| /* |
| * SPI flash driver |
| * |
| * Enter bugs at http://blackfin.uclinux.org/ |
| * |
| * Copyright (c) 2005-2008 Analog Devices Inc. |
| * |
| * Licensed under the GPL-2 or later. |
| */ |
| |
| /* Configuration options: |
| * CONFIG_SPI_BAUD - value to load into SPI_BAUD (divisor of SCLK to get SPI CLK) |
| * CONFIG_SPI_FLASH_SLOW_READ - force usage of the slower read |
| * WARNING: make sure your SCLK + SPI_BAUD is slow enough |
| */ |
| |
| #include <common.h> |
| #include <malloc.h> |
| #include <asm/io.h> |
| #include <asm/mach-common/bits/spi.h> |
| #include <asm/mach-common/bits/dma.h> |
| |
| /* Forcibly phase out these */ |
| #ifdef CONFIG_SPI_FLASH_NUM_SECTORS |
| # error do not set CONFIG_SPI_FLASH_NUM_SECTORS |
| #endif |
| #ifdef CONFIG_SPI_FLASH_SECTOR_SIZE |
| # error do not set CONFIG_SPI_FLASH_SECTOR_SIZE |
| #endif |
| |
| #if defined(CONFIG_SPI) |
| |
| struct flash_info { |
| char *name; |
| uint16_t id; |
| uint16_t ext_id; |
| unsigned sector_size; |
| unsigned num_sectors; |
| }; |
| |
| /* SPI Speeds: 50 MHz / 33 MHz */ |
| static struct flash_info flash_spansion_serial_flash[] = { |
| { "S25FL016", 0x0215, 0, 64 * 1024, 32 }, |
| { "S25FL032", 0x0216, 0, 64 * 1024, 64 }, |
| { "S25FL064", 0x0217, 0, 64 * 1024, 128 }, |
| { "S25FL128-00", 0x2018, 0x0301, 64 * 1024, 256 }, /* Package marking FL128PIF */ |
| { "S25FL128-01", 0x2018, 0x0300, 128 * 1024, 64 }, /* Package marking FL128PIFL */ |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| /* SPI Speeds: 50 MHz / 20 MHz */ |
| static struct flash_info flash_st_serial_flash[] = { |
| { "m25p05", 0x2010, 0, 32 * 1024, 2 }, |
| { "m25p10", 0x2011, 0, 32 * 1024, 4 }, |
| { "m25p20", 0x2012, 0, 64 * 1024, 4 }, |
| { "m25p40", 0x2013, 0, 64 * 1024, 8 }, |
| { "m25p80", 0x20FF, 0, 64 * 1024, 16 }, |
| { "m25p16", 0x2015, 0, 64 * 1024, 32 }, |
| { "m25p32", 0x2016, 0, 64 * 1024, 64 }, |
| { "m25p64", 0x2017, 0, 64 * 1024, 128 }, |
| { "m25p128", 0x2018, 0, 256 * 1024, 64 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| /* SPI Speeds: 20 MHz / 40 MHz */ |
| static struct flash_info flash_sst_serial_flash[] = { |
| { "SST25WF512", 0x2501, 0, 4 * 1024, 128 }, |
| { "SST25WF010", 0x2502, 0, 4 * 1024, 256 }, |
| { "SST25WF020", 0x2503, 0, 4 * 1024, 512 }, |
| { "SST25WF040", 0x2504, 0, 4 * 1024, 1024 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| /* SPI Speeds: 66 MHz / 33 MHz */ |
| static struct flash_info flash_atmel_dataflash[] = { |
| { "AT45DB011x", 0x0c, 0, 264, 512 }, |
| { "AT45DB021x", 0x14, 0, 264, 1025 }, |
| { "AT45DB041x", 0x1c, 0, 264, 2048 }, |
| { "AT45DB081x", 0x24, 0, 264, 4096 }, |
| { "AT45DB161x", 0x2c, 0, 528, 4096 }, |
| { "AT45DB321x", 0x34, 0, 528, 8192 }, |
| { "AT45DB642x", 0x3c, 0, 1056, 8192 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| /* SPI Speed: 50 MHz / 25 MHz or 40 MHz / 20 MHz */ |
| static struct flash_info flash_winbond_serial_flash[] = { |
| { "W25X10", 0x3011, 0, 16 * 256, 32 }, |
| { "W25X20", 0x3012, 0, 16 * 256, 64 }, |
| { "W25X40", 0x3013, 0, 16 * 256, 128 }, |
| { "W25X80", 0x3014, 0, 16 * 256, 256 }, |
| { "W25P80", 0x2014, 0, 256 * 256, 16 }, |
| { "W25P16", 0x2015, 0, 256 * 256, 32 }, |
| { NULL, 0, 0, 0, 0 } |
| }; |
| |
| struct flash_ops { |
| uint8_t read, write, erase, status; |
| }; |
| |
| #ifdef CONFIG_SPI_FLASH_SLOW_READ |
| # define OP_READ 0x03 |
| #else |
| # define OP_READ 0x0B |
| #endif |
| static struct flash_ops flash_st_ops = { |
| .read = OP_READ, |
| .write = 0x02, |
| .erase = 0xD8, |
| .status = 0x05, |
| }; |
| |
| static struct flash_ops flash_sst_ops = { |
| .read = OP_READ, |
| .write = 0x02, |
| .erase = 0x20, |
| .status = 0x05, |
| }; |
| |
| static struct flash_ops flash_atmel_ops = { |
| .read = OP_READ, |
| .write = 0x82, |
| .erase = 0x81, |
| .status = 0xD7, |
| }; |
| |
| static struct flash_ops flash_winbond_ops = { |
| .read = OP_READ, |
| .write = 0x02, |
| .erase = 0x20, |
| .status = 0x05, |
| }; |
| |
| struct manufacturer_info { |
| const char *name; |
| uint8_t id; |
| struct flash_info *flashes; |
| struct flash_ops *ops; |
| }; |
| |
| static struct { |
| struct manufacturer_info *manufacturer; |
| struct flash_info *flash; |
| struct flash_ops *ops; |
| uint8_t manufacturer_id, device_id1, device_id2, device_extid1, device_extid2; |
| unsigned int write_length; |
| unsigned long sector_size, num_sectors; |
| } flash; |
| |
| enum { |
| JED_MANU_SPANSION = 0x01, |
| JED_MANU_ST = 0x20, |
| JED_MANU_SST = 0xBF, |
| JED_MANU_ATMEL = 0x1F, |
| JED_MANU_WINBOND = 0xEF, |
| }; |
| |
| static struct manufacturer_info flash_manufacturers[] = { |
| { |
| .name = "Spansion", |
| .id = JED_MANU_SPANSION, |
| .flashes = flash_spansion_serial_flash, |
| .ops = &flash_st_ops, |
| }, |
| { |
| .name = "ST", |
| .id = JED_MANU_ST, |
| .flashes = flash_st_serial_flash, |
| .ops = &flash_st_ops, |
| }, |
| { |
| .name = "SST", |
| .id = JED_MANU_SST, |
| .flashes = flash_sst_serial_flash, |
| .ops = &flash_sst_ops, |
| }, |
| { |
| .name = "Atmel", |
| .id = JED_MANU_ATMEL, |
| .flashes = flash_atmel_dataflash, |
| .ops = &flash_atmel_ops, |
| }, |
| { |
| .name = "Winbond", |
| .id = JED_MANU_WINBOND, |
| .flashes = flash_winbond_serial_flash, |
| .ops = &flash_winbond_ops, |
| }, |
| }; |
| |
| #define TIMEOUT 5000 /* timeout of 5 seconds */ |
| |
| /* If part has multiple SPI flashes, assume SPI0 as that is |
| * the one we can boot off of ... |
| */ |
| #ifndef pSPI_CTL |
| # define pSPI_CTL pSPI0_CTL |
| # define pSPI_BAUD pSPI0_BAUD |
| # define pSPI_FLG pSPI0_FLG |
| # define pSPI_RDBR pSPI0_RDBR |
| # define pSPI_STAT pSPI0_STAT |
| # define pSPI_TDBR pSPI0_TDBR |
| #endif |
| |
| /* Default to the SPI SSEL that we boot off of: |
| * BF54x, BF537, (everything new?): SSEL1 |
| * BF51x, BF533, BF561: SSEL2 |
| */ |
| #ifndef CONFIG_SPI_FLASH_SSEL |
| # define CONFIG_SPI_FLASH_SSEL BFIN_BOOT_SPI_SSEL |
| #endif |
| #define SSEL_MASK (1 << CONFIG_SPI_FLASH_SSEL) |
| |
| static void SPI_INIT(void) |
| { |
| /* [#3541] This delay appears to be necessary, but not sure |
| * exactly why as the history behind it is non-existant. |
| */ |
| *pSPI_CTL = 0; |
| udelay(CONFIG_CCLK_HZ / 25000000); |
| |
| /* enable SPI pins: SSEL, MOSI, MISO, SCK */ |
| #ifdef __ADSPBF54x__ |
| *pPORTE_FER |= (PE0 | PE1 | PE2 | PE4); |
| #elif defined(__ADSPBF534__) || defined(__ADSPBF536__) || defined(__ADSPBF537__) |
| *pPORTF_FER |= (PF10 | PF11 | PF12 | PF13); |
| #elif defined(__ADSPBF52x__) |
| bfin_write_PORTG_MUX((bfin_read_PORTG_MUX() & ~PORT_x_MUX_0_MASK) | PORT_x_MUX_0_FUNC_3); |
| bfin_write_PORTG_FER(bfin_read_PORTG_FER() | PG1 | PG2 | PG3 | PG4); |
| #elif defined(__ADSPBF51x__) |
| bfin_write_PORTG_MUX((bfin_read_PORTG_MUX() & ~PORT_x_MUX_7_MASK) | PORT_x_MUX_7_FUNC_1); |
| bfin_write_PORTG_FER(bfin_read_PORTG_FER() | PG12 | PG13 | PG14 | PG15); |
| #endif |
| |
| /* initate communication upon write of TDBR */ |
| *pSPI_CTL = (SPE | MSTR | CPHA | CPOL | TDBR_CORE); |
| *pSPI_BAUD = CONFIG_SPI_BAUD; |
| } |
| |
| static void SPI_DEINIT(void) |
| { |
| *pSPI_CTL = 0; |
| *pSPI_BAUD = 0; |
| SSYNC(); |
| } |
| |
| static void SPI_ON(void) |
| { |
| /* toggle SSEL to reset the device so it'll take a new command */ |
| *pSPI_FLG = 0xFF00 | SSEL_MASK; |
| SSYNC(); |
| |
| *pSPI_FLG = ((0xFF & ~SSEL_MASK) << 8) | SSEL_MASK; |
| SSYNC(); |
| } |
| |
| static void SPI_OFF(void) |
| { |
| /* put SPI settings back to reset state */ |
| *pSPI_FLG = 0xFF00; |
| SSYNC(); |
| } |
| |
| static uint8_t spi_write_read_byte(uint8_t transmit) |
| { |
| *pSPI_TDBR = transmit; |
| SSYNC(); |
| |
| while ((*pSPI_STAT & TXS)) |
| if (ctrlc()) |
| break; |
| while (!(*pSPI_STAT & SPIF)) |
| if (ctrlc()) |
| break; |
| while (!(*pSPI_STAT & RXS)) |
| if (ctrlc()) |
| break; |
| |
| /* Read dummy to empty the receive register */ |
| return *pSPI_RDBR; |
| } |
| |
| static uint8_t read_status_register(void) |
| { |
| uint8_t status_register; |
| |
| /* send instruction to read status register */ |
| SPI_ON(); |
| spi_write_read_byte(flash.ops->status); |
| /* send dummy to receive the status register */ |
| status_register = spi_write_read_byte(0); |
| SPI_OFF(); |
| |
| return status_register; |
| } |
| |
| static int wait_for_ready_status(void) |
| { |
| ulong start = get_timer(0); |
| |
| while (get_timer(0) - start < TIMEOUT) { |
| switch (flash.manufacturer_id) { |
| case JED_MANU_SPANSION: |
| case JED_MANU_ST: |
| case JED_MANU_SST: |
| case JED_MANU_WINBOND: |
| if (!(read_status_register() & 0x01)) |
| return 0; |
| break; |
| |
| case JED_MANU_ATMEL: |
| if (read_status_register() & 0x80) |
| return 0; |
| break; |
| } |
| |
| if (ctrlc()) { |
| puts("\nAbort\n"); |
| return -1; |
| } |
| } |
| |
| puts("Timeout\n"); |
| return -1; |
| } |
| |
| static int enable_writing(void) |
| { |
| ulong start; |
| |
| if (flash.manufacturer_id == JED_MANU_ATMEL) |
| return 0; |
| |
| /* A write enable instruction must previously have been executed */ |
| SPI_ON(); |
| spi_write_read_byte(0x06); |
| SPI_OFF(); |
| |
| /* The status register will be polled to check the write enable latch "WREN" */ |
| start = get_timer(0); |
| while (get_timer(0) - start < TIMEOUT) { |
| if (read_status_register() & 0x02) |
| return 0; |
| |
| if (ctrlc()) { |
| puts("\nAbort\n"); |
| return -1; |
| } |
| } |
| |
| puts("Timeout\n"); |
| return -1; |
| } |
| |
| static void write_status_register(uint8_t val) |
| { |
| if (flash.manufacturer_id != JED_MANU_SST) |
| hang(); |
| |
| if (enable_writing()) |
| return; |
| |
| /* send instruction to write status register */ |
| SPI_ON(); |
| spi_write_read_byte(0x01); |
| /* and clear it! */ |
| spi_write_read_byte(val); |
| SPI_OFF(); |
| } |
| |
| /* Request and read the manufacturer and device id of parts which |
| * are compatible with the JEDEC standard (JEP106) and use that to |
| * setup other operating conditions. |
| */ |
| static int spi_detect_part(void) |
| { |
| uint16_t dev_id, dev_extid; |
| size_t i; |
| |
| static char called_init; |
| if (called_init) |
| return 0; |
| |
| #ifdef CONFIG_SPI_FLASH_M25P80 |
| flash.manufacturer_id = JED_MANU_ST; |
| flash.device_id1 = 0x20; |
| flash.device_id2 = 0xFF; |
| #else |
| SPI_ON(); |
| |
| /* Send the request for the part identification */ |
| spi_write_read_byte(0x9F); |
| |
| /* Now read in the manufacturer id bytes */ |
| do { |
| flash.manufacturer_id = spi_write_read_byte(0); |
| if (flash.manufacturer_id == 0x7F) |
| puts("Warning: unhandled manufacturer continuation byte!\n"); |
| } while (flash.manufacturer_id == 0x7F); |
| |
| /* Now read in the first device id byte */ |
| flash.device_id1 = spi_write_read_byte(0); |
| |
| /* Now read in the second device id byte */ |
| flash.device_id2 = spi_write_read_byte(0); |
| |
| /* Read extended device ids */ |
| flash.device_extid1 = spi_write_read_byte(0); |
| flash.device_extid2 = spi_write_read_byte(0); |
| |
| SPI_OFF(); |
| #endif |
| |
| dev_id = (flash.device_id1 << 8) | flash.device_id2; |
| dev_extid = (flash.device_extid1 << 8) | flash.device_extid2; |
| |
| for (i = 0; i < ARRAY_SIZE(flash_manufacturers); ++i) { |
| if (flash.manufacturer_id == flash_manufacturers[i].id) |
| break; |
| } |
| if (i == ARRAY_SIZE(flash_manufacturers)) |
| goto unknown; |
| |
| flash.manufacturer = &flash_manufacturers[i]; |
| flash.ops = flash_manufacturers[i].ops; |
| |
| switch (flash.manufacturer_id) { |
| case JED_MANU_SPANSION: |
| case JED_MANU_ST: |
| case JED_MANU_SST: |
| case JED_MANU_WINBOND: |
| for (i = 0; flash.manufacturer->flashes[i].name; ++i) { |
| if (dev_id == flash.manufacturer->flashes[i].id && |
| (flash.manufacturer->flashes[i].ext_id == 0 || |
| flash.manufacturer->flashes[i].ext_id == dev_extid)) |
| break; |
| } |
| if (!flash.manufacturer->flashes[i].name) |
| goto unknown; |
| |
| flash.flash = &flash.manufacturer->flashes[i]; |
| flash.sector_size = flash.flash->sector_size; |
| flash.num_sectors = flash.flash->num_sectors; |
| |
| if (flash.manufacturer_id == JED_MANU_SST) |
| flash.write_length = 1; /* pwnt :( */ |
| else |
| flash.write_length = 256; |
| break; |
| |
| case JED_MANU_ATMEL: { |
| uint8_t status = read_status_register(); |
| |
| for (i = 0; flash.manufacturer->flashes[i].name; ++i) { |
| if ((status & 0x3c) == flash.manufacturer->flashes[i].id) |
| break; |
| } |
| if (!flash.manufacturer->flashes[i].name) |
| goto unknown; |
| |
| flash.flash = &flash.manufacturer->flashes[i]; |
| flash.sector_size = flash.flash->sector_size; |
| flash.num_sectors = flash.flash->num_sectors; |
| |
| /* see if flash is in "power of 2" mode */ |
| if (status & 0x1) |
| flash.sector_size &= ~(1 << (ffs(flash.sector_size) - 1)); |
| |
| flash.write_length = flash.sector_size; |
| break; |
| } |
| } |
| |
| /* the SST parts power up with software protection enabled by default */ |
| if (flash.manufacturer_id == JED_MANU_SST) |
| write_status_register(0); |
| |
| called_init = 1; |
| return 0; |
| |
| unknown: |
| printf("Unknown SPI device: 0x%02X 0x%02X 0x%02X\n", |
| flash.manufacturer_id, flash.device_id1, flash.device_id2); |
| return 1; |
| } |
| |
| /* |
| * Function: spi_init_f |
| * Description: Init SPI-Controller (ROM part) |
| * return: --- |
| */ |
| void spi_init_f(void) |
| { |
| } |
| |
| /* |
| * Function: spi_init_r |
| * Description: Init SPI-Controller (RAM part) - |
| * The malloc engine is ready and we can move our buffers to |
| * normal RAM |
| * return: --- |
| */ |
| void spi_init_r(void) |
| { |
| #if defined(CONFIG_POST) && (CONFIG_POST & CONFIG_SYS_POST_SPI) |
| /* Our testing strategy here is pretty basic: |
| * - fill src memory with an 8-bit pattern |
| * - write the src memory to the SPI flash |
| * - read the SPI flash into the dst memory |
| * - compare src and dst memory regions |
| * - repeat a few times |
| * The variations we test for: |
| * - change the 8-bit pattern a bit |
| * - change the read/write block size so we know: |
| * - writes smaller/equal/larger than the buffer work |
| * - writes smaller/equal/larger than the sector work |
| * - change the SPI offsets so we know: |
| * - writing partial sectors works |
| */ |
| uint8_t *mem_src, *mem_dst; |
| size_t i, c, l, o; |
| size_t test_count, errors; |
| uint8_t pattern; |
| |
| SPI_INIT(); |
| |
| if (spi_detect_part()) |
| goto out; |
| eeprom_info(); |
| |
| ulong lengths[] = { |
| flash.write_length, |
| flash.write_length * 2, |
| flash.write_length / 2, |
| flash.sector_size, |
| flash.sector_size * 2, |
| flash.sector_size / 2 |
| }; |
| ulong offsets[] = { |
| 0, |
| flash.write_length, |
| flash.write_length * 2, |
| flash.write_length / 2, |
| flash.write_length / 4, |
| flash.sector_size, |
| flash.sector_size * 2, |
| flash.sector_size / 2, |
| flash.sector_size / 4, |
| }; |
| |
| /* the exact addresses are arbitrary ... they just need to not overlap */ |
| mem_src = (void *)(0); |
| mem_dst = (void *)(max(flash.write_length, flash.sector_size) * 2); |
| |
| test_count = 0; |
| errors = 0; |
| pattern = 0x00; |
| |
| for (i = 0; i < 16; ++i) { /* 16 = 8 bits * 2 iterations */ |
| for (l = 0; l < ARRAY_SIZE(lengths); ++l) { |
| for (o = 0; o < ARRAY_SIZE(offsets); ++o) { |
| ulong len = lengths[l]; |
| ulong off = offsets[o]; |
| |
| printf("Testing pattern 0x%02X of length %5lu and offset %5lu: ", pattern, len, off); |
| |
| /* setup the source memory region */ |
| memset(mem_src, pattern, len); |
| |
| test_count += 4; |
| for (c = 0; c < 4; ++c) { /* 4 is just a random repeat count */ |
| if (ctrlc()) { |
| puts("\nAbort\n"); |
| goto out; |
| } |
| |
| /* make sure background fill pattern != pattern */ |
| memset(mem_dst, pattern ^ 0xFF, len); |
| |
| /* write out the source memory and then read it back and compare */ |
| eeprom_write(0, off, mem_src, len); |
| eeprom_read(0, off, mem_dst, len); |
| |
| if (memcmp(mem_src, mem_dst, len)) { |
| for (c = 0; c < len; ++c) |
| if (mem_src[c] != mem_dst[c]) |
| break; |
| printf(" FAIL @ offset %u, skipping repeats ", c); |
| ++errors; |
| break; |
| } |
| |
| /* XXX: should shrink write region here to test with |
| * leading/trailing canaries so we know surrounding |
| * bytes don't get screwed. |
| */ |
| } |
| puts("\n"); |
| } |
| } |
| |
| /* invert the pattern every other run and shift out bits slowly */ |
| pattern ^= 0xFF; |
| if (i % 2) |
| pattern = (pattern | 0x01) << 1; |
| } |
| |
| if (errors) |
| printf("SPI FAIL: Out of %i tests, there were %i errors ;(\n", test_count, errors); |
| else |
| printf("SPI PASS: %i tests worked!\n", test_count); |
| |
| out: |
| SPI_DEINIT(); |
| |
| #endif |
| } |
| |
| static void transmit_address(uint32_t addr) |
| { |
| /* Send the highest byte of the 24 bit address at first */ |
| spi_write_read_byte(addr >> 16); |
| /* Send the middle byte of the 24 bit address at second */ |
| spi_write_read_byte(addr >> 8); |
| /* Send the lowest byte of the 24 bit address finally */ |
| spi_write_read_byte(addr); |
| } |
| |
| /* |
| * Read a value from flash for verify purpose |
| * Inputs: unsigned long ulStart - holds the SPI start address |
| * int pnData - pointer to store value read from flash |
| * long lCount - number of elements to read |
| */ |
| #ifdef CONFIG_SPI_READFLASH_NODMA |
| static int read_flash(unsigned long address, long count, uchar *buffer) |
| { |
| size_t i, j; |
| |
| /* Send the read command to SPI device */ |
| SPI_ON(); |
| spi_write_read_byte(flash.ops->read); |
| transmit_address(address); |
| |
| #ifndef CONFIG_SPI_FLASH_SLOW_READ |
| /* Send dummy byte when doing SPI fast reads */ |
| spi_write_read_byte(0); |
| #endif |
| |
| /* After the SPI device address has been placed on the MOSI pin the data can be */ |
| /* received on the MISO pin. */ |
| j = flash.sector_size << 1; |
| for (i = 1; i <= count; ++i) { |
| *buffer++ = spi_write_read_byte(0); |
| if (!j--) { |
| puts("."); |
| j = flash.sector_size; |
| } |
| } |
| |
| SPI_OFF(); |
| |
| return 0; |
| } |
| #else |
| |
| #ifdef __ADSPBF54x__ |
| #define bfin_write_DMA_SPI_IRQ_STATUS bfin_write_DMA4_IRQ_STATUS |
| #define bfin_read_DMA_SPI_IRQ_STATUS bfin_read_DMA4_IRQ_STATUS |
| #define bfin_write_DMA_SPI_CURR_DESC_PTR bfin_write_DMA4_CURR_DESC_PTR |
| #define bfin_write_DMA_SPI_CONFIG bfin_write_DMA4_CONFIG |
| #elif defined(__ADSPBF533__) || defined(__ADSPBF532__) || defined(__ADSPBF531__) || \ |
| defined(__ADSPBF538__) || defined(__ADSPBF539__) |
| #define bfin_write_DMA_SPI_IRQ_STATUS bfin_write_DMA5_IRQ_STATUS |
| #define bfin_read_DMA_SPI_IRQ_STATUS bfin_read_DMA5_IRQ_STATUS |
| #define bfin_write_DMA_SPI_CURR_DESC_PTR bfin_write_DMA5_CURR_DESC_PTR |
| #define bfin_write_DMA_SPI_CONFIG bfin_write_DMA5_CONFIG |
| #elif defined(__ADSPBF561__) |
| #define bfin_write_DMA_SPI_IRQ_STATUS bfin_write_DMA16_IRQ_STATUS |
| #define bfin_read_DMA_SPI_IRQ_STATUS bfin_read_DMA16_IRQ_STATUS |
| #define bfin_write_DMA_SPI_CURR_DESC_PTR bfin_write_DMA16_CURR_DESC_PTR |
| #define bfin_write_DMA_SPI_CONFIG bfin_write_DMA16_CONFIG |
| #elif defined(__ADSPBF537__) || defined(__ADSPBF536__) || defined(__ADSPBF534__) || \ |
| defined(__ADSPBF52x__) || defined(__ADSPBF51x__) |
| #define bfin_write_DMA_SPI_IRQ_STATUS bfin_write_DMA7_IRQ_STATUS |
| #define bfin_read_DMA_SPI_IRQ_STATUS bfin_read_DMA7_IRQ_STATUS |
| #define bfin_write_DMA_SPI_CURR_DESC_PTR bfin_write_DMA7_CURR_DESC_PTR |
| #define bfin_write_DMA_SPI_CONFIG bfin_write_DMA7_CONFIG |
| #else |
| #error "Please provide SPI DMA channel defines" |
| #endif |
| |
| struct dmadesc_array { |
| unsigned long start_addr; |
| unsigned short cfg; |
| unsigned short x_count; |
| short x_modify; |
| unsigned short y_count; |
| short y_modify; |
| } __attribute__((packed)); |
| |
| /* |
| * Read a value from flash for verify purpose |
| * Inputs: unsigned long ulStart - holds the SPI start address |
| * int pnData - pointer to store value read from flash |
| * long lCount - number of elements to read |
| */ |
| |
| static int read_flash(unsigned long address, long count, uchar *buffer) |
| { |
| unsigned int ndsize; |
| struct dmadesc_array dma[2]; |
| /* Send the read command to SPI device */ |
| |
| if (!count) |
| return 0; |
| |
| dma[0].start_addr = (unsigned long)buffer; |
| dma[0].x_modify = 1; |
| if (count <= 65536) { |
| blackfin_dcache_flush_invalidate_range(buffer, buffer + count); |
| ndsize = NDSIZE_5; |
| dma[0].cfg = NDSIZE_0 | WNR | WDSIZE_8 | FLOW_STOP | DMAEN | DI_EN; |
| dma[0].x_count = count; |
| } else { |
| blackfin_dcache_flush_invalidate_range(buffer, buffer + 65536 - 1); |
| ndsize = NDSIZE_7; |
| dma[0].cfg = NDSIZE_5 | WNR | WDSIZE_8 | FLOW_ARRAY | DMAEN | DMA2D; |
| dma[0].x_count = 0; /* 2^16 */ |
| dma[0].y_count = count >> 16; /* count / 2^16 */ |
| dma[0].y_modify = 1; |
| dma[1].start_addr = (unsigned long)(buffer + (count & ~0xFFFF)); |
| dma[1].cfg = NDSIZE_0 | WNR | WDSIZE_8 | FLOW_STOP | DMAEN | DI_EN; |
| dma[1].x_count = count & 0xFFFF; /* count % 2^16 */ |
| dma[1].x_modify = 1; |
| } |
| |
| bfin_write_DMA_SPI_CONFIG(0); |
| bfin_write_DMA_SPI_IRQ_STATUS(DMA_DONE | DMA_ERR); |
| bfin_write_DMA_SPI_CURR_DESC_PTR(dma); |
| |
| SPI_ON(); |
| |
| spi_write_read_byte(flash.ops->read); |
| transmit_address(address); |
| |
| #ifndef CONFIG_SPI_FLASH_SLOW_READ |
| /* Send dummy byte when doing SPI fast reads */ |
| spi_write_read_byte(0); |
| #endif |
| |
| bfin_write_DMA_SPI_CONFIG(ndsize | FLOW_ARRAY | DMAEN); |
| *pSPI_CTL = (MSTR | CPHA | CPOL | RDBR_DMA | SPE | SZ); |
| SSYNC(); |
| |
| /* |
| * We already invalidated the first 64k, |
| * now while we just wait invalidate the remaining part. |
| * Its not likely that the DMA is going to overtake |
| */ |
| if (count > 65536) |
| blackfin_dcache_flush_invalidate_range(buffer + 65536, |
| buffer + count); |
| |
| while (!(bfin_read_DMA_SPI_IRQ_STATUS() & DMA_DONE)) |
| if (ctrlc()) |
| break; |
| |
| SPI_OFF(); |
| |
| *pSPI_CTL = 0; |
| |
| bfin_write_DMA_SPI_CONFIG(0); |
| |
| *pSPI_CTL = (SPE | MSTR | CPHA | CPOL | TDBR_CORE); |
| |
| return 0; |
| } |
| #endif |
| |
| static long address_to_sector(unsigned long address) |
| { |
| if (address > (flash.num_sectors * flash.sector_size) - 1) |
| return -1; |
| return address / flash.sector_size; |
| } |
| |
| static int erase_sector(int address) |
| { |
| /* sector gets checked in higher function, so assume it's valid |
| * here and figure out the offset of the sector in flash |
| */ |
| if (enable_writing()) |
| return -1; |
| |
| /* |
| * Send the erase block command to the flash followed by the 24 address |
| * to point to the start of a sector |
| */ |
| SPI_ON(); |
| spi_write_read_byte(flash.ops->erase); |
| transmit_address(address); |
| SPI_OFF(); |
| |
| return wait_for_ready_status(); |
| } |
| |
| /* Write [count] bytes out of [buffer] into the given SPI [address] */ |
| static long write_flash(unsigned long address, long count, uchar *buffer) |
| { |
| long i, write_buffer_size; |
| |
| if (enable_writing()) |
| return -1; |
| |
| /* Send write command followed by the 24 bit address */ |
| SPI_ON(); |
| spi_write_read_byte(flash.ops->write); |
| transmit_address(address); |
| |
| /* Shoot out a single write buffer */ |
| write_buffer_size = min(count, flash.write_length); |
| for (i = 0; i < write_buffer_size; ++i) |
| spi_write_read_byte(buffer[i]); |
| |
| SPI_OFF(); |
| |
| /* Wait for the flash to do its thing */ |
| if (wait_for_ready_status()) { |
| puts("SPI Program Time out! "); |
| return -1; |
| } |
| |
| return i; |
| } |
| |
| /* Write [count] bytes out of [buffer] into the given SPI [address] */ |
| static int write_sector(unsigned long address, long count, uchar *buffer) |
| { |
| long write_cnt; |
| |
| while (count != 0) { |
| write_cnt = write_flash(address, count, buffer); |
| if (write_cnt == -1) |
| return -1; |
| |
| /* Now that we've sent some bytes out to the flash, update |
| * our counters a bit |
| */ |
| count -= write_cnt; |
| address += write_cnt; |
| buffer += write_cnt; |
| } |
| |
| /* return the appropriate error code */ |
| return 0; |
| } |
| |
| /* |
| * Function: spi_write |
| */ |
| ssize_t spi_write(uchar *addr, int alen, uchar *buffer, int len) |
| { |
| unsigned long offset; |
| int start_sector, end_sector; |
| int start_byte, end_byte; |
| uchar *temp = NULL; |
| int num, ret = 0; |
| |
| SPI_INIT(); |
| |
| if (spi_detect_part()) |
| goto out; |
| |
| offset = addr[0] << 16 | addr[1] << 8 | addr[2]; |
| |
| /* Get the start block number */ |
| start_sector = address_to_sector(offset); |
| if (start_sector == -1) { |
| puts("Invalid sector! "); |
| goto out; |
| } |
| end_sector = address_to_sector(offset + len - 1); |
| if (end_sector == -1) { |
| puts("Invalid sector! "); |
| goto out; |
| } |
| |
| /* Since flashes operate in sector units but the eeprom command |
| * operates as a continuous stream of bytes, we need to emulate |
| * the eeprom behavior. So here we read in the sector, overlay |
| * any bytes we're actually modifying, erase the sector, and |
| * then write back out the new sector. |
| */ |
| temp = malloc(flash.sector_size); |
| if (!temp) { |
| puts("Malloc for sector failed! "); |
| goto out; |
| } |
| |
| for (num = start_sector; num <= end_sector; num++) { |
| unsigned long address = num * flash.sector_size; |
| |
| /* XXX: should add an optimization when spanning sectors: |
| * No point in reading in a sector if we're going to be |
| * clobbering the whole thing. Need to also add a test |
| * case to make sure the optimization is correct. |
| */ |
| if (read_flash(address, flash.sector_size, temp)) { |
| puts("Read sector failed! "); |
| len = 0; |
| break; |
| } |
| |
| start_byte = max(address, offset); |
| end_byte = address + flash.sector_size - 1; |
| if (end_byte > (offset + len)) |
| end_byte = (offset + len - 1); |
| |
| memcpy(temp + start_byte - address, |
| buffer + start_byte - offset, |
| end_byte - start_byte + 1); |
| |
| if (erase_sector(address)) { |
| puts("Erase sector failed! "); |
| goto out; |
| } |
| |
| if (write_sector(address, flash.sector_size, temp)) { |
| puts("Write sector failed! "); |
| goto out; |
| } |
| |
| puts("."); |
| } |
| |
| ret = len; |
| |
| out: |
| free(temp); |
| |
| SPI_DEINIT(); |
| |
| return ret; |
| } |
| |
| /* |
| * Function: spi_read |
| */ |
| ssize_t spi_read(uchar *addr, int alen, uchar *buffer, int len) |
| { |
| unsigned long offset; |
| |
| SPI_INIT(); |
| |
| if (spi_detect_part()) |
| len = 0; |
| else { |
| offset = addr[0] << 16 | addr[1] << 8 | addr[2]; |
| read_flash(offset, len, buffer); |
| } |
| |
| SPI_DEINIT(); |
| |
| return len; |
| } |
| |
| /* |
| * Spit out some useful information about the SPI eeprom |
| */ |
| int eeprom_info(void) |
| { |
| int ret = 0; |
| |
| SPI_INIT(); |
| |
| if (spi_detect_part()) |
| ret = 1; |
| else |
| printf("SPI Device: %s 0x%02X (%s) 0x%02X 0x%02X\n" |
| "Parameters: num sectors = %lu, sector size = %lu, write size = %i\n" |
| "Flash Size: %lu mbit (%lu mbyte)\n" |
| "Status: 0x%02X\n", |
| flash.flash->name, flash.manufacturer_id, flash.manufacturer->name, |
| flash.device_id1, flash.device_id2, flash.num_sectors, |
| flash.sector_size, flash.write_length, |
| (flash.num_sectors * flash.sector_size) >> 17, |
| (flash.num_sectors * flash.sector_size) >> 20, |
| read_status_register()); |
| |
| SPI_DEINIT(); |
| |
| return ret; |
| } |
| |
| #endif |