blob: 4025b4789147c254e718199182e21de235824e9d [file] [log] [blame]
/*
* (C) Copyright 2001, 2002
* Dave Ellis, SIXNET, dge@sixnetio.com.
* Based on code by:
* Wolfgang Denk, DENX Software Engineering, wd@denx.de.
* and other contributors to U-Boot. See file CREDITS for list
* of people who contributed to this project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*/
#include <common.h>
#include <config.h>
#include <jffs2/jffs2.h>
#include <mpc8xx.h>
#include <net.h> /* for eth_init() */
#include <rtc.h>
#include "sixnet.h"
#ifdef CONFIG_SHOW_BOOT_PROGRESS
# include <status_led.h>
#endif
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
#include <linux/mtd/nand.h>
extern struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE];
#endif
#define ORMASK(size) ((-size) & OR_AM_MSK)
static long ram_size(ulong *, long);
/* ------------------------------------------------------------------------- */
#ifdef CONFIG_SHOW_BOOT_PROGRESS
void show_boot_progress (int status)
{
#if defined(CONFIG_STATUS_LED)
# if defined(STATUS_LED_BOOT)
if (status == 15) {
/* ready to transfer to kernel, make sure LED is proper state */
status_led_set(STATUS_LED_BOOT, CONFIG_BOOT_LED_STATE);
}
# endif /* STATUS_LED_BOOT */
#endif /* CONFIG_STATUS_LED */
}
#endif
/* ------------------------------------------------------------------------- */
/*
* Check Board Identity:
* returns 0 if recognized, -1 if unknown
*/
int checkboard (void)
{
puts ("Board: SIXNET SXNI855T\n");
return 0;
}
/* ------------------------------------------------------------------------- */
#if (CONFIG_COMMANDS & CFG_CMD_PCMCIA)
#error "SXNI855T has no PCMCIA port"
#endif /* CFG_CMD_PCMCIA */
/* ------------------------------------------------------------------------- */
#define _not_used_ 0xffffffff
/* UPMB table for dual UART. */
/* this table is for 50MHz operation, it should work at all lower speeds */
const uint duart_table[] =
{
/* single read. (offset 0 in upm RAM) */
0xfffffc04, 0x0ffffc04, 0x0ff3fc04, 0x0ff3fc04,
0x0ff3fc00, 0x0ff3fc04, 0xfffffc04, 0xfffffc05,
/* burst read. (offset 8 in upm RAM) */
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
/* single write. (offset 18 in upm RAM) */
0xfffffc04, 0x0ffffc04, 0x00fffc04, 0x00fffc04,
0x00fffc04, 0x00fffc00, 0xfffffc04, 0xfffffc05,
/* burst write. (offset 20 in upm RAM) */
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
/* refresh. (offset 30 in upm RAM) */
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
/* exception. (offset 3c in upm RAM) */
_not_used_, _not_used_, _not_used_, _not_used_,
};
/* Load FPGA very early in boot sequence, since it must be
* loaded before the 16C2550 serial channels can be used as
* console channels.
*
* Note: Much of the configuration is not complete. The
* stack is in DPRAM since SDRAM has not been initialized,
* so the stack must be kept small. Global variables
* are still in FLASH, so they cannot be written.
* Only the FLASH, DPRAM, immap and FPGA can be addressed,
* the other chip selects may not have been initialized.
* The clocks have been initialized, so udelay() can be
* used.
*/
#define FPGA_DONE 0x0080 /* PA8, input, high when FPGA load complete */
#define FPGA_PROGRAM_L 0x0040 /* PA9, output, low to reset, high to start */
#define FPGA_INIT_L 0x0020 /* PA10, input, low indicates not ready */
#define fpga (*(volatile unsigned char *)(CFG_FPGA_PROG)) /* FPGA port */
int board_postclk_init (void)
{
/* the data to load to the XCSxxXL FPGA */
static const unsigned char fpgadata[] = {
# include "fpgadata.c"
};
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile memctl8xx_t *memctl = &immap->im_memctl;
#define porta (immap->im_ioport.iop_padat)
const unsigned char* pdata;
/* /INITFPGA and DONEFPGA signals are inputs */
immap->im_ioport.iop_padir &= ~(FPGA_INIT_L | FPGA_DONE);
/* Force output pin to begin at 0, /PROGRAM asserted (0) resets FPGA */
porta &= ~FPGA_PROGRAM_L;
/* Set FPGA as an output */
immap->im_ioport.iop_padir |= FPGA_PROGRAM_L;
/* delay a little to make sure FPGA sees it, really
* only need less than a microsecond.
*/
udelay(10);
/* unassert /PROGRAM */
porta |= FPGA_PROGRAM_L;
/* delay while FPGA does last erase, indicated by
* /INITFPGA going high. This should happen within a
* few milliseconds.
*/
/* ### FIXME - a timeout check would be good, maybe flash
* the status LED to indicate the error?
*/
while ((porta & FPGA_INIT_L) == 0)
; /* waiting */
/* write program data to FPGA at the programming address
* so extra /CS1 strobes at end of configuration don't actually
* write to any registers.
*/
fpga = 0xff; /* first write is ignored */
fpga = 0xff; /* fill byte */
fpga = 0xff; /* fill byte */
fpga = 0x4f; /* preamble code */
fpga = 0x80; fpga = 0xaf; fpga = 0x9b; /* length (ignored) */
fpga = 0x4b; /* field check code */
pdata = fpgadata;
/* while no error write out each of the 28 byte frames */
while ((porta & (FPGA_INIT_L | FPGA_DONE)) == FPGA_INIT_L
&& pdata < fpgadata + sizeof(fpgadata)) {
fpga = 0x4f; /* preamble code */
/* 21 bytes of data in a frame */
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++); fpga = *(pdata++);
fpga = *(pdata++);
fpga = 0x4b; /* field check code */
fpga = 0xff; /* extended write cycle */
fpga = 0x4b; /* extended write cycle
* (actually 0x4b from bitgen.exe)
*/
fpga = 0xff; /* extended write cycle */
fpga = 0xff; /* extended write cycle */
fpga = 0xff; /* extended write cycle */
}
fpga = 0xff; /* startup byte */
fpga = 0xff; /* startup byte */
fpga = 0xff; /* startup byte */
fpga = 0xff; /* startup byte */
#if 0 /* ### FIXME */
/* If didn't load all the data or FPGA_DONE is low the load failed.
* Maybe someday stop here and flash the status LED? The console
* is not configured, so can't print an error message. Can't write
* global variables to set a flag (except gd?).
* For now it must work.
*/
#endif
/* Now that the FPGA is loaded, set up the Dual UART chip
* selects. Must be done here since it may be used as the console.
*/
upmconfig(UPMB, (uint *)duart_table, sizeof(duart_table)/sizeof(uint));
memctl->memc_mbmr = DUART_MBMR;
memctl->memc_or5 = DUART_OR_VALUE;
memctl->memc_br5 = DUART_BR5_VALUE;
memctl->memc_or6 = DUART_OR_VALUE;
memctl->memc_br6 = DUART_BR6_VALUE;
return (0);
}
/* ------------------------------------------------------------------------- */
/* base address for SRAM, assume 32-bit port, valid */
#define NVRAM_BR_VALUE (CFG_SRAM_BASE | BR_PS_32 | BR_V)
/* up to 64MB - will be adjusted for actual size */
#define NVRAM_OR_PRELIM (ORMASK(CFG_SRAM_SIZE) \
| OR_CSNT_SAM | OR_ACS_DIV4 | OR_BI | OR_SCY_5_CLK | OR_EHTR)
/*
* Miscellaneous platform dependent initializations after running in RAM.
*/
int misc_init_r (void)
{
DECLARE_GLOBAL_DATA_PTR;
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile memctl8xx_t *memctl = &immap->im_memctl;
char* s;
char* e;
int reg;
bd_t *bd = gd->bd;
memctl->memc_or2 = NVRAM_OR_PRELIM;
memctl->memc_br2 = NVRAM_BR_VALUE;
/* Is there any SRAM? Is it 16 or 32 bits wide? */
/* First look for 32-bit SRAM */
bd->bi_sramsize = ram_size((ulong*)CFG_SRAM_BASE, CFG_SRAM_SIZE);
if (bd->bi_sramsize == 0) {
/* no 32-bit SRAM, but there could be 16-bit SRAM since
* it would report size 0 when configured for 32-bit bus.
* Try again with a 16-bit bus.
*/
memctl->memc_br2 |= BR_PS_16;
bd->bi_sramsize = ram_size((ulong*)CFG_SRAM_BASE, CFG_SRAM_SIZE);
}
if (bd->bi_sramsize == 0) {
memctl->memc_br2 = 0; /* disable select since nothing there */
}
else {
/* adjust or2 for actual size of SRAM */
memctl->memc_or2 |= ORMASK(bd->bi_sramsize);
bd->bi_sramstart = CFG_SRAM_BASE;
printf("SRAM: %lu KB\n", bd->bi_sramsize >> 10);
}
/* set standard MPC8xx clock so kernel will see the time
* even if it doesn't have a DS1306 clock driver.
* This helps with experimenting with standard kernels.
*/
{
ulong tim;
struct rtc_time tmp;
rtc_get(&tmp); /* get time from DS1306 RTC */
/* convert to seconds since 1970 */
tim = mktime(tmp.tm_year, tmp.tm_mon, tmp.tm_mday,
tmp.tm_hour, tmp.tm_min, tmp.tm_sec);
immap->im_sitk.sitk_rtck = KAPWR_KEY;
immap->im_sit.sit_rtc = tim;
}
/* set up ethernet address for SCC ethernet. If eth1addr
* is present it gets a unique address, otherwise it
* shares the FEC address.
*/
s = getenv("eth1addr");
if (s == NULL)
s = getenv("ethaddr");
for (reg=0; reg<6; ++reg) {
bd->bi_enet1addr[reg] = s ? simple_strtoul(s, &e, 16) : 0;
if (s)
s = (*e) ? e+1 : e;
}
return (0);
}
#if (CONFIG_COMMANDS & CFG_CMD_NAND)
void nand_init(void)
{
nand_probe(CFG_DFLASH_BASE); /* see if any NAND flash present */
if (nand_dev_desc[0].ChipID != NAND_ChipID_UNKNOWN) {
puts("NAND: ");
print_size(nand_dev_desc[0].totlen, "\n");
}
}
#endif
/* ------------------------------------------------------------------------- */
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
* `base + maxsize'.
*
* The memory size MUST be a power of 2 for this to work.
*
* The only memory modified is 8 bytes at offset 0. This is important
* since for the SRAM this location is reserved for autosizing, so if
* it is modified and the board is reset before ram_size() completes
* no damage is done. Normally even the memory at 0 is preserved. The
* higher SRAM addresses may contain battery backed RAM disk data which
* must never be corrupted.
*/
static long ram_size(ulong *base, long maxsize)
{
volatile long *test_addr;
volatile long *base_addr = base;
ulong ofs; /* byte offset from base_addr */
ulong save; /* to make test non-destructive */
ulong save2; /* to make test non-destructive */
long ramsize = -1; /* size not determined yet */
save = *base_addr; /* save value at 0 so can restore */
save2 = *(base_addr+1); /* save value at 4 so can restore */
/* is any SRAM present? */
*base_addr = 0x5555aaaa;
/* It is important to drive the data bus with different data so
* it doesn't remember the value and look like RAM that isn't there.
*/
*(base_addr + 1) = 0xaaaa5555; /* use write to modify data bus */
if (*base_addr != 0x5555aaaa)
ramsize = 0; /* no RAM present, or defective */
else {
*base_addr = 0xaaaa5555;
*(base_addr + 1) = 0x5555aaaa; /* use write to modify data bus */
if (*base_addr != 0xaaaa5555)
ramsize = 0; /* no RAM present, or defective */
}
/* now size it if any is present */
for (ofs = 4; ofs < maxsize && ramsize < 0; ofs <<= 1) {
test_addr = (long*)((long)base_addr + ofs); /* location to test */
*base_addr = ~*test_addr;
if (*base_addr == *test_addr)
ramsize = ofs; /* wrapped back to 0, so this is the size */
}
*base_addr = save; /* restore value at 0 */
*(base_addr+1) = save2; /* restore value at 4 */
return (ramsize);
}
/* ------------------------------------------------------------------------- */
/* sdram table based on the FADS manual */
/* for chip MB811171622A-100 */
/* this table is for 50MHz operation, it should work at all lower speeds */
const uint sdram_table[] =
{
/* single read. (offset 0 in upm RAM) */
0x1f07fc04, 0xeeaefc04, 0x11adfc04, 0xefbbbc00,
0x1ff77c47,
/* precharge and Mode Register Set initialization (offset 5).
* This is also entered at offset 6 to do Mode Register Set
* without the precharge.
*/
0x1ff77c34, 0xefeabc34, 0x1fb57c35,
/* burst read. (offset 8 in upm RAM) */
0x1f07fc04, 0xeeaefc04, 0x10adfc04, 0xf0affc00,
0xf0affc00, 0xf1affc00, 0xefbbbc00, 0x1ff77c47,
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
/* single write. (offset 18 in upm RAM) */
/* FADS had 0x1f27fc04, ...
* but most other boards have 0x1f07fc04, which
* sets GPL0 from A11MPC to 0 1/4 clock earlier,
* like the single read.
* This seems better so I am going with the change.
*/
0x1f07fc04, 0xeeaebc00, 0x01b93c04, 0x1ff77c47,
_not_used_, _not_used_, _not_used_, _not_used_,
/* burst write. (offset 20 in upm RAM) */
0x1f07fc04, 0xeeaebc00, 0x10ad7c00, 0xf0affc00,
0xf0affc00, 0xe1bbbc04, 0x1ff77c47, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
/* refresh. (offset 30 in upm RAM) */
0x1ff5fc84, 0xfffffc04, 0xfffffc04, 0xfffffc04,
0xfffffc84, 0xfffffc07, _not_used_, _not_used_,
_not_used_, _not_used_, _not_used_, _not_used_,
/* exception. (offset 3c in upm RAM) */
0x7ffffc07, _not_used_, _not_used_, _not_used_ };
/* ------------------------------------------------------------------------- */
#define SDRAM_MAX_SIZE 0x10000000 /* max 256 MB SDRAM */
/* precharge and set Mode Register */
#define SDRAM_MCR_PRE (MCR_OP_RUN | MCR_UPM_A | /* select UPM */ \
MCR_MB_CS3 | /* chip select */ \
MCR_MLCF(1) | MCR_MAD(5)) /* 1 time at 0x05 */
/* set Mode Register, no precharge */
#define SDRAM_MCR_MRS (MCR_OP_RUN | MCR_UPM_A | /* select UPM */ \
MCR_MB_CS3 | /* chip select */ \
MCR_MLCF(1) | MCR_MAD(6)) /* 1 time at 0x06 */
/* runs refresh loop twice so get 8 refresh cycles */
#define SDRAM_MCR_REFR (MCR_OP_RUN | MCR_UPM_A | /* select UPM */ \
MCR_MB_CS3 | /* chip select */ \
MCR_MLCF(2) | MCR_MAD(0x30)) /* twice at 0x30 */
/* MAMR values work in either mamr or mbmr */
#define SDRAM_MAMR_BASE /* refresh at 50MHz */ \
((195 << MAMR_PTA_SHIFT) | MAMR_PTAE \
| MAMR_DSA_1_CYCL /* 1 cycle disable */ \
| MAMR_RLFA_1X /* Read loop 1 time */ \
| MAMR_WLFA_1X /* Write loop 1 time */ \
| MAMR_TLFA_4X) /* Timer loop 4 times */
/* 8 column SDRAM */
#define SDRAM_MAMR_8COL (SDRAM_MAMR_BASE \
| MAMR_AMA_TYPE_0 /* Address MUX 0 */ \
| MAMR_G0CLA_A11) /* GPL0 A11[MPC] */
/* 9 column SDRAM */
#define SDRAM_MAMR_9COL (SDRAM_MAMR_BASE \
| MAMR_AMA_TYPE_1 /* Address MUX 1 */ \
| MAMR_G0CLA_A10) /* GPL0 A10[MPC] */
/* base address 0, 32-bit port, SDRAM UPM, valid */
#define SDRAM_BR_VALUE (BR_PS_32 | BR_MS_UPMA | BR_V)
/* up to 256MB, SAM, G5LS - will be adjusted for actual size */
#define SDRAM_OR_PRELIM (ORMASK(SDRAM_MAX_SIZE) | OR_CSNT_SAM | OR_G5LS)
/* This is the Mode Select Register value for the SDRAM.
* Burst length: 4
* Burst Type: sequential
* CAS Latency: 2
* Write Burst Length: burst
*/
#define SDRAM_MODE 0x22 /* CAS latency 2, burst length 4 */
/* ------------------------------------------------------------------------- */
long int initdram(int board_type)
{
volatile immap_t *immap = (immap_t *)CFG_IMMR;
volatile memctl8xx_t *memctl = &immap->im_memctl;
uint size_sdram = 0;
uint size_sdram9 = 0;
uint base = 0; /* SDRAM must start at 0 */
int i;
upmconfig(UPMA, (uint *)sdram_table, sizeof(sdram_table)/sizeof(uint));
/* Configure the refresh (mostly). This needs to be
* based upon processor clock speed and optimized to provide
* the highest level of performance.
*
* Preliminary prescaler for refresh.
* This value is selected for four cycles in 31.2 us,
* which gives 8192 cycles in 64 milliseconds.
* This may be too fast, but works for any memory.
* It is adjusted to 4096 cycles in 64 milliseconds if
* possible once we know what memory we have.
*
* We have to be careful changing UPM registers after we
* ask it to run these commands.
*
* PTA - periodic timer period for our design is
* 50 MHz x 31.2us
* --------------- = 195
* 1 x 8 x 1
*
* 50MHz clock
* 31.2us refresh interval
* SCCR[DFBRG] 0
* PTP divide by 8
* 1 chip select
*/
memctl->memc_mptpr = MPTPR_PTP_DIV8; /* 0x0800 */
memctl->memc_mamr = SDRAM_MAMR_8COL & (~MAMR_PTAE); /* no refresh yet */
/* The SDRAM Mode Register value is shifted left 2 bits since
* A30 and A31 don't connect to the SDRAM for 32-bit wide memory.
*/
memctl->memc_mar = SDRAM_MODE << 2; /* MRS code */
udelay(200); /* SDRAM needs 200uS before set it up */
/* Now run the precharge/nop/mrs commands. */
memctl->memc_mcr = SDRAM_MCR_PRE;
udelay(2);
/* Run 8 refresh cycles (2 sets of 4) */
memctl->memc_mcr = SDRAM_MCR_REFR; /* run refresh twice */
udelay(2);
/* some brands want Mode Register set after the refresh
* cycles. This shouldn't hurt anything for the brands
* that were happy with the first time we set it.
*/
memctl->memc_mcr = SDRAM_MCR_MRS;
udelay(2);
memctl->memc_mamr = SDRAM_MAMR_8COL; /* enable refresh */
memctl->memc_or3 = SDRAM_OR_PRELIM;
memctl->memc_br3 = SDRAM_BR_VALUE + base;
/* Some brands need at least 10 DRAM accesses to stabilize.
* It wont hurt the brands that don't.
*/
for (i=0; i<10; ++i) {
volatile ulong *addr = (volatile ulong *)base;
ulong val;
val = *(addr + i);
*(addr + i) = val;
}
/* Check SDRAM memory Size in 8 column mode.
* For a 9 column memory we will get half the actual size.
*/
size_sdram = ram_size((ulong *)0, SDRAM_MAX_SIZE);
/* Check SDRAM memory Size in 9 column mode.
* For an 8 column memory we will see at most 4 megabytes.
*/
memctl->memc_mamr = SDRAM_MAMR_9COL;
size_sdram9 = ram_size((ulong *)0, SDRAM_MAX_SIZE);
if (size_sdram < size_sdram9) /* leave configuration at 9 columns */
size_sdram = size_sdram9;
else /* go back to 8 columns */
memctl->memc_mamr = SDRAM_MAMR_8COL;
/* adjust or3 for actual size of SDRAM
*/
memctl->memc_or3 |= ORMASK(size_sdram);
/* Adjust refresh rate depending on SDRAM type.
* For types > 128 MBit (32 Mbyte for 2 x16 devices) leave
* it at the current (fast) rate.
* For 16, 64 and 128 MBit half the rate will do.
*/
if (size_sdram <= 32 * 1024 * 1024)
memctl->memc_mptpr = MPTPR_PTP_DIV16; /* 0x0400 */
return (size_sdram);
}
#ifdef CFG_JFFS_CUSTOM_PART
static struct part_info part;
#define jffs2_block(i) \
((struct jffs2_unknown_node*)(CFG_JFFS2_BASE + (i) * 65536))
struct part_info* jffs2_part_info(int part_num)
{
DECLARE_GLOBAL_DATA_PTR;
bd_t *bd = gd->bd;
char* s;
int i;
int bootnor = 0; /* assume booting from NAND flash */
if (part_num != 0)
return 0; /* only support one partition */
if (part.usr_priv == (void*)1)
return &part; /* already have part info */
memset(&part, 0, sizeof(part));
if (nand_dev_desc[0].ChipID == NAND_ChipID_UNKNOWN)
bootnor = 1;
else if (bd->bi_flashsize < 0x800000)
bootnor = 0;
else for (i = 0; !bootnor && i < 4; ++i) {
/* boot from NOR if JFFS2 info in any of
* first 4 erase blocks
*/
if (jffs2_block(i)->magic == JFFS2_MAGIC_BITMASK)
bootnor = 1;
}
if (bootnor) {
/* no NAND flash or boot in NOR, use NOR flash */
part.offset = (unsigned char *)CFG_JFFS2_BASE;
part.size = CFG_JFFS2_SIZE;
}
else {
char readcmd[60];
/* boot info in NAND flash, get and use copy in RAM */
/* override info from environment if present */
s = getenv("fsaddr");
part.offset = s ? (void *)simple_strtoul(s, NULL, 16)
: (void *)CFG_JFFS2_RAMBASE;
s = getenv("fssize");
part.size = s ? simple_strtoul(s, NULL, 16)
: CFG_JFFS2_RAMSIZE;
/* read from nand flash */
sprintf(readcmd, "nand read.jffs2 %x 0 %x",
(uint32_t)part.offset, part.size);
run_command(readcmd, 0);
}
part.erasesize = 0; /* unused */
part.usr_priv=(void*)1; /* ready */
return &part;
}
#endif /* ifdef CFG_JFFS_CUSTOM_PART */