| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2017 NXP Semiconductors |
| * Copyright (C) 2017 Bin Meng <bmeng.cn@gmail.com> |
| */ |
| |
| #include <common.h> |
| #include <blk.h> |
| #include <cpu_func.h> |
| #include <dm.h> |
| #include <errno.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <memalign.h> |
| #include <time.h> |
| #include <dm/device-internal.h> |
| #include <linux/compat.h> |
| #include "nvme.h" |
| |
| #define NVME_Q_DEPTH 2 |
| #define NVME_AQ_DEPTH 2 |
| #define NVME_SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) |
| #define NVME_CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) |
| #define NVME_CQ_ALLOCATION ALIGN(NVME_CQ_SIZE(NVME_Q_DEPTH), \ |
| ARCH_DMA_MINALIGN) |
| #define ADMIN_TIMEOUT 60 |
| #define IO_TIMEOUT 30 |
| #define MAX_PRP_POOL 512 |
| |
| static int nvme_wait_ready(struct nvme_dev *dev, bool enabled) |
| { |
| u32 bit = enabled ? NVME_CSTS_RDY : 0; |
| int timeout; |
| ulong start; |
| |
| /* Timeout field in the CAP register is in 500 millisecond units */ |
| timeout = NVME_CAP_TIMEOUT(dev->cap) * 500; |
| |
| start = get_timer(0); |
| while (get_timer(start) < timeout) { |
| if ((readl(&dev->bar->csts) & NVME_CSTS_RDY) == bit) |
| return 0; |
| } |
| |
| return -ETIME; |
| } |
| |
| static int nvme_setup_prps(struct nvme_dev *dev, u64 *prp2, |
| int total_len, u64 dma_addr) |
| { |
| u32 page_size = dev->page_size; |
| int offset = dma_addr & (page_size - 1); |
| u64 *prp_pool; |
| int length = total_len; |
| int i, nprps; |
| u32 prps_per_page = page_size >> 3; |
| u32 num_pages; |
| |
| length -= (page_size - offset); |
| |
| if (length <= 0) { |
| *prp2 = 0; |
| return 0; |
| } |
| |
| if (length) |
| dma_addr += (page_size - offset); |
| |
| if (length <= page_size) { |
| *prp2 = dma_addr; |
| return 0; |
| } |
| |
| nprps = DIV_ROUND_UP(length, page_size); |
| num_pages = DIV_ROUND_UP(nprps, prps_per_page); |
| |
| if (nprps > dev->prp_entry_num) { |
| free(dev->prp_pool); |
| /* |
| * Always increase in increments of pages. It doesn't waste |
| * much memory and reduces the number of allocations. |
| */ |
| dev->prp_pool = memalign(page_size, num_pages * page_size); |
| if (!dev->prp_pool) { |
| printf("Error: malloc prp_pool fail\n"); |
| return -ENOMEM; |
| } |
| dev->prp_entry_num = prps_per_page * num_pages; |
| } |
| |
| prp_pool = dev->prp_pool; |
| i = 0; |
| while (nprps) { |
| if (i == ((page_size >> 3) - 1)) { |
| *(prp_pool + i) = cpu_to_le64((ulong)prp_pool + |
| page_size); |
| i = 0; |
| prp_pool += page_size; |
| } |
| *(prp_pool + i++) = cpu_to_le64(dma_addr); |
| dma_addr += page_size; |
| nprps--; |
| } |
| *prp2 = (ulong)dev->prp_pool; |
| |
| flush_dcache_range((ulong)dev->prp_pool, (ulong)dev->prp_pool + |
| dev->prp_entry_num * sizeof(u64)); |
| |
| return 0; |
| } |
| |
| static __le16 nvme_get_cmd_id(void) |
| { |
| static unsigned short cmdid; |
| |
| return cpu_to_le16((cmdid < USHRT_MAX) ? cmdid++ : 0); |
| } |
| |
| static u16 nvme_read_completion_status(struct nvme_queue *nvmeq, u16 index) |
| { |
| /* |
| * Single CQ entries are always smaller than a cache line, so we |
| * can't invalidate them individually. However CQ entries are |
| * read only by the CPU, so it's safe to always invalidate all of them, |
| * as the cache line should never become dirty. |
| */ |
| ulong start = (ulong)&nvmeq->cqes[0]; |
| ulong stop = start + NVME_CQ_ALLOCATION; |
| |
| invalidate_dcache_range(start, stop); |
| |
| return readw(&(nvmeq->cqes[index].status)); |
| } |
| |
| /** |
| * nvme_submit_cmd() - copy a command into a queue and ring the doorbell |
| * |
| * @nvmeq: The queue to use |
| * @cmd: The command to send |
| */ |
| static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) |
| { |
| struct nvme_ops *ops; |
| u16 tail = nvmeq->sq_tail; |
| |
| memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); |
| flush_dcache_range((ulong)&nvmeq->sq_cmds[tail], |
| (ulong)&nvmeq->sq_cmds[tail] + sizeof(*cmd)); |
| |
| ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops; |
| if (ops && ops->submit_cmd) { |
| ops->submit_cmd(nvmeq, cmd); |
| return; |
| } |
| |
| if (++tail == nvmeq->q_depth) |
| tail = 0; |
| writel(tail, nvmeq->q_db); |
| nvmeq->sq_tail = tail; |
| } |
| |
| static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, |
| struct nvme_command *cmd, |
| u32 *result, unsigned timeout) |
| { |
| struct nvme_ops *ops; |
| u16 head = nvmeq->cq_head; |
| u16 phase = nvmeq->cq_phase; |
| u16 status; |
| ulong start_time; |
| ulong timeout_us = timeout * 100000; |
| |
| cmd->common.command_id = nvme_get_cmd_id(); |
| nvme_submit_cmd(nvmeq, cmd); |
| |
| start_time = timer_get_us(); |
| |
| for (;;) { |
| status = nvme_read_completion_status(nvmeq, head); |
| if ((status & 0x01) == phase) |
| break; |
| if (timeout_us > 0 && (timer_get_us() - start_time) |
| >= timeout_us) |
| return -ETIMEDOUT; |
| } |
| |
| ops = (struct nvme_ops *)nvmeq->dev->udev->driver->ops; |
| if (ops && ops->complete_cmd) |
| ops->complete_cmd(nvmeq, cmd); |
| |
| status >>= 1; |
| if (status) { |
| printf("ERROR: status = %x, phase = %d, head = %d\n", |
| status, phase, head); |
| status = 0; |
| if (++head == nvmeq->q_depth) { |
| head = 0; |
| phase = !phase; |
| } |
| writel(head, nvmeq->q_db + nvmeq->dev->db_stride); |
| nvmeq->cq_head = head; |
| nvmeq->cq_phase = phase; |
| |
| return -EIO; |
| } |
| |
| if (result) |
| *result = readl(&(nvmeq->cqes[head].result)); |
| |
| if (++head == nvmeq->q_depth) { |
| head = 0; |
| phase = !phase; |
| } |
| writel(head, nvmeq->q_db + nvmeq->dev->db_stride); |
| nvmeq->cq_head = head; |
| nvmeq->cq_phase = phase; |
| |
| return status; |
| } |
| |
| static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd, |
| u32 *result) |
| { |
| return nvme_submit_sync_cmd(dev->queues[NVME_ADMIN_Q], cmd, |
| result, ADMIN_TIMEOUT); |
| } |
| |
| static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, |
| int qid, int depth) |
| { |
| struct nvme_ops *ops; |
| struct nvme_queue *nvmeq = malloc(sizeof(*nvmeq)); |
| if (!nvmeq) |
| return NULL; |
| memset(nvmeq, 0, sizeof(*nvmeq)); |
| |
| nvmeq->cqes = (void *)memalign(4096, NVME_CQ_ALLOCATION); |
| if (!nvmeq->cqes) |
| goto free_nvmeq; |
| memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(depth)); |
| |
| nvmeq->sq_cmds = (void *)memalign(4096, NVME_SQ_SIZE(depth)); |
| if (!nvmeq->sq_cmds) |
| goto free_queue; |
| memset((void *)nvmeq->sq_cmds, 0, NVME_SQ_SIZE(depth)); |
| |
| nvmeq->dev = dev; |
| |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase = 1; |
| nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| nvmeq->q_depth = depth; |
| nvmeq->qid = qid; |
| dev->queue_count++; |
| dev->queues[qid] = nvmeq; |
| |
| ops = (struct nvme_ops *)dev->udev->driver->ops; |
| if (ops && ops->setup_queue) |
| ops->setup_queue(nvmeq); |
| |
| return nvmeq; |
| |
| free_queue: |
| free((void *)nvmeq->cqes); |
| free_nvmeq: |
| free(nvmeq); |
| |
| return NULL; |
| } |
| |
| static int nvme_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.delete_queue.opcode = opcode; |
| c.delete_queue.qid = cpu_to_le16(id); |
| |
| return nvme_submit_admin_cmd(dev, &c, NULL); |
| } |
| |
| static int nvme_delete_sq(struct nvme_dev *dev, u16 sqid) |
| { |
| return nvme_delete_queue(dev, nvme_admin_delete_sq, sqid); |
| } |
| |
| static int nvme_delete_cq(struct nvme_dev *dev, u16 cqid) |
| { |
| return nvme_delete_queue(dev, nvme_admin_delete_cq, cqid); |
| } |
| |
| static int nvme_enable_ctrl(struct nvme_dev *dev) |
| { |
| dev->ctrl_config &= ~NVME_CC_SHN_MASK; |
| dev->ctrl_config |= NVME_CC_ENABLE; |
| writel(dev->ctrl_config, &dev->bar->cc); |
| |
| return nvme_wait_ready(dev, true); |
| } |
| |
| static int nvme_disable_ctrl(struct nvme_dev *dev) |
| { |
| dev->ctrl_config &= ~NVME_CC_SHN_MASK; |
| dev->ctrl_config &= ~NVME_CC_ENABLE; |
| writel(dev->ctrl_config, &dev->bar->cc); |
| |
| return nvme_wait_ready(dev, false); |
| } |
| |
| static void nvme_free_queue(struct nvme_queue *nvmeq) |
| { |
| free((void *)nvmeq->cqes); |
| free(nvmeq->sq_cmds); |
| free(nvmeq); |
| } |
| |
| static void nvme_free_queues(struct nvme_dev *dev, int lowest) |
| { |
| int i; |
| |
| for (i = dev->queue_count - 1; i >= lowest; i--) { |
| struct nvme_queue *nvmeq = dev->queues[i]; |
| dev->queue_count--; |
| dev->queues[i] = NULL; |
| nvme_free_queue(nvmeq); |
| } |
| } |
| |
| static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) |
| { |
| struct nvme_dev *dev = nvmeq->dev; |
| |
| nvmeq->sq_tail = 0; |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase = 1; |
| nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| memset((void *)nvmeq->cqes, 0, NVME_CQ_SIZE(nvmeq->q_depth)); |
| flush_dcache_range((ulong)nvmeq->cqes, |
| (ulong)nvmeq->cqes + NVME_CQ_ALLOCATION); |
| dev->online_queues++; |
| } |
| |
| static int nvme_configure_admin_queue(struct nvme_dev *dev) |
| { |
| int result; |
| u32 aqa; |
| u64 cap = dev->cap; |
| struct nvme_queue *nvmeq; |
| /* most architectures use 4KB as the page size */ |
| unsigned page_shift = 12; |
| unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12; |
| unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12; |
| |
| if (page_shift < dev_page_min) { |
| debug("Device minimum page size (%u) too large for host (%u)\n", |
| 1 << dev_page_min, 1 << page_shift); |
| return -ENODEV; |
| } |
| |
| if (page_shift > dev_page_max) { |
| debug("Device maximum page size (%u) smaller than host (%u)\n", |
| 1 << dev_page_max, 1 << page_shift); |
| page_shift = dev_page_max; |
| } |
| |
| result = nvme_disable_ctrl(dev); |
| if (result < 0) |
| return result; |
| |
| nvmeq = dev->queues[NVME_ADMIN_Q]; |
| if (!nvmeq) { |
| nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); |
| if (!nvmeq) |
| return -ENOMEM; |
| } |
| |
| aqa = nvmeq->q_depth - 1; |
| aqa |= aqa << 16; |
| |
| dev->page_size = 1 << page_shift; |
| |
| dev->ctrl_config = NVME_CC_CSS_NVM; |
| dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT; |
| dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE; |
| dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES; |
| |
| writel(aqa, &dev->bar->aqa); |
| nvme_writeq((ulong)nvmeq->sq_cmds, &dev->bar->asq); |
| nvme_writeq((ulong)nvmeq->cqes, &dev->bar->acq); |
| |
| result = nvme_enable_ctrl(dev); |
| if (result) |
| goto free_nvmeq; |
| |
| nvmeq->cq_vector = 0; |
| |
| nvme_init_queue(dev->queues[NVME_ADMIN_Q], 0); |
| |
| return result; |
| |
| free_nvmeq: |
| nvme_free_queues(dev, 0); |
| |
| return result; |
| } |
| |
| static int nvme_alloc_cq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq) |
| { |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; |
| |
| memset(&c, 0, sizeof(c)); |
| c.create_cq.opcode = nvme_admin_create_cq; |
| c.create_cq.prp1 = cpu_to_le64((ulong)nvmeq->cqes); |
| c.create_cq.cqid = cpu_to_le16(qid); |
| c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_cq.cq_flags = cpu_to_le16(flags); |
| c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); |
| |
| return nvme_submit_admin_cmd(dev, &c, NULL); |
| } |
| |
| static int nvme_alloc_sq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq) |
| { |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; |
| |
| memset(&c, 0, sizeof(c)); |
| c.create_sq.opcode = nvme_admin_create_sq; |
| c.create_sq.prp1 = cpu_to_le64((ulong)nvmeq->sq_cmds); |
| c.create_sq.sqid = cpu_to_le16(qid); |
| c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_sq.sq_flags = cpu_to_le16(flags); |
| c.create_sq.cqid = cpu_to_le16(qid); |
| |
| return nvme_submit_admin_cmd(dev, &c, NULL); |
| } |
| |
| int nvme_identify(struct nvme_dev *dev, unsigned nsid, |
| unsigned cns, dma_addr_t dma_addr) |
| { |
| struct nvme_command c; |
| u32 page_size = dev->page_size; |
| int offset = dma_addr & (page_size - 1); |
| int length = sizeof(struct nvme_id_ctrl); |
| int ret; |
| |
| memset(&c, 0, sizeof(c)); |
| c.identify.opcode = nvme_admin_identify; |
| c.identify.nsid = cpu_to_le32(nsid); |
| c.identify.prp1 = cpu_to_le64(dma_addr); |
| |
| length -= (page_size - offset); |
| if (length <= 0) { |
| c.identify.prp2 = 0; |
| } else { |
| dma_addr += (page_size - offset); |
| c.identify.prp2 = cpu_to_le64(dma_addr); |
| } |
| |
| c.identify.cns = cpu_to_le32(cns); |
| |
| invalidate_dcache_range(dma_addr, |
| dma_addr + sizeof(struct nvme_id_ctrl)); |
| |
| ret = nvme_submit_admin_cmd(dev, &c, NULL); |
| if (!ret) |
| invalidate_dcache_range(dma_addr, |
| dma_addr + sizeof(struct nvme_id_ctrl)); |
| |
| return ret; |
| } |
| |
| int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid, |
| dma_addr_t dma_addr, u32 *result) |
| { |
| struct nvme_command c; |
| int ret; |
| |
| memset(&c, 0, sizeof(c)); |
| c.features.opcode = nvme_admin_get_features; |
| c.features.nsid = cpu_to_le32(nsid); |
| c.features.prp1 = cpu_to_le64(dma_addr); |
| c.features.fid = cpu_to_le32(fid); |
| |
| ret = nvme_submit_admin_cmd(dev, &c, result); |
| |
| /* |
| * TODO: Add some cache invalidation when a DMA buffer is involved |
| * in the request, here and before the command gets submitted. The |
| * buffer size varies by feature, also some features use a different |
| * field in the command packet to hold the buffer address. |
| * Section 5.21.1 (Set Features command) in the NVMe specification |
| * details the buffer requirements for each feature. |
| * |
| * At the moment there is no user of this function. |
| */ |
| |
| return ret; |
| } |
| |
| int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11, |
| dma_addr_t dma_addr, u32 *result) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.features.opcode = nvme_admin_set_features; |
| c.features.prp1 = cpu_to_le64(dma_addr); |
| c.features.fid = cpu_to_le32(fid); |
| c.features.dword11 = cpu_to_le32(dword11); |
| |
| /* |
| * TODO: Add a cache clean (aka flush) operation when a DMA buffer is |
| * involved in the request. The buffer size varies by feature, also |
| * some features use a different field in the command packet to hold |
| * the buffer address. Section 5.21.1 (Set Features command) in the |
| * NVMe specification details the buffer requirements for each |
| * feature. |
| * At the moment the only user of this function is not using |
| * any DMA buffer at all. |
| */ |
| |
| return nvme_submit_admin_cmd(dev, &c, result); |
| } |
| |
| static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) |
| { |
| struct nvme_dev *dev = nvmeq->dev; |
| int result; |
| |
| nvmeq->cq_vector = qid - 1; |
| result = nvme_alloc_cq(dev, qid, nvmeq); |
| if (result < 0) |
| goto release_cq; |
| |
| result = nvme_alloc_sq(dev, qid, nvmeq); |
| if (result < 0) |
| goto release_sq; |
| |
| nvme_init_queue(nvmeq, qid); |
| |
| return result; |
| |
| release_sq: |
| nvme_delete_sq(dev, qid); |
| release_cq: |
| nvme_delete_cq(dev, qid); |
| |
| return result; |
| } |
| |
| static int nvme_set_queue_count(struct nvme_dev *dev, int count) |
| { |
| int status; |
| u32 result; |
| u32 q_count = (count - 1) | ((count - 1) << 16); |
| |
| status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, |
| q_count, 0, &result); |
| |
| if (status < 0) |
| return status; |
| if (status > 1) |
| return 0; |
| |
| return min(result & 0xffff, result >> 16) + 1; |
| } |
| |
| static void nvme_create_io_queues(struct nvme_dev *dev) |
| { |
| unsigned int i; |
| |
| for (i = dev->queue_count; i <= dev->max_qid; i++) |
| if (!nvme_alloc_queue(dev, i, dev->q_depth)) |
| break; |
| |
| for (i = dev->online_queues; i <= dev->queue_count - 1; i++) |
| if (nvme_create_queue(dev->queues[i], i)) |
| break; |
| } |
| |
| static int nvme_setup_io_queues(struct nvme_dev *dev) |
| { |
| int nr_io_queues; |
| int result; |
| |
| nr_io_queues = 1; |
| result = nvme_set_queue_count(dev, nr_io_queues); |
| if (result <= 0) |
| return result; |
| |
| dev->max_qid = nr_io_queues; |
| |
| /* Free previously allocated queues */ |
| nvme_free_queues(dev, nr_io_queues + 1); |
| nvme_create_io_queues(dev); |
| |
| return 0; |
| } |
| |
| static int nvme_get_info_from_identify(struct nvme_dev *dev) |
| { |
| struct nvme_id_ctrl *ctrl; |
| int ret; |
| int shift = NVME_CAP_MPSMIN(dev->cap) + 12; |
| |
| ctrl = memalign(dev->page_size, sizeof(struct nvme_id_ctrl)); |
| if (!ctrl) |
| return -ENOMEM; |
| |
| ret = nvme_identify(dev, 0, 1, (dma_addr_t)(long)ctrl); |
| if (ret) { |
| free(ctrl); |
| return -EIO; |
| } |
| |
| dev->nn = le32_to_cpu(ctrl->nn); |
| dev->vwc = ctrl->vwc; |
| memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn)); |
| memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn)); |
| memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr)); |
| if (ctrl->mdts) |
| dev->max_transfer_shift = (ctrl->mdts + shift); |
| else { |
| /* |
| * Maximum Data Transfer Size (MDTS) field indicates the maximum |
| * data transfer size between the host and the controller. The |
| * host should not submit a command that exceeds this transfer |
| * size. The value is in units of the minimum memory page size |
| * and is reported as a power of two (2^n). |
| * |
| * The spec also says: a value of 0h indicates no restrictions |
| * on transfer size. But in nvme_blk_read/write() below we have |
| * the following algorithm for maximum number of logic blocks |
| * per transfer: |
| * |
| * u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift); |
| * |
| * In order for lbas not to overflow, the maximum number is 15 |
| * which means dev->max_transfer_shift = 15 + 9 (ns->lba_shift). |
| * Let's use 20 which provides 1MB size. |
| */ |
| dev->max_transfer_shift = 20; |
| } |
| |
| free(ctrl); |
| return 0; |
| } |
| |
| int nvme_get_namespace_id(struct udevice *udev, u32 *ns_id, u8 *eui64) |
| { |
| struct nvme_ns *ns = dev_get_priv(udev); |
| |
| if (ns_id) |
| *ns_id = ns->ns_id; |
| if (eui64) |
| memcpy(eui64, ns->eui64, sizeof(ns->eui64)); |
| |
| return 0; |
| } |
| |
| int nvme_scan_namespace(void) |
| { |
| struct uclass *uc; |
| struct udevice *dev; |
| int ret; |
| |
| ret = uclass_get(UCLASS_NVME, &uc); |
| if (ret) |
| return ret; |
| |
| uclass_foreach_dev(dev, uc) { |
| ret = device_probe(dev); |
| if (ret) |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_blk_probe(struct udevice *udev) |
| { |
| struct nvme_dev *ndev = dev_get_priv(udev->parent); |
| struct blk_desc *desc = dev_get_uclass_plat(udev); |
| struct nvme_ns *ns = dev_get_priv(udev); |
| u8 flbas; |
| struct nvme_id_ns *id; |
| |
| id = memalign(ndev->page_size, sizeof(struct nvme_id_ns)); |
| if (!id) |
| return -ENOMEM; |
| |
| ns->dev = ndev; |
| /* extract the namespace id from the block device name */ |
| ns->ns_id = trailing_strtol(udev->name); |
| if (nvme_identify(ndev, ns->ns_id, 0, (dma_addr_t)(long)id)) { |
| free(id); |
| return -EIO; |
| } |
| |
| memcpy(&ns->eui64, &id->eui64, sizeof(id->eui64)); |
| flbas = id->flbas & NVME_NS_FLBAS_LBA_MASK; |
| ns->flbas = flbas; |
| ns->lba_shift = id->lbaf[flbas].ds; |
| list_add(&ns->list, &ndev->namespaces); |
| |
| desc->lba = le64_to_cpu(id->nsze); |
| desc->log2blksz = ns->lba_shift; |
| desc->blksz = 1 << ns->lba_shift; |
| desc->bdev = udev; |
| memcpy(desc->vendor, ndev->vendor, sizeof(ndev->vendor)); |
| memcpy(desc->product, ndev->serial, sizeof(ndev->serial)); |
| memcpy(desc->revision, ndev->firmware_rev, sizeof(ndev->firmware_rev)); |
| |
| free(id); |
| return 0; |
| } |
| |
| static ulong nvme_blk_rw(struct udevice *udev, lbaint_t blknr, |
| lbaint_t blkcnt, void *buffer, bool read) |
| { |
| struct nvme_ns *ns = dev_get_priv(udev); |
| struct nvme_dev *dev = ns->dev; |
| struct nvme_command c; |
| struct blk_desc *desc = dev_get_uclass_plat(udev); |
| int status; |
| u64 prp2; |
| u64 total_len = blkcnt << desc->log2blksz; |
| u64 temp_len = total_len; |
| uintptr_t temp_buffer = (uintptr_t)buffer; |
| |
| u64 slba = blknr; |
| u16 lbas = 1 << (dev->max_transfer_shift - ns->lba_shift); |
| u64 total_lbas = blkcnt; |
| |
| flush_dcache_range((unsigned long)buffer, |
| (unsigned long)buffer + total_len); |
| |
| c.rw.opcode = read ? nvme_cmd_read : nvme_cmd_write; |
| c.rw.flags = 0; |
| c.rw.nsid = cpu_to_le32(ns->ns_id); |
| c.rw.control = 0; |
| c.rw.dsmgmt = 0; |
| c.rw.reftag = 0; |
| c.rw.apptag = 0; |
| c.rw.appmask = 0; |
| c.rw.metadata = 0; |
| |
| while (total_lbas) { |
| if (total_lbas < lbas) { |
| lbas = (u16)total_lbas; |
| total_lbas = 0; |
| } else { |
| total_lbas -= lbas; |
| } |
| |
| if (nvme_setup_prps(dev, &prp2, |
| lbas << ns->lba_shift, temp_buffer)) |
| return -EIO; |
| c.rw.slba = cpu_to_le64(slba); |
| slba += lbas; |
| c.rw.length = cpu_to_le16(lbas - 1); |
| c.rw.prp1 = cpu_to_le64(temp_buffer); |
| c.rw.prp2 = cpu_to_le64(prp2); |
| status = nvme_submit_sync_cmd(dev->queues[NVME_IO_Q], |
| &c, NULL, IO_TIMEOUT); |
| if (status) |
| break; |
| temp_len -= (u32)lbas << ns->lba_shift; |
| temp_buffer += lbas << ns->lba_shift; |
| } |
| |
| if (read) |
| invalidate_dcache_range((unsigned long)buffer, |
| (unsigned long)buffer + total_len); |
| |
| return (total_len - temp_len) >> desc->log2blksz; |
| } |
| |
| static ulong nvme_blk_read(struct udevice *udev, lbaint_t blknr, |
| lbaint_t blkcnt, void *buffer) |
| { |
| return nvme_blk_rw(udev, blknr, blkcnt, buffer, true); |
| } |
| |
| static ulong nvme_blk_write(struct udevice *udev, lbaint_t blknr, |
| lbaint_t blkcnt, const void *buffer) |
| { |
| return nvme_blk_rw(udev, blknr, blkcnt, (void *)buffer, false); |
| } |
| |
| static const struct blk_ops nvme_blk_ops = { |
| .read = nvme_blk_read, |
| .write = nvme_blk_write, |
| }; |
| |
| U_BOOT_DRIVER(nvme_blk) = { |
| .name = "nvme-blk", |
| .id = UCLASS_BLK, |
| .probe = nvme_blk_probe, |
| .ops = &nvme_blk_ops, |
| .priv_auto = sizeof(struct nvme_ns), |
| }; |
| |
| int nvme_init(struct udevice *udev) |
| { |
| struct nvme_dev *ndev = dev_get_priv(udev); |
| struct nvme_id_ns *id; |
| int ret; |
| |
| ndev->udev = udev; |
| INIT_LIST_HEAD(&ndev->namespaces); |
| if (readl(&ndev->bar->csts) == -1) { |
| ret = -ENODEV; |
| printf("Error: %s: Out of memory!\n", udev->name); |
| goto free_nvme; |
| } |
| |
| ndev->queues = malloc(NVME_Q_NUM * sizeof(struct nvme_queue *)); |
| if (!ndev->queues) { |
| ret = -ENOMEM; |
| printf("Error: %s: Out of memory!\n", udev->name); |
| goto free_nvme; |
| } |
| memset(ndev->queues, 0, NVME_Q_NUM * sizeof(struct nvme_queue *)); |
| |
| ndev->cap = nvme_readq(&ndev->bar->cap); |
| ndev->q_depth = min_t(int, NVME_CAP_MQES(ndev->cap) + 1, NVME_Q_DEPTH); |
| ndev->db_stride = 1 << NVME_CAP_STRIDE(ndev->cap); |
| ndev->dbs = ((void __iomem *)ndev->bar) + 4096; |
| |
| ret = nvme_configure_admin_queue(ndev); |
| if (ret) |
| goto free_queue; |
| |
| /* Allocate after the page size is known */ |
| ndev->prp_pool = memalign(ndev->page_size, MAX_PRP_POOL); |
| if (!ndev->prp_pool) { |
| ret = -ENOMEM; |
| printf("Error: %s: Out of memory!\n", udev->name); |
| goto free_nvme; |
| } |
| ndev->prp_entry_num = MAX_PRP_POOL >> 3; |
| |
| ret = nvme_setup_io_queues(ndev); |
| if (ret) |
| goto free_queue; |
| |
| nvme_get_info_from_identify(ndev); |
| |
| /* Create a blk device for each namespace */ |
| |
| id = memalign(ndev->page_size, sizeof(struct nvme_id_ns)); |
| if (!id) { |
| ret = -ENOMEM; |
| goto free_queue; |
| } |
| |
| for (int i = 1; i <= ndev->nn; i++) { |
| struct udevice *ns_udev; |
| char name[20]; |
| |
| memset(id, 0, sizeof(*id)); |
| if (nvme_identify(ndev, i, 0, (dma_addr_t)(long)id)) { |
| ret = -EIO; |
| goto free_id; |
| } |
| |
| /* skip inactive namespace */ |
| if (!id->nsze) |
| continue; |
| |
| /* |
| * Encode the namespace id to the device name so that |
| * we can extract it when doing the probe. |
| */ |
| sprintf(name, "blk#%d", i); |
| |
| /* The real blksz and size will be set by nvme_blk_probe() */ |
| ret = blk_create_devicef(udev, "nvme-blk", name, IF_TYPE_NVME, |
| -1, 512, 0, &ns_udev); |
| if (ret) |
| goto free_id; |
| |
| ret = blk_probe_or_unbind(ns_udev); |
| if (ret) |
| goto free_id; |
| } |
| |
| free(id); |
| return 0; |
| |
| free_id: |
| free(id); |
| free_queue: |
| free((void *)ndev->queues); |
| free_nvme: |
| return ret; |
| } |
| |
| int nvme_shutdown(struct udevice *udev) |
| { |
| struct nvme_dev *ndev = dev_get_priv(udev); |
| |
| return nvme_disable_ctrl(ndev); |
| } |