFIG_CROS_EC_LPC |
| case CROS_EC_IF_LPC: |
| ret = cros_ec_lpc_command(dev, cmd, cmd_version, |
| (const uint8_t *)dout, dout_len, |
| dinp, din_len); |
| break; |
| #endif |
| case CROS_EC_IF_NONE: |
| default: |
| ret = -1; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * Send a command to the CROS-EC device and return the reply. |
| * |
| * The device's internal input/output buffers are used. |
| * |
| * @param dev CROS-EC device |
| * @param cmd Command to send (EC_CMD_...) |
| * @param cmd_version Version of command to send (EC_VER_...) |
| * @param dout Output data (may be NULL If dout_len=0) |
| * @param dout_len Size of output data in bytes |
| * @param dinp Response data (may be NULL If din_len=0). |
| * If not NULL, it will be updated to point to the data |
| * and will always be double word aligned (64-bits) |
| * @param din_len Maximum size of response in bytes |
| * @return number of bytes in response, or -1 on error |
| */ |
| static int ec_command_inptr(struct cros_ec_dev *dev, uint8_t cmd, |
| int cmd_version, const void *dout, int dout_len, uint8_t **dinp, |
| int din_len) |
| { |
| uint8_t *din; |
| int len; |
| |
| if (cmd_version != 0 && !dev->cmd_version_is_supported) { |
| debug("%s: Command version >0 unsupported\n", __func__); |
| return -1; |
| } |
| len = send_command(dev, cmd, cmd_version, dout, dout_len, |
| &din, din_len); |
| |
| /* If the command doesn't complete, wait a while */ |
| if (len == -EC_RES_IN_PROGRESS) { |
| struct ec_response_get_comms_status *resp; |
| ulong start; |
| |
| /* Wait for command to complete */ |
| start = get_timer(0); |
| do { |
| int ret; |
| |
| mdelay(50); /* Insert some reasonable delay */ |
| ret = send_command(dev, EC_CMD_GET_COMMS_STATUS, 0, |
| NULL, 0, |
| (uint8_t **)&resp, sizeof(*resp)); |
| if (ret < 0) |
| return ret; |
| |
| if (get_timer(start) > CROS_EC_CMD_TIMEOUT_MS) { |
| debug("%s: Command %#02x timeout\n", |
| __func__, cmd); |
| return -EC_RES_TIMEOUT; |
| } |
| } while (resp->flags & EC_COMMS_STATUS_PROCESSING); |
| |
| /* OK it completed, so read the status response */ |
| /* not sure why it was 0 for the last argument */ |
| len = send_command(dev, EC_CMD_RESEND_RESPONSE, 0, |
| NULL, 0, &din, din_len); |
| } |
| |
| debug("%s: len=%d, dinp=%p, *dinp=%p\n", __func__, len, dinp, *dinp); |
| if (dinp) { |
| /* If we have any data to return, it must be 64bit-aligned */ |
| assert(len <= 0 || !((uintptr_t)din & 7)); |
| *dinp = din; |
| } |
| |
| return len; |
| } |
| |
| /** |
| * Send a command to the CROS-EC device and return the reply. |
| * |
| * The device's internal input/output buffers are used. |
| * |
| * @param dev CROS-EC device |
| * @param cmd Command to send (EC_CMD_...) |
| * @param cmd_version Version of command to send (EC_VER_...) |
| * @param dout Output data (may be NULL If dout_len=0) |
| * @param dout_len Size of output data in bytes |
| * @param din Response data (may be NULL If din_len=0). |
| * It not NULL, it is a place for ec_command() to copy the |
| * data to. |
| * @param din_len Maximum size of response in bytes |
| * @return number of bytes in response, or -1 on error |
| */ |
| static int ec_command(struct cros_ec_dev *dev, uint8_t cmd, int cmd_version, |
| const void *dout, int dout_len, |
| void *din, int din_len) |
| { |
| uint8_t *in_buffer; |
| int len; |
| |
| assert((din_len == 0) || din); |
| len = ec_command_inptr(dev, cmd, cmd_version, dout, dout_len, |
| &in_buffer, din_len); |
| if (len > 0) { |
| /* |
| * If we were asked to put it somewhere, do so, otherwise just |
| * disregard the result. |
| */ |
| if (din && in_buffer) { |
| assert(len <= din_len); |
| memmove(din, in_buffer, len); |
| } |
| } |
| return len; |
| } |
| |
| int cros_ec_scan_keyboard(struct cros_ec_dev *dev, struct mbkp_keyscan *scan) |
| { |
| if (ec_command(dev, EC_CMD_CROS_EC_STATE, 0, NULL, 0, scan, |
| sizeof(scan->data)) < sizeof(scan->data)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_read_id(struct cros_ec_dev *dev, char *id, int maxlen) |
| { |
| struct ec_response_get_version *r; |
| |
| if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, |
| (uint8_t **)&r, sizeof(*r)) < sizeof(*r)) |
| return -1; |
| |
| if (maxlen > sizeof(r->version_string_ro)) |
| maxlen = sizeof(r->version_string_ro); |
| |
| switch (r->current_image) { |
| case EC_IMAGE_RO: |
| memcpy(id, r->version_string_ro, maxlen); |
| break; |
| case EC_IMAGE_RW: |
| memcpy(id, r->version_string_rw, maxlen); |
| break; |
| default: |
| return -1; |
| } |
| |
| id[maxlen - 1] = '\0'; |
| return 0; |
| } |
| |
| int cros_ec_read_version(struct cros_ec_dev *dev, |
| struct ec_response_get_version **versionp) |
| { |
| if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, |
| (uint8_t **)versionp, sizeof(**versionp)) |
| < sizeof(**versionp)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_read_build_info(struct cros_ec_dev *dev, char **strp) |
| { |
| if (ec_command_inptr(dev, EC_CMD_GET_BUILD_INFO, 0, NULL, 0, |
| (uint8_t **)strp, EC_HOST_PARAM_SIZE) < 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_read_current_image(struct cros_ec_dev *dev, |
| enum ec_current_image *image) |
| { |
| struct ec_response_get_version *r; |
| |
| if (ec_command_inptr(dev, EC_CMD_GET_VERSION, 0, NULL, 0, |
| (uint8_t **)&r, sizeof(*r)) < sizeof(*r)) |
| return -1; |
| |
| *image = r->current_image; |
| return 0; |
| } |
| |
| static int cros_ec_wait_on_hash_done(struct cros_ec_dev *dev, |
| struct ec_response_vboot_hash *hash) |
| { |
| struct ec_params_vboot_hash p; |
| ulong start; |
| |
| start = get_timer(0); |
| while (hash->status == EC_VBOOT_HASH_STATUS_BUSY) { |
| mdelay(50); /* Insert some reasonable delay */ |
| |
| p.cmd = EC_VBOOT_HASH_GET; |
| if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), |
| hash, sizeof(*hash)) < 0) |
| return -1; |
| |
| if (get_timer(start) > CROS_EC_CMD_HASH_TIMEOUT_MS) { |
| debug("%s: EC_VBOOT_HASH_GET timeout\n", __func__); |
| return -EC_RES_TIMEOUT; |
| } |
| } |
| return 0; |
| } |
| |
| |
| int cros_ec_read_hash(struct cros_ec_dev *dev, |
| struct ec_response_vboot_hash *hash) |
| { |
| struct ec_params_vboot_hash p; |
| int rv; |
| |
| p.cmd = EC_VBOOT_HASH_GET; |
| if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), |
| hash, sizeof(*hash)) < 0) |
| return -1; |
| |
| /* If the EC is busy calculating the hash, fidget until it's done. */ |
| rv = cros_ec_wait_on_hash_done(dev, hash); |
| if (rv) |
| return rv; |
| |
| /* If the hash is valid, we're done. Otherwise, we have to kick it off |
| * again and wait for it to complete. Note that we explicitly assume |
| * that hashing zero bytes is always wrong, even though that would |
| * produce a valid hash value. */ |
| if (hash->status == EC_VBOOT_HASH_STATUS_DONE && hash->size) |
| return 0; |
| |
| debug("%s: No valid hash (status=%d size=%d). Compute one...\n", |
| __func__, hash->status, hash->size); |
| |
| p.cmd = EC_VBOOT_HASH_RECALC; |
| p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; |
| p.nonce_size = 0; |
| p.offset = EC_VBOOT_HASH_OFFSET_RW; |
| |
| if (ec_command(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), |
| hash, sizeof(*hash)) < 0) |
| return -1; |
| |
| rv = cros_ec_wait_on_hash_done(dev, hash); |
| if (rv) |
| return rv; |
| |
| debug("%s: hash done\n", __func__); |
| |
| return 0; |
| } |
| |
| static int cros_ec_invalidate_hash(struct cros_ec_dev *dev) |
| { |
| struct ec_params_vboot_hash p; |
| struct ec_response_vboot_hash *hash; |
| |
| /* We don't have an explict command for the EC to discard its current |
| * hash value, so we'll just tell it to calculate one that we know is |
| * wrong (we claim that hashing zero bytes is always invalid). |
| */ |
| p.cmd = EC_VBOOT_HASH_RECALC; |
| p.hash_type = EC_VBOOT_HASH_TYPE_SHA256; |
| p.nonce_size = 0; |
| p.offset = 0; |
| p.size = 0; |
| |
| debug("%s:\n", __func__); |
| |
| if (ec_command_inptr(dev, EC_CMD_VBOOT_HASH, 0, &p, sizeof(p), |
| (uint8_t **)&hash, sizeof(*hash)) < 0) |
| return -1; |
| |
| /* No need to wait for it to finish */ |
| return 0; |
| } |
| |
| int cros_ec_reboot(struct cros_ec_dev *dev, enum ec_reboot_cmd cmd, |
| uint8_t flags) |
| { |
| struct ec_params_reboot_ec p; |
| |
| p.cmd = cmd; |
| p.flags = flags; |
| |
| if (ec_command_inptr(dev, EC_CMD_REBOOT_EC, 0, &p, sizeof(p), NULL, 0) |
| < 0) |
| return -1; |
| |
| if (!(flags & EC_REBOOT_FLAG_ON_AP_SHUTDOWN)) { |
| /* |
| * EC reboot will take place immediately so delay to allow it |
| * to complete. Note that some reboot types (EC_REBOOT_COLD) |
| * will reboot the AP as well, in which case we won't actually |
| * get to this point. |
| */ |
| /* |
| * TODO(rspangler@chromium.org): Would be nice if we had a |
| * better way to determine when the reboot is complete. Could |
| * we poll a memory-mapped LPC value? |
| */ |
| udelay(50000); |
| } |
| |
| return 0; |
| } |
| |
| int cros_ec_interrupt_pending(struct cros_ec_dev *dev) |
| { |
| /* no interrupt support : always poll */ |
| if (!fdt_gpio_isvalid(&dev->ec_int)) |
| return 1; |
| |
| return !gpio_get_value(dev->ec_int.gpio); |
| } |
| |
| int cros_ec_info(struct cros_ec_dev *dev, struct ec_response_cros_ec_info *info) |
| { |
| if (ec_command(dev, EC_CMD_CROS_EC_INFO, 0, NULL, 0, info, |
| sizeof(*info)) < sizeof(*info)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_get_host_events(struct cros_ec_dev *dev, uint32_t *events_ptr) |
| { |
| struct ec_response_host_event_mask *resp; |
| |
| /* |
| * Use the B copy of the event flags, because the main copy is already |
| * used by ACPI/SMI. |
| */ |
| if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_GET_B, 0, NULL, 0, |
| (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) |
| return -1; |
| |
| if (resp->mask & EC_HOST_EVENT_MASK(EC_HOST_EVENT_INVALID)) |
| return -1; |
| |
| *events_ptr = resp->mask; |
| return 0; |
| } |
| |
| int cros_ec_clear_host_events(struct cros_ec_dev *dev, uint32_t events) |
| { |
| struct ec_params_host_event_mask params; |
| |
| params.mask = events; |
| |
| /* |
| * Use the B copy of the event flags, so it affects the data returned |
| * by cros_ec_get_host_events(). |
| */ |
| if (ec_command_inptr(dev, EC_CMD_HOST_EVENT_CLEAR_B, 0, |
| ¶ms, sizeof(params), NULL, 0) < 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_flash_protect(struct cros_ec_dev *dev, |
| uint32_t set_mask, uint32_t set_flags, |
| struct ec_response_flash_protect *resp) |
| { |
| struct ec_params_flash_protect params; |
| |
| params.mask = set_mask; |
| params.flags = set_flags; |
| |
| if (ec_command(dev, EC_CMD_FLASH_PROTECT, EC_VER_FLASH_PROTECT, |
| ¶ms, sizeof(params), |
| resp, sizeof(*resp)) < sizeof(*resp)) |
| return -1; |
| |
| return 0; |
| } |
| |
| static int cros_ec_check_version(struct cros_ec_dev *dev) |
| { |
| struct ec_params_hello req; |
| struct ec_response_hello *resp; |
| |
| #ifdef CONFIG_CROS_EC_LPC |
| /* LPC has its own way of doing this */ |
| if (dev->interface == CROS_EC_IF_LPC) |
| return cros_ec_lpc_check_version(dev); |
| #endif |
| |
| /* |
| * TODO(sjg@chromium.org). |
| * There is a strange oddity here with the EC. We could just ignore |
| * the response, i.e. pass the last two parameters as NULL and 0. |
| * In this case we won't read back very many bytes from the EC. |
| * On the I2C bus the EC gets upset about this and will try to send |
| * the bytes anyway. This means that we will have to wait for that |
| * to complete before continuing with a new EC command. |
| * |
| * This problem is probably unique to the I2C bus. |
| * |
| * So for now, just read all the data anyway. |
| */ |
| dev->cmd_version_is_supported = 1; |
| if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), |
| (uint8_t **)&resp, sizeof(*resp)) > 0) { |
| /* It appears to understand new version commands */ |
| dev->cmd_version_is_supported = 1; |
| } else { |
| dev->cmd_version_is_supported = 0; |
| if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, |
| sizeof(req), (uint8_t **)&resp, |
| sizeof(*resp)) < 0) { |
| debug("%s: Failed both old and new command style\n", |
| __func__); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int cros_ec_test(struct cros_ec_dev *dev) |
| { |
| struct ec_params_hello req; |
| struct ec_response_hello *resp; |
| |
| req.in_data = 0x12345678; |
| if (ec_command_inptr(dev, EC_CMD_HELLO, 0, &req, sizeof(req), |
| (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) { |
| printf("ec_command_inptr() returned error\n"); |
| return -1; |
| } |
| if (resp->out_data != req.in_data + 0x01020304) { |
| printf("Received invalid handshake %x\n", resp->out_data); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int cros_ec_flash_offset(struct cros_ec_dev *dev, enum ec_flash_region region, |
| uint32_t *offset, uint32_t *size) |
| { |
| struct ec_params_flash_region_info p; |
| struct ec_response_flash_region_info *r; |
| int ret; |
| |
| p.region = region; |
| ret = ec_command_inptr(dev, EC_CMD_FLASH_REGION_INFO, |
| EC_VER_FLASH_REGION_INFO, |
| &p, sizeof(p), (uint8_t **)&r, sizeof(*r)); |
| if (ret != sizeof(*r)) |
| return -1; |
| |
| if (offset) |
| *offset = r->offset; |
| if (size) |
| *size = r->size; |
| |
| return 0; |
| } |
| |
| int cros_ec_flash_erase(struct cros_ec_dev *dev, uint32_t offset, uint32_t size) |
| { |
| struct ec_params_flash_erase p; |
| |
| p.offset = offset; |
| p.size = size; |
| return ec_command_inptr(dev, EC_CMD_FLASH_ERASE, 0, &p, sizeof(p), |
| NULL, 0); |
| } |
| |
| /** |
| * Write a single block to the flash |
| * |
| * Write a block of data to the EC flash. The size must not exceed the flash |
| * write block size which you can obtain from cros_ec_flash_write_burst_size(). |
| * |
| * The offset starts at 0. You can obtain the region information from |
| * cros_ec_flash_offset() to find out where to write for a particular region. |
| * |
| * Attempting to write to the region where the EC is currently running from |
| * will result in an error. |
| * |
| * @param dev CROS-EC device |
| * @param data Pointer to data buffer to write |
| * @param offset Offset within flash to write to. |
| * @param size Number of bytes to write |
| * @return 0 if ok, -1 on error |
| */ |
| static int cros_ec_flash_write_block(struct cros_ec_dev *dev, |
| const uint8_t *data, uint32_t offset, uint32_t size) |
| { |
| struct ec_params_flash_write p; |
| |
| p.offset = offset; |
| p.size = size; |
| assert(data && p.size <= sizeof(p.data)); |
| memcpy(p.data, data, p.size); |
| |
| return ec_command_inptr(dev, EC_CMD_FLASH_WRITE, 0, |
| &p, sizeof(p), NULL, 0) >= 0 ? 0 : -1; |
| } |
| |
| /** |
| * Return optimal flash write burst size |
| */ |
| static int cros_ec_flash_write_burst_size(struct cros_ec_dev *dev) |
| { |
| struct ec_params_flash_write p; |
| return sizeof(p.data); |
| } |
| |
| /** |
| * Check if a block of data is erased (all 0xff) |
| * |
| * This function is useful when dealing with flash, for checking whether a |
| * data block is erased and thus does not need to be programmed. |
| * |
| * @param data Pointer to data to check (must be word-aligned) |
| * @param size Number of bytes to check (must be word-aligned) |
| * @return 0 if erased, non-zero if any word is not erased |
| */ |
| static int cros_ec_data_is_erased(const uint32_t *data, int size) |
| { |
| assert(!(size & 3)); |
| size /= sizeof(uint32_t); |
| for (; size > 0; size -= 4, data++) |
| if (*data != -1U) |
| return 0; |
| |
| return 1; |
| } |
| |
| int cros_ec_flash_write(struct cros_ec_dev *dev, const uint8_t *data, |
| uint32_t offset, uint32_t size) |
| { |
| uint32_t burst = cros_ec_flash_write_burst_size(dev); |
| uint32_t end, off; |
| int ret; |
| |
| /* |
| * TODO: round up to the nearest multiple of write size. Can get away |
| * without that on link right now because its write size is 4 bytes. |
| */ |
| end = offset + size; |
| for (off = offset; off < end; off += burst, data += burst) { |
| uint32_t todo; |
| |
| /* If the data is empty, there is no point in programming it */ |
| todo = min(end - off, burst); |
| if (dev->optimise_flash_write && |
| cros_ec_data_is_erased((uint32_t *)data, todo)) |
| continue; |
| |
| ret = cros_ec_flash_write_block(dev, data, off, todo); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * Read a single block from the flash |
| * |
| * Read a block of data from the EC flash. The size must not exceed the flash |
| * write block size which you can obtain from cros_ec_flash_write_burst_size(). |
| * |
| * The offset starts at 0. You can obtain the region information from |
| * cros_ec_flash_offset() to find out where to read for a particular region. |
| * |
| * @param dev CROS-EC device |
| * @param data Pointer to data buffer to read into |
| * @param offset Offset within flash to read from |
| * @param size Number of bytes to read |
| * @return 0 if ok, -1 on error |
| */ |
| static int cros_ec_flash_read_block(struct cros_ec_dev *dev, uint8_t *data, |
| uint32_t offset, uint32_t size) |
| { |
| struct ec_params_flash_read p; |
| |
| p.offset = offset; |
| p.size = size; |
| |
| return ec_command(dev, EC_CMD_FLASH_READ, 0, |
| &p, sizeof(p), data, size) >= 0 ? 0 : -1; |
| } |
| |
| int cros_ec_flash_read(struct cros_ec_dev *dev, uint8_t *data, uint32_t offset, |
| uint32_t size) |
| { |
| uint32_t burst = cros_ec_flash_write_burst_size(dev); |
| uint32_t end, off; |
| int ret; |
| |
| end = offset + size; |
| for (off = offset; off < end; off += burst, data += burst) { |
| ret = cros_ec_flash_read_block(dev, data, off, |
| min(end - off, burst)); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| int cros_ec_flash_update_rw(struct cros_ec_dev *dev, |
| const uint8_t *image, int image_size) |
| { |
| uint32_t rw_offset, rw_size; |
| int ret; |
| |
| if (cros_ec_flash_offset(dev, EC_FLASH_REGION_RW, &rw_offset, &rw_size)) |
| return -1; |
| if (image_size > rw_size) |
| return -1; |
| |
| /* Invalidate the existing hash, just in case the AP reboots |
| * unexpectedly during the update. If that happened, the EC RW firmware |
| * would be invalid, but the EC would still have the original hash. |
| */ |
| ret = cros_ec_invalidate_hash(dev); |
| if (ret) |
| return ret; |
| |
| /* |
| * Erase the entire RW section, so that the EC doesn't see any garbage |
| * past the new image if it's smaller than the current image. |
| * |
| * TODO: could optimize this to erase just the current image, since |
| * presumably everything past that is 0xff's. But would still need to |
| * round up to the nearest multiple of erase size. |
| */ |
| ret = cros_ec_flash_erase(dev, rw_offset, rw_size); |
| if (ret) |
| return ret; |
| |
| /* Write the image */ |
| ret = cros_ec_flash_write(dev, image, rw_offset, image_size); |
| if (ret) |
| return ret; |
| |
| return 0; |
| } |
| |
| int cros_ec_read_vbnvcontext(struct cros_ec_dev *dev, uint8_t *block) |
| { |
| struct ec_params_vbnvcontext p; |
| int len; |
| |
| p.op = EC_VBNV_CONTEXT_OP_READ; |
| |
| len = ec_command(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, |
| &p, sizeof(p), block, EC_VBNV_BLOCK_SIZE); |
| if (len < EC_VBNV_BLOCK_SIZE) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_write_vbnvcontext(struct cros_ec_dev *dev, const uint8_t *block) |
| { |
| struct ec_params_vbnvcontext p; |
| int len; |
| |
| p.op = EC_VBNV_CONTEXT_OP_WRITE; |
| memcpy(p.block, block, sizeof(p.block)); |
| |
| len = ec_command_inptr(dev, EC_CMD_VBNV_CONTEXT, EC_VER_VBNV_CONTEXT, |
| &p, sizeof(p), NULL, 0); |
| if (len < 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_set_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t state) |
| { |
| struct ec_params_ldo_set params; |
| |
| params.index = index; |
| params.state = state; |
| |
| if (ec_command_inptr(dev, EC_CMD_LDO_SET, 0, |
| ¶ms, sizeof(params), |
| NULL, 0)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int cros_ec_get_ldo(struct cros_ec_dev *dev, uint8_t index, uint8_t *state) |
| { |
| struct ec_params_ldo_get params; |
| struct ec_response_ldo_get *resp; |
| |
| params.index = index; |
| |
| if (ec_command_inptr(dev, EC_CMD_LDO_GET, 0, |
| ¶ms, sizeof(params), |
| (uint8_t **)&resp, sizeof(*resp)) < sizeof(*resp)) |
| return -1; |
| |
| *state = resp->state; |
| |
| return 0; |
| } |
| |
| /** |
| * Decode MBKP details from the device tree and allocate a suitable device. |
| * |
| * @param blob Device tree blob |
| * @param node Node to decode from |
| * @param devp Returns a pointer to the new allocated device |
| * @return 0 if ok, -1 on error |
| */ |
| static int cros_ec_decode_fdt(const void *blob, int node, |
| struct cros_ec_dev **devp) |
| { |
| enum fdt_compat_id compat; |
| struct cros_ec_dev *dev; |
| int parent; |
| |
| /* See what type of parent we are inside (this is expensive) */ |
| parent = fdt_parent_offset(blob, node); |
| if (parent < 0) { |
| debug("%s: Cannot find node parent\n", __func__); |
| return -1; |
| } |
| |
| dev = &static_dev; |
| dev->node = node; |
| dev->parent_node = parent; |
| |
| compat = fdtdec_lookup(blob, parent); |
| switch (compat) { |
| #ifdef CONFIG_CROS_EC_SPI |
| case COMPAT_SAMSUNG_EXYNOS_SPI: |
| dev->interface = CROS_EC_IF_SPI; |
| if (cros_ec_spi_decode_fdt(dev, blob)) |
| return -1; |
| break; |
| #endif |
| #ifdef CONFIG_CROS_EC_I2C |
| case COMPAT_SAMSUNG_S3C2440_I2C: |
| dev->interface = CROS_EC_IF_I2C; |
| if (cros_ec_i2c_decode_fdt(dev, blob)) |
| return -1; |
| break; |
| #endif |
| #ifdef CONFIG_CROS_EC_LPC |
| case COMPAT_INTEL_LPC: |
| dev->interface = CROS_EC_IF_LPC; |
| break; |
| #endif |
| default: |
| debug("%s: Unknown compat id %d\n", __func__, compat); |
| return -1; |
| } |
| |
| fdtdec_decode_gpio(blob, node, "ec-interrupt", &dev->ec_int); |
| dev->optimise_flash_write = fdtdec_get_bool(blob, node, |
| "optimise-flash-write"); |
| *devp = dev; |
| |
| return 0; |
| } |
| |
| int cros_ec_init(const void *blob, struct cros_ec_dev **cros_ecp) |
| { |
| char id[MSG_BYTES]; |
| struct cros_ec_dev *dev; |
| int node = 0; |
| |
| *cros_ecp = NULL; |
| do { |
| node = fdtdec_next_compatible(blob, node, |
| COMPAT_GOOGLE_CROS_EC); |
| if (node < 0) { |
| debug("%s: Node not found\n", __func__); |
| return 0; |
| } |
| } while (!fdtdec_get_is_enabled(blob, node)); |
| |
| if (cros_ec_decode_fdt(blob, node, &dev)) { |
| debug("%s: Failed to decode device.\n", __func__); |
| return -CROS_EC_ERR_FDT_DECODE; |
| } |
| |
| switch (dev->interface) { |
| #ifdef CONFIG_CROS_EC_SPI |
| case CROS_EC_IF_SPI: |
| if (cros_ec_spi_init(dev, blob)) { |
| debug("%s: Could not setup SPI interface\n", __func__); |
| return -CROS_EC_ERR_DEV_INIT; |
| } |
| break; |
| #endif |
| #ifdef CONFIG_CROS_EC_I2C |
| case CROS_EC_IF_I2C: |
| if (cros_ec_i2c_init(dev, blob)) |
| return -CROS_EC_ERR_DEV_INIT; |
| break; |
| #endif |
| #ifdef CONFIG_CROS_EC_LPC |
| case CROS_EC_IF_LPC: |
| if (cros_ec_lpc_init(dev, blob)) |
| return -CROS_EC_ERR_DEV_INIT; |
| break; |
| #endif |
| case CROS_EC_IF_NONE: |
| default: |
| return 0; |
| } |
| |
| /* we will poll the EC interrupt line */ |
| fdtdec_setup_gpio(&dev->ec_int); |
| if (fdt_gpio_isvalid(&dev->ec_int)) |
| gpio_direction_input(dev->ec_int.gpio); |
| |
| if (cros_ec_check_version(dev)) { |
| debug("%s: Could not detect CROS-EC version\n", __func__); |
| return -CROS_EC_ERR_CHECK_VERSION; |
| } |
| |
| if (cros_ec_read_id(dev, id, sizeof(id))) { |
| debug("%s: Could not read KBC ID\n", __func__); |
| return -CROS_EC_ERR_READ_ID; |
| } |
| |
| /* Remember this device for use by the cros_ec command */ |
| last_dev = *cros_ecp = dev; |
| debug("Google Chrome EC CROS-EC driver ready, id '%s'\n", id); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_CMD_CROS_EC |
| int cros_ec_decode_region(int argc, char * const argv[]) |
| { |
| if (argc > 0) { |
| if (0 == strcmp(*argv, "rw")) |
| return EC_FLASH_REGION_RW; |
| else if (0 == strcmp(*argv, "ro")) |
| return EC_FLASH_REGION_RO; |
| |
| debug("%s: Invalid region '%s'\n", __func__, *argv); |
| } else { |
| debug("%s: Missing region parameter\n", __func__); |
| } |
| |
| return -1; |
| } |
| |
| /** |
| * Perform a flash read or write command |
| * |
| * @param dev CROS-EC device to read/write |
| * @param is_write 1 do to a write, 0 to do a read |
| * @param argc Number of arguments |
| * @param argv Arguments (2 is region, 3 is address) |
| * @return 0 for ok, 1 for a usage error or -ve for ec command error |
| * (negative EC_RES_...) |
| */ |
| static int do_read_write(struct cros_ec_dev *dev, int is_write, int argc, |
| char * const argv[]) |
| { |
| uint32_t offset, size = -1U, region_size; |
| unsigned long addr; |
| char *endp; |
| int region; |
| int ret; |
| |
| region = cros_ec_decode_region(argc - 2, argv + 2); |
| if (region == -1) |
| return 1; |
| if (argc < 4) |
| return 1; |
| addr = simple_strtoul(argv[3], &endp, 16); |
| if (*argv[3] == 0 || *endp != 0) |
| return 1; |
| if (argc > 4) { |
| size = simple_strtoul(argv[4], &endp, 16); |
| if (*argv[4] == 0 || *endp != 0) |
| return 1; |
| } |
| |
| ret = cros_ec_flash_offset(dev, region, &offset, ®ion_size); |
| if (ret) { |
| debug("%s: Could not read region info\n", __func__); |
| return ret; |
| } |
| if (size == -1U) |
| size = region_size; |
| |
| ret = is_write ? |
| cros_ec_flash_write(dev, (uint8_t *)addr, offset, size) : |
| cros_ec_flash_read(dev, (uint8_t *)addr, offset, size); |
| if (ret) { |
| debug("%s: Could not %s region\n", __func__, |
| is_write ? "write" : "read"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int do_cros_ec(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) |
| { |
| struct cros_ec_dev *dev = last_dev; |
| const char *cmd; |
| int ret = 0; |
| |
| if (argc < 2) |
| return CMD_RET_USAGE; |
| |
| cmd = argv[1]; |
| if (0 == strcmp("init", cmd)) { |
| ret = cros_ec_init(gd->fdt_blob, &dev); |
| if (ret) { |
| printf("Could not init cros_ec device (err %d)\n", ret); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* Just use the last allocated device; there should be only one */ |
| if (!last_dev) { |
| printf("No CROS-EC device available\n"); |
| return 1; |
| } |
| if (0 == strcmp("id", cmd)) { |
| char id[MSG_BYTES]; |
| |
| if (cros_ec_read_id(dev, id, sizeof(id))) { |
| debug("%s: Could not read KBC ID\n", __func__); |
| return 1; |
| } |
| printf("%s\n", id); |
| } else if (0 == strcmp("info", cmd)) { |
| struct ec_response_cros_ec_info info; |
| |
| if (cros_ec_info(dev, &info)) { |
| debug("%s: Could not read KBC info\n", __func__); |
| return 1; |
| } |
| printf("rows = %u\n", info.rows); |
| printf("cols = %u\n", info.cols); |
| printf("switches = %#x\n", info.switches); |
| } else if (0 == strcmp("curimage", cmd)) { |
| enum ec_current_image image; |
| |
| if (cros_ec_read_current_image(dev, &image)) { |
| debug("%s: Could not read KBC image\n", __func__); |
| return 1; |
| } |
| printf("%d\n", image); |
| } else if (0 == strcmp("hash", cmd)) { |
| struct ec_response_vboot_hash hash; |
| int i; |
| |
| if (cros_ec_read_hash(dev, &hash)) { |
| debug("%s: Could not read KBC hash\n", __func__); |
| return 1; |
| } |
| |
| if (hash.hash_type == EC_VBOOT_HASH_TYPE_SHA256) |
| printf("type: SHA-256\n"); |
| else |
| printf("type: %d\n", hash.hash_type); |
| |
| printf("offset: 0x%08x\n", hash.offset); |
| printf("size: 0x%08x\n", hash.size); |
| |
| printf("digest: "); |
| for (i = 0; i < hash.digest_size; i++) |
| printf("%02x", hash.hash_digest[i]); |
| printf("\n"); |
| } else if (0 == strcmp("reboot", cmd)) { |
| int region; |
| enum ec_reboot_cmd cmd; |
| |
| if (argc >= 3 && !strcmp(argv[2], "cold")) |
| cmd = EC_REBOOT_COLD; |
| else { |
| region = cros_ec_decode_region(argc - 2, argv + 2); |
| if (region == EC_FLASH_REGION_RO) |
| cmd = EC_REBOOT_JUMP_RO; |
| else if (region == EC_FLASH_REGION_RW) |
| cmd = EC_REBOOT_JUMP_RW; |
| else |
| return CMD_RET_USAGE; |
| } |
| |
| if (cros_ec_reboot(dev, cmd, 0)) { |
| debug("%s: Could not reboot KBC\n", __func__); |
| return 1; |
| } |
| } else if (0 == strcmp("events", cmd)) { |
| uint32_t events; |
| |
| if (cros_ec_get_host_events(dev, &events)) { |
| debug("%s: Could not read host events\n", __func__); |
| return 1; |
| } |
| printf("0x%08x\n", events); |
| } else if (0 == strcmp("clrevents", cmd)) { |
| uint32_t events = 0x7fffffff; |
| |
| if (argc >= 3) |
| events = simple_strtol(argv[2], NULL, 0); |
| |
| if (cros_ec_clear_host_events(dev, events)) { |
| debug("%s: Could not clear host events\n", __func__); |
| return 1; |
| } |
| } else if (0 == strcmp("read", cmd)) { |
| ret = do_read_write(dev, 0, argc, argv); |
| if (ret > 0) |
| return CMD_RET_USAGE; |
| } else if (0 == strcmp("write", cmd)) { |
| ret = do_read_write(dev, 1, argc, argv); |
| if (ret > 0) |
| return CMD_RET_USAGE; |
| } else if (0 == strcmp("erase", cmd)) { |
| int region = cros_ec_decode_region(argc - 2, argv + 2); |
| uint32_t offset, size; |
| |
| if (region == -1) |
| return CMD_RET_USAGE; |
| if (cros_ec_flash_offset(dev, region, &offset, &size)) { |
| debug("%s: Could not read region info\n", __func__); |
| ret = -1; |
| } else { |
| ret = cros_ec_flash_erase(dev, offset, size); |
| if (ret) { |
| debug("%s: Could not erase region\n", |
| __func__); |
| } |
| } |
| } else if (0 == strcmp("regioninfo", cmd)) { |
| int region = cros_ec_decode_region(argc - 2, argv + 2); |
| uint32_t offset, size; |
| |
| if (region == -1) |
| return CMD_RET_USAGE; |
| ret = cros_ec_flash_offset(dev, region, &offset, &size); |
| if (ret) { |
| debug("%s: Could not read region info\n", __func__); |
| } else { |
| printf("Region: %s\n", region == EC_FLASH_REGION_RO ? |
| "RO" : "RW"); |
| printf("Offset: %x\n", offset); |
| printf("Size: %x\n", size); |
| } |
| } else if (0 == strcmp("vbnvcontext", cmd)) { |
| uint8_t block[EC_VBNV_BLOCK_SIZE]; |
| char buf[3]; |
| int i, len; |
| unsigned long result; |
| |
| if (argc <= 2) { |
| ret = cros_ec_read_vbnvcontext(dev, block); |
| if (!ret) { |
| printf("vbnv_block: "); |
| for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) |
| printf("%02x", block[i]); |
| putc('\n'); |
| } |
| } else { |
| /* |
| * TODO(clchiou): Move this to a utility function as |
| * cmd_spi might want to call it. |
| */ |
| memset(block, 0, EC_VBNV_BLOCK_SIZE); |
| len = strlen(argv[2]); |
| buf[2] = '\0'; |
| for (i = 0; i < EC_VBNV_BLOCK_SIZE; i++) { |
| if (i * 2 >= len) |
| break; |
| buf[0] = argv[2][i * 2]; |
| if (i * 2 + 1 >= len) |
| buf[1] = '0'; |
| else |
| buf[1] = argv[2][i * 2 + 1]; |
| strict_strtoul(buf, 16, &result); |
| block[i] = result; |
| } |
| ret = cros_ec_write_vbnvcontext(dev, block); |
| } |
| if (ret) { |
| debug("%s: Could not %s VbNvContext\n", __func__, |
| argc <= 2 ? "read" : "write"); |
| } |
| } else if (0 == strcmp("test", cmd)) { |
| int result = cros_ec_test(dev); |
| |
| if (result) |
| printf("Test failed with error %d\n", result); |
| else |
| puts("Test passed\n"); |
| } else if (0 == strcmp("version", cmd)) { |
| struct ec_response_get_version *p; |
| char *build_string; |
| |
| ret = cros_ec_read_version(dev, &p); |
| if (!ret) { |
| /* Print versions */ |
| printf("RO version: %1.*s\n", |
| sizeof(p->version_string_ro), |
| p->version_string_ro); |
| printf("RW version: %1.*s\n", |
| sizeof(p->version_string_rw), |
| p->version_string_rw); |
| printf("Firmware copy: %s\n", |
| (p->current_image < |
| ARRAY_SIZE(ec_current_image_name) ? |
| ec_current_image_name[p->current_image] : |
| "?")); |
| ret = cros_ec_read_build_info(dev, &build_string); |
| if (!ret) |
| printf("Build info: %s\n", build_string); |
| } |
| } else if (0 == strcmp("ldo", cmd)) { |
| uint8_t index, state; |
| char *endp; |
| |
| if (argc < 3) |
| return CMD_RET_USAGE; |
| index = simple_strtoul(argv[2], &endp, 10); |
| if (*argv[2] == 0 || *endp != 0) |
| return CMD_RET_USAGE; |
| if (argc > 3) { |
| state = simple_strtoul(argv[3], &endp, 10); |
| if (*argv[3] == 0 || *endp != 0) |
| return CMD_RET_USAGE; |
| ret = cros_ec_set_ldo(dev, index, state); |
| } else { |
| ret = cros_ec_get_ldo(dev, index, &state); |
| if (!ret) { |
| printf("LDO%d: %s\n", index, |
| state == EC_LDO_STATE_ON ? |
| "on" : "off"); |
| } |
| } |
| |
| if (ret) { |
| debug("%s: Could not access LDO%d\n", __func__, index); |
| return ret; |
| } |
| } else { |
| return CMD_RET_USAGE; |
| } |
| |
| if (ret < 0) { |
| printf("Error: CROS-EC command failed (error %d)\n", ret); |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| U_BOOT_CMD( |
| crosec, 5, 1, do_cros_ec, |
| "CROS-EC utility command", |
| "init Re-init CROS-EC (done on startup automatically)\n" |
| "crosec id Read CROS-EC ID\n" |
| "crosec info Read CROS-EC info\n" |
| "crosec curimage Read CROS-EC current image\n" |
| "crosec hash Read CROS-EC hash\n" |
| "crosec reboot [rw | ro | cold] Reboot CROS-EC\n" |
| "crosec events Read CROS-EC host events\n" |
| "crosec clrevents [mask] Clear CROS-EC host events\n" |
| "crosec regioninfo <ro|rw> Read image info\n" |
| "crosec erase <ro|rw> Erase EC image\n" |
| "crosec read <ro|rw> <addr> [<size>] Read EC image\n" |
| "crosec write <ro|rw> <addr> [<size>] Write EC image\n" |
| "crosec vbnvcontext [hexstring] Read [write] VbNvContext from EC\n" |
| "crosec ldo <idx> [<state>] Switch/Read LDO state\n" |
| "crosec test run tests on cros_ec\n" |
| "crosec version Read CROS-EC version" |
| ); |
| #endif |