| /* SPDX-License-Identifier: GPL-2.0+ */ |
| /* |
| * Copyright (c) 2017 Google, Inc |
| * Written by Simon Glass <sjg@chromium.org> |
| */ |
| |
| #ifndef _DM_OFNODE_H |
| #define _DM_OFNODE_H |
| |
| /* TODO(sjg@chromium.org): Drop fdtdec.h include */ |
| #include <fdtdec.h> |
| #include <dm/of.h> |
| |
| /* Enable checks to protect against invalid calls */ |
| #undef OF_CHECKS |
| |
| struct resource; |
| |
| /** |
| * ofnode - reference to a device tree node |
| * |
| * This union can hold either a straightforward pointer to a struct device_node |
| * in the live device tree, or an offset within the flat device tree. In the |
| * latter case, the pointer value is just the integer offset within the flat DT. |
| * |
| * Thus we can reference nodes in both the live tree (once available) and the |
| * flat tree (until then). Functions are available to translate between an |
| * ofnode and either an offset or a struct device_node *. |
| * |
| * The reference can also hold a null offset, in which case the pointer value |
| * here is NULL. This corresponds to a struct device_node * value of |
| * NULL, or an offset of -1. |
| * |
| * There is no ambiguity as to whether ofnode holds an offset or a node |
| * pointer: when the live tree is active it holds a node pointer, otherwise it |
| * holds an offset. The value itself does not need to be unique and in theory |
| * the same value could point to a valid device node or a valid offset. We |
| * could arrange for a unique value to be used (e.g. by making the pointer |
| * point to an offset within the flat device tree in the case of an offset) but |
| * this increases code size slightly due to the subtraction. Since it offers no |
| * real benefit, the approach described here seems best. |
| * |
| * For now these points use constant types, since we don't allow writing |
| * the DT. |
| * |
| * @np: Pointer to device node, used for live tree |
| * @of_offset: Pointer into flat device tree, used for flat tree. Note that this |
| * is not a really a pointer to a node: it is an offset value. See above. |
| */ |
| typedef union ofnode_union { |
| const struct device_node *np; /* will be used for future live tree */ |
| long of_offset; |
| } ofnode; |
| |
| struct ofnode_phandle_args { |
| ofnode node; |
| int args_count; |
| uint32_t args[OF_MAX_PHANDLE_ARGS]; |
| }; |
| |
| /** |
| * _ofnode_to_np() - convert an ofnode to a live DT node pointer |
| * |
| * This cannot be called if the reference contains an offset. |
| * |
| * @node: Reference containing struct device_node * (possibly invalid) |
| * @return pointer to device node (can be NULL) |
| */ |
| static inline const struct device_node *ofnode_to_np(ofnode node) |
| { |
| #ifdef OF_CHECKS |
| if (!of_live_active()) |
| return NULL; |
| #endif |
| return node.np; |
| } |
| |
| /** |
| * ofnode_to_offset() - convert an ofnode to a flat DT offset |
| * |
| * This cannot be called if the reference contains a node pointer. |
| * |
| * @node: Reference containing offset (possibly invalid) |
| * @return DT offset (can be -1) |
| */ |
| static inline int ofnode_to_offset(ofnode node) |
| { |
| #ifdef OF_CHECKS |
| if (of_live_active()) |
| return -1; |
| #endif |
| return node.of_offset; |
| } |
| |
| /** |
| * ofnode_valid() - check if an ofnode is valid |
| * |
| * @return true if the reference contains a valid ofnode, false if it is NULL |
| */ |
| static inline bool ofnode_valid(ofnode node) |
| { |
| if (of_live_active()) |
| return node.np != NULL; |
| else |
| return node.of_offset != -1; |
| } |
| |
| /** |
| * offset_to_ofnode() - convert a DT offset to an ofnode |
| * |
| * @of_offset: DT offset (either valid, or -1) |
| * @return reference to the associated DT offset |
| */ |
| static inline ofnode offset_to_ofnode(int of_offset) |
| { |
| ofnode node; |
| |
| if (of_live_active()) |
| node.np = NULL; |
| else |
| node.of_offset = of_offset >= 0 ? of_offset : -1; |
| |
| return node; |
| } |
| |
| /** |
| * np_to_ofnode() - convert a node pointer to an ofnode |
| * |
| * @np: Live node pointer (can be NULL) |
| * @return reference to the associated node pointer |
| */ |
| static inline ofnode np_to_ofnode(const struct device_node *np) |
| { |
| ofnode node; |
| |
| node.np = np; |
| |
| return node; |
| } |
| |
| /** |
| * ofnode_is_np() - check if a reference is a node pointer |
| * |
| * This function associated that if there is a valid live tree then all |
| * references will use it. This is because using the flat DT when the live tree |
| * is valid is not permitted. |
| * |
| * @node: reference to check (possibly invalid) |
| * @return true if the reference is a live node pointer, false if it is a DT |
| * offset |
| */ |
| static inline bool ofnode_is_np(ofnode node) |
| { |
| #ifdef OF_CHECKS |
| /* |
| * Check our assumption that flat tree offsets are not used when a |
| * live tree is in use. |
| */ |
| assert(!ofnode_valid(node) || |
| (of_live_active() ? _ofnode_to_np(node) |
| : _ofnode_to_np(node))); |
| #endif |
| return of_live_active() && ofnode_valid(node); |
| } |
| |
| /** |
| * ofnode_equal() - check if two references are equal |
| * |
| * @return true if equal, else false |
| */ |
| static inline bool ofnode_equal(ofnode ref1, ofnode ref2) |
| { |
| /* We only need to compare the contents */ |
| return ref1.of_offset == ref2.of_offset; |
| } |
| |
| /** |
| * ofnode_null() - Obtain a null ofnode |
| * |
| * This returns an ofnode which points to no node. It works both with the flat |
| * tree and livetree. |
| */ |
| static inline ofnode ofnode_null(void) |
| { |
| ofnode node; |
| |
| if (of_live_active()) |
| node.np = NULL; |
| else |
| node.of_offset = -1; |
| |
| return node; |
| } |
| |
| /** |
| * ofnode_read_u32() - Read a 32-bit integer from a property |
| * |
| * @ref: valid node reference to read property from |
| * @propname: name of the property to read from |
| * @outp: place to put value (if found) |
| * @return 0 if OK, -ve on error |
| */ |
| int ofnode_read_u32(ofnode node, const char *propname, u32 *outp); |
| |
| /** |
| * ofnode_read_s32() - Read a 32-bit integer from a property |
| * |
| * @ref: valid node reference to read property from |
| * @propname: name of the property to read from |
| * @outp: place to put value (if found) |
| * @return 0 if OK, -ve on error |
| */ |
| static inline int ofnode_read_s32(ofnode node, const char *propname, |
| s32 *out_value) |
| { |
| return ofnode_read_u32(node, propname, (u32 *)out_value); |
| } |
| |
| /** |
| * ofnode_read_u32_default() - Read a 32-bit integer from a property |
| * |
| * @ref: valid node reference to read property from |
| * @propname: name of the property to read from |
| * @def: default value to return if the property has no value |
| * @return property value, or @def if not found |
| */ |
| u32 ofnode_read_u32_default(ofnode ref, const char *propname, u32 def); |
| |
| /** |
| * ofnode_read_s32_default() - Read a 32-bit integer from a property |
| * |
| * @ref: valid node reference to read property from |
| * @propname: name of the property to read from |
| * @def: default value to return if the property has no value |
| * @return property value, or @def if not found |
| */ |
| int ofnode_read_s32_default(ofnode node, const char *propname, s32 def); |
| |
| /** |
| * ofnode_read_u64() - Read a 64-bit integer from a property |
| * |
| * @node: valid node reference to read property from |
| * @propname: name of the property to read from |
| * @outp: place to put value (if found) |
| * @return 0 if OK, -ve on error |
| */ |
| int ofnode_read_u64(ofnode node, const char *propname, u64 *outp); |
| |
| /** |
| * ofnode_read_u64_default() - Read a 64-bit integer from a property |
| * |
| * @ref: valid node reference to read property from |
| * @propname: name of the property to read from |
| * @def: default value to return if the property has no value |
| * @return property value, or @def if not found |
| */ |
| u64 ofnode_read_u64_default(ofnode node, const char *propname, u64 def); |
| |
| /** |
| * ofnode_read_string() - Read a string from a property |
| * |
| * @ref: valid node reference to read property from |
| * @propname: name of the property to read |
| * @return string from property value, or NULL if there is no such property |
| */ |
| const char *ofnode_read_string(ofnode node, const char *propname); |
| |
| /** |
| * ofnode_read_u32_array() - Find and read an array of 32 bit integers |
| * |
| * @node: valid node reference to read property from |
| * @propname: name of the property to read |
| * @out_values: pointer to return value, modified only if return value is 0 |
| * @sz: number of array elements to read |
| * @return 0 if OK, -ve on error |
| * |
| * Search for a property in a device node and read 32-bit value(s) from |
| * it. Returns 0 on success, -EINVAL if the property does not exist, |
| * -ENODATA if property does not have a value, and -EOVERFLOW if the |
| * property data isn't large enough. |
| * |
| * The out_values is modified only if a valid u32 value can be decoded. |
| */ |
| int ofnode_read_u32_array(ofnode node, const char *propname, |
| u32 *out_values, size_t sz); |
| |
| /** |
| * ofnode_read_bool() - read a boolean value from a property |
| * |
| * @node: valid node reference to read property from |
| * @propname: name of property to read |
| * @return true if property is present (meaning true), false if not present |
| */ |
| bool ofnode_read_bool(ofnode node, const char *propname); |
| |
| /** |
| * ofnode_find_subnode() - find a named subnode of a parent node |
| * |
| * @node: valid reference to parent node |
| * @subnode_name: name of subnode to find |
| * @return reference to subnode (which can be invalid if there is no such |
| * subnode) |
| */ |
| ofnode ofnode_find_subnode(ofnode node, const char *subnode_name); |
| |
| /** |
| * ofnode_first_subnode() - find the first subnode of a parent node |
| * |
| * @node: valid reference to a valid parent node |
| * @return reference to the first subnode (which can be invalid if the parent |
| * node has no subnodes) |
| */ |
| ofnode ofnode_first_subnode(ofnode node); |
| |
| /** |
| * ofnode_next_subnode() - find the next sibling of a subnode |
| * |
| * @node: valid reference to previous node (sibling) |
| * @return reference to the next subnode (which can be invalid if the node |
| * has no more siblings) |
| */ |
| ofnode ofnode_next_subnode(ofnode node); |
| |
| /** |
| * ofnode_get_parent() - get the ofnode's parent (enclosing ofnode) |
| * |
| * @node: valid node to look up |
| * @return ofnode reference of the parent node |
| */ |
| ofnode ofnode_get_parent(ofnode node); |
| |
| /** |
| * ofnode_get_name() - get the name of a node |
| * |
| * @node: valid node to look up |
| * @return name of node |
| */ |
| const char *ofnode_get_name(ofnode node); |
| |
| /** |
| * ofnode_get_by_phandle() - get ofnode from phandle |
| * |
| * @phandle: phandle to look up |
| * @return ofnode reference to the phandle |
| */ |
| ofnode ofnode_get_by_phandle(uint phandle); |
| |
| /** |
| * ofnode_read_size() - read the size of a property |
| * |
| * @node: node to check |
| * @propname: property to check |
| * @return size of property if present, or -EINVAL if not |
| */ |
| int ofnode_read_size(ofnode node, const char *propname); |
| |
| /** |
| * ofnode_get_addr_size_index() - get an address/size from a node |
| * based on index |
| * |
| * This reads the register address/size from a node based on index |
| * |
| * @node: node to read from |
| * @index: Index of address to read (0 for first) |
| * @size: Pointer to size of the address |
| * @return address, or FDT_ADDR_T_NONE if not present or invalid |
| */ |
| phys_addr_t ofnode_get_addr_size_index(ofnode node, int index, |
| fdt_size_t *size); |
| |
| /** |
| * ofnode_get_addr_index() - get an address from a node |
| * |
| * This reads the register address from a node |
| * |
| * @node: node to read from |
| * @index: Index of address to read (0 for first) |
| * @return address, or FDT_ADDR_T_NONE if not present or invalid |
| */ |
| phys_addr_t ofnode_get_addr_index(ofnode node, int index); |
| |
| /** |
| * ofnode_get_addr() - get an address from a node |
| * |
| * This reads the register address from a node |
| * |
| * @node: node to read from |
| * @return address, or FDT_ADDR_T_NONE if not present or invalid |
| */ |
| phys_addr_t ofnode_get_addr(ofnode node); |
| |
| /** |
| * ofnode_stringlist_search() - find a string in a string list and return index |
| * |
| * Note that it is possible for this function to succeed on property values |
| * that are not NUL-terminated. That's because the function will stop after |
| * finding the first occurrence of @string. This can for example happen with |
| * small-valued cell properties, such as #address-cells, when searching for |
| * the empty string. |
| * |
| * @node: node to check |
| * @propname: name of the property containing the string list |
| * @string: string to look up in the string list |
| * |
| * @return: |
| * the index of the string in the list of strings |
| * -ENODATA if the property is not found |
| * -EINVAL on some other error |
| */ |
| int ofnode_stringlist_search(ofnode node, const char *propname, |
| const char *string); |
| |
| /** |
| * ofnode_read_string_index() - obtain an indexed string from a string list |
| * |
| * Note that this will successfully extract strings from properties with |
| * non-NUL-terminated values. For example on small-valued cell properties |
| * this function will return the empty string. |
| * |
| * If non-NULL, the length of the string (on success) or a negative error-code |
| * (on failure) will be stored in the integer pointer to by lenp. |
| * |
| * @node: node to check |
| * @propname: name of the property containing the string list |
| * @index: index of the string to return |
| * @lenp: return location for the string length or an error code on failure |
| * |
| * @return: |
| * length of string, if found or -ve error value if not found |
| */ |
| int ofnode_read_string_index(ofnode node, const char *propname, int index, |
| const char **outp); |
| |
| /** |
| * ofnode_read_string_count() - find the number of strings in a string list |
| * |
| * @node: node to check |
| * @propname: name of the property containing the string list |
| * @return: |
| * number of strings in the list, or -ve error value if not found |
| */ |
| int ofnode_read_string_count(ofnode node, const char *property); |
| |
| /** |
| * ofnode_parse_phandle_with_args() - Find a node pointed by phandle in a list |
| * |
| * This function is useful to parse lists of phandles and their arguments. |
| * Returns 0 on success and fills out_args, on error returns appropriate |
| * errno value. |
| * |
| * Caller is responsible to call of_node_put() on the returned out_args->np |
| * pointer. |
| * |
| * Example: |
| * |
| * phandle1: node1 { |
| * #list-cells = <2>; |
| * } |
| * |
| * phandle2: node2 { |
| * #list-cells = <1>; |
| * } |
| * |
| * node3 { |
| * list = <&phandle1 1 2 &phandle2 3>; |
| * } |
| * |
| * To get a device_node of the `node2' node you may call this: |
| * ofnode_parse_phandle_with_args(node3, "list", "#list-cells", 0, 1, &args); |
| * |
| * @node: device tree node containing a list |
| * @list_name: property name that contains a list |
| * @cells_name: property name that specifies phandles' arguments count |
| * @cells_count: Cell count to use if @cells_name is NULL |
| * @index: index of a phandle to parse out |
| * @out_args: optional pointer to output arguments structure (will be filled) |
| * @return 0 on success (with @out_args filled out if not NULL), -ENOENT if |
| * @list_name does not exist, -EINVAL if a phandle was not found, |
| * @cells_name could not be found, the arguments were truncated or there |
| * were too many arguments. |
| */ |
| int ofnode_parse_phandle_with_args(ofnode node, const char *list_name, |
| const char *cells_name, int cell_count, |
| int index, |
| struct ofnode_phandle_args *out_args); |
| |
| /** |
| * ofnode_count_phandle_with_args() - Count number of phandle in a list |
| * |
| * This function is useful to count phandles into a list. |
| * Returns number of phandle on success, on error returns appropriate |
| * errno value. |
| * |
| * @node: device tree node containing a list |
| * @list_name: property name that contains a list |
| * @cells_name: property name that specifies phandles' arguments count |
| * @return number of phandle on success, -ENOENT if @list_name does not |
| * exist, -EINVAL if a phandle was not found, @cells_name could not |
| * be found. |
| */ |
| int ofnode_count_phandle_with_args(ofnode node, const char *list_name, |
| const char *cells_name); |
| |
| /** |
| * ofnode_path() - find a node by full path |
| * |
| * @path: Full path to node, e.g. "/bus/spi@1" |
| * @return reference to the node found. Use ofnode_valid() to check if it exists |
| */ |
| ofnode ofnode_path(const char *path); |
| |
| /** |
| * ofnode_get_chosen_prop() - get the value of a chosen property |
| * |
| * This looks for a property within the /chosen node and returns its value |
| * |
| * @propname: Property name to look for |
| * @return property value if found, else NULL |
| */ |
| const char *ofnode_get_chosen_prop(const char *propname); |
| |
| /** |
| * ofnode_get_chosen_node() - get a referenced node from the chosen node |
| * |
| * This looks up a named property in the chosen node and uses that as a path to |
| * look up a code. |
| * |
| * @return the referenced node if present, else ofnode_null() |
| */ |
| ofnode ofnode_get_chosen_node(const char *propname); |
| |
| struct display_timing; |
| /** |
| * ofnode_decode_display_timing() - decode display timings |
| * |
| * Decode display timings from the supplied 'display-timings' node. |
| * See doc/device-tree-bindings/video/display-timing.txt for binding |
| * information. |
| * |
| * @node 'display-timing' node containing the timing subnodes |
| * @index Index number to read (0=first timing subnode) |
| * @config Place to put timings |
| * @return 0 if OK, -FDT_ERR_NOTFOUND if not found |
| */ |
| int ofnode_decode_display_timing(ofnode node, int index, |
| struct display_timing *config); |
| |
| /** |
| * ofnode_get_property()- - get a pointer to the value of a node property |
| * |
| * @node: node to read |
| * @propname: property to read |
| * @lenp: place to put length on success |
| * @return pointer to property, or NULL if not found |
| */ |
| const void *ofnode_get_property(ofnode node, const char *propname, int *lenp); |
| |
| /** |
| * ofnode_is_available() - check if a node is marked available |
| * |
| * @node: node to check |
| * @return true if node's 'status' property is "okay" (or is missing) |
| */ |
| bool ofnode_is_available(ofnode node); |
| |
| /** |
| * ofnode_get_addr_size() - get address and size from a property |
| * |
| * This does no address translation. It simply reads an property that contains |
| * an address and a size value, one after the other. |
| * |
| * @node: node to read from |
| * @propname: property to read |
| * @sizep: place to put size value (on success) |
| * @return address value, or FDT_ADDR_T_NONE on error |
| */ |
| phys_addr_t ofnode_get_addr_size(ofnode node, const char *propname, |
| phys_size_t *sizep); |
| |
| /** |
| * ofnode_read_u8_array_ptr() - find an 8-bit array |
| * |
| * Look up a property in a node and return a pointer to its contents as a |
| * byte array of given length. The property must have at least enough data |
| * for the array (count bytes). It may have more, but this will be ignored. |
| * The data is not copied. |
| * |
| * @node node to examine |
| * @propname name of property to find |
| * @sz number of array elements |
| * @return pointer to byte array if found, or NULL if the property is not |
| * found or there is not enough data |
| */ |
| const uint8_t *ofnode_read_u8_array_ptr(ofnode node, const char *propname, |
| size_t sz); |
| |
| /** |
| * ofnode_read_pci_addr() - look up a PCI address |
| * |
| * Look at an address property in a node and return the PCI address which |
| * corresponds to the given type in the form of fdt_pci_addr. |
| * The property must hold one fdt_pci_addr with a lengh. |
| * |
| * @node node to examine |
| * @type pci address type (FDT_PCI_SPACE_xxx) |
| * @propname name of property to find |
| * @addr returns pci address in the form of fdt_pci_addr |
| * @return 0 if ok, -ENOENT if the property did not exist, -EINVAL if the |
| * format of the property was invalid, -ENXIO if the requested |
| * address type was not found |
| */ |
| int ofnode_read_pci_addr(ofnode node, enum fdt_pci_space type, |
| const char *propname, struct fdt_pci_addr *addr); |
| |
| /** |
| * ofnode_read_pci_vendev() - look up PCI vendor and device id |
| * |
| * Look at the compatible property of a device node that represents a PCI |
| * device and extract pci vendor id and device id from it. |
| * |
| * @param node node to examine |
| * @param vendor vendor id of the pci device |
| * @param device device id of the pci device |
| * @return 0 if ok, negative on error |
| */ |
| int ofnode_read_pci_vendev(ofnode node, u16 *vendor, u16 *device); |
| |
| /** |
| * ofnode_read_addr_cells() - Get the number of address cells for a node |
| * |
| * This walks back up the tree to find the closest #address-cells property |
| * which controls the given node. |
| * |
| * @node: Node to check |
| * @return number of address cells this node uses |
| */ |
| int ofnode_read_addr_cells(ofnode node); |
| |
| /** |
| * ofnode_read_size_cells() - Get the number of size cells for a node |
| * |
| * This walks back up the tree to find the closest #size-cells property |
| * which controls the given node. |
| * |
| * @node: Node to check |
| * @return number of size cells this node uses |
| */ |
| int ofnode_read_size_cells(ofnode node); |
| |
| /** |
| * ofnode_read_simple_addr_cells() - Get the address cells property in a node |
| * |
| * This function matches fdt_address_cells(). |
| * |
| * @np: Node pointer to check |
| * @return value of #address-cells property in this node, or 2 if none |
| */ |
| int ofnode_read_simple_addr_cells(ofnode node); |
| |
| /** |
| * ofnode_read_simple_size_cells() - Get the size cells property in a node |
| * |
| * This function matches fdt_size_cells(). |
| * |
| * @np: Node pointer to check |
| * @return value of #size-cells property in this node, or 2 if none |
| */ |
| int ofnode_read_simple_size_cells(ofnode node); |
| |
| /** |
| * ofnode_pre_reloc() - check if a node should be bound before relocation |
| * |
| * Device tree nodes can be marked as needing-to-be-bound in the loader stages |
| * via special device tree properties. |
| * |
| * Before relocation this function can be used to check if nodes are required |
| * in either SPL or TPL stages. |
| * |
| * After relocation and jumping into the real U-Boot binary it is possible to |
| * determine if a node was bound in one of SPL/TPL stages. |
| * |
| * There are 4 settings currently in use |
| * - u-boot,dm-pre-proper: U-Boot proper pre-relocation only |
| * - u-boot,dm-pre-reloc: legacy and indicates any of TPL or SPL |
| * Existing platforms only use it to indicate nodes needed in |
| * SPL. Should probably be replaced by u-boot,dm-spl for |
| * new platforms. |
| * - u-boot,dm-spl: SPL and U-Boot pre-relocation |
| * - u-boot,dm-tpl: TPL and U-Boot pre-relocation |
| * |
| * @node: node to check |
| * @return true if node is needed in SPL/TL, false otherwise |
| */ |
| bool ofnode_pre_reloc(ofnode node); |
| |
| /** |
| * ofnode_read_resource() - Read a resource from a node |
| * |
| * Read resource information from a node at the given index |
| * |
| * @node: Node to read from |
| * @index: Index of resource to read (0 = first) |
| * @res: Returns resource that was read, on success |
| * @return 0 if OK, -ve on error |
| */ |
| int ofnode_read_resource(ofnode node, uint index, struct resource *res); |
| |
| /** |
| * ofnode_read_resource_byname() - Read a resource from a node by name |
| * |
| * Read resource information from a node matching the given name. This uses a |
| * 'reg-names' string list property with the names matching the associated |
| * 'reg' property list. |
| * |
| * @node: Node to read from |
| * @name: Name of resource to read |
| * @res: Returns resource that was read, on success |
| * @return 0 if OK, -ve on error |
| */ |
| int ofnode_read_resource_byname(ofnode node, const char *name, |
| struct resource *res); |
| |
| /** |
| * ofnode_by_compatible() - Find the next compatible node |
| * |
| * Find the next node after @from that is compatible with @compat |
| * |
| * @from: ofnode to start from (use ofnode_null() to start at the beginning) |
| * @compat: Compatible string to match |
| * @return ofnode found, or ofnode_null() if none |
| */ |
| ofnode ofnode_by_compatible(ofnode from, const char *compat); |
| |
| /** |
| * ofnode_by_prop_value() - Find the next node with given property value |
| * |
| * Find the next node after @from that has a @propname with a value |
| * @propval and a length @proplen. |
| * |
| * @from: ofnode to start from (use ofnode_null() to start at the |
| * beginning) @propname: property name to check @propval: property value to |
| * search for @proplen: length of the value in propval @return ofnode |
| * found, or ofnode_null() if none |
| */ |
| ofnode ofnode_by_prop_value(ofnode from, const char *propname, |
| const void *propval, int proplen); |
| |
| /** |
| * ofnode_for_each_subnode() - iterate over all subnodes of a parent |
| * |
| * @node: child node (ofnode, lvalue) |
| * @parent: parent node (ofnode) |
| * |
| * This is a wrapper around a for loop and is used like so: |
| * |
| * ofnode node; |
| * |
| * ofnode_for_each_subnode(node, parent) { |
| * Use node |
| * ... |
| * } |
| * |
| * Note that this is implemented as a macro and @node is used as |
| * iterator in the loop. The parent variable can be a constant or even a |
| * literal. |
| */ |
| #define ofnode_for_each_subnode(node, parent) \ |
| for (node = ofnode_first_subnode(parent); \ |
| ofnode_valid(node); \ |
| node = ofnode_next_subnode(node)) |
| |
| /** |
| * ofnode_translate_address() - Translate a device-tree address |
| * |
| * Translate an address from the device-tree into a CPU physical address. This |
| * function walks up the tree and applies the various bus mappings along the |
| * way. |
| * |
| * @ofnode: Device tree node giving the context in which to translate the |
| * address |
| * @in_addr: pointer to the address to translate |
| * @return the translated address; OF_BAD_ADDR on error |
| */ |
| u64 ofnode_translate_address(ofnode node, const fdt32_t *in_addr); |
| |
| /** |
| * ofnode_translate_dma_address() - Translate a device-tree DMA address |
| * |
| * Translate a DMA address from the device-tree into a CPU physical address. |
| * This function walks up the tree and applies the various bus mappings along |
| * the way. |
| * |
| * @ofnode: Device tree node giving the context in which to translate the |
| * DMA address |
| * @in_addr: pointer to the DMA address to translate |
| * @return the translated DMA address; OF_BAD_ADDR on error |
| */ |
| u64 ofnode_translate_dma_address(ofnode node, const fdt32_t *in_addr); |
| |
| /** |
| * ofnode_device_is_compatible() - check if the node is compatible with compat |
| * |
| * This allows to check whether the node is comaptible with the compat. |
| * |
| * @node: Device tree node for which compatible needs to be verified. |
| * @compat: Compatible string which needs to verified in the given node. |
| * @return true if OK, false if the compatible is not found |
| */ |
| int ofnode_device_is_compatible(ofnode node, const char *compat); |
| |
| /** |
| * ofnode_write_prop() - Set a property of a ofnode |
| * |
| * Note that the value passed to the function is *not* allocated by the |
| * function itself, but must be allocated by the caller if necessary. |
| * |
| * @node: The node for whose property should be set |
| * @propname: The name of the property to set |
| * @len: The length of the new value of the property |
| * @value: The new value of the property (must be valid prior to calling |
| * the function) |
| * @return 0 if successful, -ve on error |
| */ |
| int ofnode_write_prop(ofnode node, const char *propname, int len, |
| const void *value); |
| |
| /** |
| * ofnode_write_string() - Set a string property of a ofnode |
| * |
| * Note that the value passed to the function is *not* allocated by the |
| * function itself, but must be allocated by the caller if necessary. |
| * |
| * @node: The node for whose string property should be set |
| * @propname: The name of the string property to set |
| * @value: The new value of the string property (must be valid prior to |
| * calling the function) |
| * @return 0 if successful, -ve on error |
| */ |
| int ofnode_write_string(ofnode node, const char *propname, const char *value); |
| |
| /** |
| * ofnode_set_enabled() - Enable or disable a device tree node given by its |
| * ofnode |
| * |
| * This function effectively sets the node's "status" property to either "okay" |
| * or "disable", hence making it available for driver model initialization or |
| * not. |
| * |
| * @node: The node to enable |
| * @value: Flag that tells the function to either disable or enable the |
| * node |
| * @return 0 if successful, -ve on error |
| */ |
| int ofnode_set_enabled(ofnode node, bool value); |
| |
| #endif |