| /* |
| * Copyright (C) 2008 RuggedCom, Inc. |
| * Richard Retanubun <RichardRetanubun@RuggedCom.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| /* |
| * NOTE: |
| * when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this |
| * limits the maximum size of addressable storage to < 2 Terra Bytes |
| */ |
| #include <asm/unaligned.h> |
| #include <common.h> |
| #include <command.h> |
| #include <ide.h> |
| #include <inttypes.h> |
| #include <malloc.h> |
| #include <memalign.h> |
| #include <part_efi.h> |
| #include <linux/ctype.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #ifdef HAVE_BLOCK_DEVICE |
| /** |
| * efi_crc32() - EFI version of crc32 function |
| * @buf: buffer to calculate crc32 of |
| * @len - length of buf |
| * |
| * Description: Returns EFI-style CRC32 value for @buf |
| */ |
| static inline u32 efi_crc32(const void *buf, u32 len) |
| { |
| return crc32(0, buf, len); |
| } |
| |
| /* |
| * Private function prototypes |
| */ |
| |
| static int pmbr_part_valid(struct partition *part); |
| static int is_pmbr_valid(legacy_mbr * mbr); |
| static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, |
| gpt_header *pgpt_head, gpt_entry **pgpt_pte); |
| static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, |
| gpt_header *pgpt_head); |
| static int is_pte_valid(gpt_entry * pte); |
| |
| static char *print_efiname(gpt_entry *pte) |
| { |
| static char name[PARTNAME_SZ + 1]; |
| int i; |
| for (i = 0; i < PARTNAME_SZ; i++) { |
| u8 c; |
| c = pte->partition_name[i] & 0xff; |
| c = (c && !isprint(c)) ? '.' : c; |
| name[i] = c; |
| } |
| name[PARTNAME_SZ] = 0; |
| return name; |
| } |
| |
| static efi_guid_t system_guid = PARTITION_SYSTEM_GUID; |
| |
| static inline int is_bootable(gpt_entry *p) |
| { |
| return p->attributes.fields.legacy_bios_bootable || |
| !memcmp(&(p->partition_type_guid), &system_guid, |
| sizeof(efi_guid_t)); |
| } |
| |
| static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba, |
| lbaint_t lastlba) |
| { |
| uint32_t crc32_backup = 0; |
| uint32_t calc_crc32; |
| |
| /* Check the GPT header signature */ |
| if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE) { |
| printf("%s signature is wrong: 0x%llX != 0x%llX\n", |
| "GUID Partition Table Header", |
| le64_to_cpu(gpt_h->signature), |
| GPT_HEADER_SIGNATURE); |
| return -1; |
| } |
| |
| /* Check the GUID Partition Table CRC */ |
| memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup)); |
| memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32)); |
| |
| calc_crc32 = efi_crc32((const unsigned char *)gpt_h, |
| le32_to_cpu(gpt_h->header_size)); |
| |
| memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup)); |
| |
| if (calc_crc32 != le32_to_cpu(crc32_backup)) { |
| printf("%s CRC is wrong: 0x%x != 0x%x\n", |
| "GUID Partition Table Header", |
| le32_to_cpu(crc32_backup), calc_crc32); |
| return -1; |
| } |
| |
| /* |
| * Check that the my_lba entry points to the LBA that contains the GPT |
| */ |
| if (le64_to_cpu(gpt_h->my_lba) != lba) { |
| printf("GPT: my_lba incorrect: %llX != " LBAF "\n", |
| le64_to_cpu(gpt_h->my_lba), |
| lba); |
| return -1; |
| } |
| |
| /* |
| * Check that the first_usable_lba and that the last_usable_lba are |
| * within the disk. |
| */ |
| if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) { |
| printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n", |
| le64_to_cpu(gpt_h->first_usable_lba), lastlba); |
| return -1; |
| } |
| if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) { |
| printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n", |
| le64_to_cpu(gpt_h->last_usable_lba), lastlba); |
| return -1; |
| } |
| |
| debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: " |
| LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba), |
| le64_to_cpu(gpt_h->last_usable_lba), lastlba); |
| |
| return 0; |
| } |
| |
| static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e) |
| { |
| uint32_t calc_crc32; |
| |
| /* Check the GUID Partition Table Entry Array CRC */ |
| calc_crc32 = efi_crc32((const unsigned char *)gpt_e, |
| le32_to_cpu(gpt_h->num_partition_entries) * |
| le32_to_cpu(gpt_h->sizeof_partition_entry)); |
| |
| if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) { |
| printf("%s: 0x%x != 0x%x\n", |
| "GUID Partition Table Entry Array CRC is wrong", |
| le32_to_cpu(gpt_h->partition_entry_array_crc32), |
| calc_crc32); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void prepare_backup_gpt_header(gpt_header *gpt_h) |
| { |
| uint32_t calc_crc32; |
| uint64_t val; |
| |
| /* recalculate the values for the Backup GPT Header */ |
| val = le64_to_cpu(gpt_h->my_lba); |
| gpt_h->my_lba = gpt_h->alternate_lba; |
| gpt_h->alternate_lba = cpu_to_le64(val); |
| gpt_h->partition_entry_lba = |
| cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1); |
| gpt_h->header_crc32 = 0; |
| |
| calc_crc32 = efi_crc32((const unsigned char *)gpt_h, |
| le32_to_cpu(gpt_h->header_size)); |
| gpt_h->header_crc32 = cpu_to_le32(calc_crc32); |
| } |
| |
| #if CONFIG_IS_ENABLED(EFI_PARTITION) |
| /* |
| * Public Functions (include/part.h) |
| */ |
| |
| void part_print_efi(struct blk_desc *dev_desc) |
| { |
| ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); |
| gpt_entry *gpt_pte = NULL; |
| int i = 0; |
| char uuid[37]; |
| unsigned char *uuid_bin; |
| |
| /* This function validates AND fills in the GPT header and PTE */ |
| if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, |
| gpt_head, &gpt_pte) != 1) { |
| printf("%s: *** ERROR: Invalid GPT ***\n", __func__); |
| if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), |
| gpt_head, &gpt_pte) != 1) { |
| printf("%s: *** ERROR: Invalid Backup GPT ***\n", |
| __func__); |
| return; |
| } else { |
| printf("%s: *** Using Backup GPT ***\n", |
| __func__); |
| } |
| } |
| |
| debug("%s: gpt-entry at %p\n", __func__, gpt_pte); |
| |
| printf("Part\tStart LBA\tEnd LBA\t\tName\n"); |
| printf("\tAttributes\n"); |
| printf("\tType GUID\n"); |
| printf("\tPartition GUID\n"); |
| |
| for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) { |
| /* Stop at the first non valid PTE */ |
| if (!is_pte_valid(&gpt_pte[i])) |
| break; |
| |
| printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1), |
| le64_to_cpu(gpt_pte[i].starting_lba), |
| le64_to_cpu(gpt_pte[i].ending_lba), |
| print_efiname(&gpt_pte[i])); |
| printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw); |
| uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b; |
| uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); |
| printf("\ttype:\t%s\n", uuid); |
| #ifdef CONFIG_PARTITION_TYPE_GUID |
| if (!uuid_guid_get_str(uuid_bin, uuid)) |
| printf("\ttype:\t%s\n", uuid); |
| #endif |
| uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b; |
| uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID); |
| printf("\tguid:\t%s\n", uuid); |
| } |
| |
| /* Remember to free pte */ |
| free(gpt_pte); |
| return; |
| } |
| |
| int part_get_info_efi(struct blk_desc *dev_desc, int part, |
| disk_partition_t *info) |
| { |
| ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz); |
| gpt_entry *gpt_pte = NULL; |
| |
| /* "part" argument must be at least 1 */ |
| if (part < 1) { |
| printf("%s: Invalid Argument(s)\n", __func__); |
| return -1; |
| } |
| |
| /* This function validates AND fills in the GPT header and PTE */ |
| if (is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, |
| gpt_head, &gpt_pte) != 1) { |
| printf("%s: *** ERROR: Invalid GPT ***\n", __func__); |
| if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), |
| gpt_head, &gpt_pte) != 1) { |
| printf("%s: *** ERROR: Invalid Backup GPT ***\n", |
| __func__); |
| return -1; |
| } else { |
| printf("%s: *** Using Backup GPT ***\n", |
| __func__); |
| } |
| } |
| |
| if (part > le32_to_cpu(gpt_head->num_partition_entries) || |
| !is_pte_valid(&gpt_pte[part - 1])) { |
| debug("%s: *** ERROR: Invalid partition number %d ***\n", |
| __func__, part); |
| free(gpt_pte); |
| return -1; |
| } |
| |
| /* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */ |
| info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba); |
| /* The ending LBA is inclusive, to calculate size, add 1 to it */ |
| info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1 |
| - info->start; |
| info->blksz = dev_desc->blksz; |
| |
| sprintf((char *)info->name, "%s", |
| print_efiname(&gpt_pte[part - 1])); |
| strcpy((char *)info->type, "U-Boot"); |
| info->bootable = is_bootable(&gpt_pte[part - 1]); |
| #if CONFIG_IS_ENABLED(PARTITION_UUIDS) |
| uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid, |
| UUID_STR_FORMAT_GUID); |
| #endif |
| #ifdef CONFIG_PARTITION_TYPE_GUID |
| uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b, |
| info->type_guid, UUID_STR_FORMAT_GUID); |
| #endif |
| |
| debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__, |
| info->start, info->size, info->name); |
| |
| /* Remember to free pte */ |
| free(gpt_pte); |
| return 0; |
| } |
| |
| static int part_test_efi(struct blk_desc *dev_desc) |
| { |
| ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz); |
| |
| /* Read legacy MBR from block 0 and validate it */ |
| if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1) |
| || (is_pmbr_valid(legacymbr) != 1)) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| /** |
| * set_protective_mbr(): Set the EFI protective MBR |
| * @param dev_desc - block device descriptor |
| * |
| * @return - zero on success, otherwise error |
| */ |
| static int set_protective_mbr(struct blk_desc *dev_desc) |
| { |
| /* Setup the Protective MBR */ |
| ALLOC_CACHE_ALIGN_BUFFER(legacy_mbr, p_mbr, 1); |
| memset(p_mbr, 0, sizeof(*p_mbr)); |
| |
| if (p_mbr == NULL) { |
| printf("%s: calloc failed!\n", __func__); |
| return -1; |
| } |
| |
| /* Read MBR to backup boot code if it exists */ |
| if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) { |
| error("** Can't read from device %d **\n", dev_desc->devnum); |
| return -1; |
| } |
| |
| /* Append signature */ |
| p_mbr->signature = MSDOS_MBR_SIGNATURE; |
| p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT; |
| p_mbr->partition_record[0].start_sect = 1; |
| p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1; |
| |
| /* Write MBR sector to the MMC device */ |
| if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) { |
| printf("** Can't write to device %d **\n", |
| dev_desc->devnum); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int write_gpt_table(struct blk_desc *dev_desc, |
| gpt_header *gpt_h, gpt_entry *gpt_e) |
| { |
| const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries |
| * sizeof(gpt_entry)), dev_desc); |
| u32 calc_crc32; |
| |
| debug("max lba: %x\n", (u32) dev_desc->lba); |
| /* Setup the Protective MBR */ |
| if (set_protective_mbr(dev_desc) < 0) |
| goto err; |
| |
| /* Generate CRC for the Primary GPT Header */ |
| calc_crc32 = efi_crc32((const unsigned char *)gpt_e, |
| le32_to_cpu(gpt_h->num_partition_entries) * |
| le32_to_cpu(gpt_h->sizeof_partition_entry)); |
| gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32); |
| |
| calc_crc32 = efi_crc32((const unsigned char *)gpt_h, |
| le32_to_cpu(gpt_h->header_size)); |
| gpt_h->header_crc32 = cpu_to_le32(calc_crc32); |
| |
| /* Write the First GPT to the block right after the Legacy MBR */ |
| if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1) |
| goto err; |
| |
| if (blk_dwrite(dev_desc, 2, pte_blk_cnt, gpt_e) |
| != pte_blk_cnt) |
| goto err; |
| |
| prepare_backup_gpt_header(gpt_h); |
| |
| if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba) |
| + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt) |
| goto err; |
| |
| if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1, |
| gpt_h) != 1) |
| goto err; |
| |
| debug("GPT successfully written to block device!\n"); |
| return 0; |
| |
| err: |
| printf("** Can't write to device %d **\n", dev_desc->devnum); |
| return -1; |
| } |
| |
| int gpt_fill_pte(gpt_header *gpt_h, gpt_entry *gpt_e, |
| disk_partition_t *partitions, int parts) |
| { |
| lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba); |
| lbaint_t start; |
| lbaint_t last_usable_lba = (lbaint_t) |
| le64_to_cpu(gpt_h->last_usable_lba); |
| int i, k; |
| size_t efiname_len, dosname_len; |
| #if CONFIG_IS_ENABLED(PARTITION_UUIDS) |
| char *str_uuid; |
| unsigned char *bin_uuid; |
| #endif |
| #ifdef CONFIG_PARTITION_TYPE_GUID |
| char *str_type_guid; |
| unsigned char *bin_type_guid; |
| #endif |
| |
| for (i = 0; i < parts; i++) { |
| /* partition starting lba */ |
| start = partitions[i].start; |
| if (start && (start < offset)) { |
| printf("Partition overlap\n"); |
| return -1; |
| } |
| if (start) { |
| gpt_e[i].starting_lba = cpu_to_le64(start); |
| offset = start + partitions[i].size; |
| } else { |
| gpt_e[i].starting_lba = cpu_to_le64(offset); |
| offset += partitions[i].size; |
| } |
| if (offset > (last_usable_lba + 1)) { |
| printf("Partitions layout exceds disk size\n"); |
| return -1; |
| } |
| /* partition ending lba */ |
| if ((i == parts - 1) && (partitions[i].size == 0)) |
| /* extend the last partition to maximuim */ |
| gpt_e[i].ending_lba = gpt_h->last_usable_lba; |
| else |
| gpt_e[i].ending_lba = cpu_to_le64(offset - 1); |
| |
| #ifdef CONFIG_PARTITION_TYPE_GUID |
| str_type_guid = partitions[i].type_guid; |
| bin_type_guid = gpt_e[i].partition_type_guid.b; |
| if (strlen(str_type_guid)) { |
| if (uuid_str_to_bin(str_type_guid, bin_type_guid, |
| UUID_STR_FORMAT_GUID)) { |
| printf("Partition no. %d: invalid type guid: %s\n", |
| i, str_type_guid); |
| return -1; |
| } |
| } else { |
| /* default partition type GUID */ |
| memcpy(bin_type_guid, |
| &PARTITION_BASIC_DATA_GUID, 16); |
| } |
| #else |
| /* partition type GUID */ |
| memcpy(gpt_e[i].partition_type_guid.b, |
| &PARTITION_BASIC_DATA_GUID, 16); |
| #endif |
| |
| #if CONFIG_IS_ENABLED(PARTITION_UUIDS) |
| str_uuid = partitions[i].uuid; |
| bin_uuid = gpt_e[i].unique_partition_guid.b; |
| |
| if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) { |
| printf("Partition no. %d: invalid guid: %s\n", |
| i, str_uuid); |
| return -1; |
| } |
| #endif |
| |
| /* partition attributes */ |
| memset(&gpt_e[i].attributes, 0, |
| sizeof(gpt_entry_attributes)); |
| |
| if (partitions[i].bootable) |
| gpt_e[i].attributes.fields.legacy_bios_bootable = 1; |
| |
| /* partition name */ |
| efiname_len = sizeof(gpt_e[i].partition_name) |
| / sizeof(efi_char16_t); |
| dosname_len = sizeof(partitions[i].name); |
| |
| memset(gpt_e[i].partition_name, 0, |
| sizeof(gpt_e[i].partition_name)); |
| |
| for (k = 0; k < min(dosname_len, efiname_len); k++) |
| gpt_e[i].partition_name[k] = |
| (efi_char16_t)(partitions[i].name[k]); |
| |
| debug("%s: name: %s offset[%d]: 0x" LBAF |
| " size[%d]: 0x" LBAF "\n", |
| __func__, partitions[i].name, i, |
| offset, i, partitions[i].size); |
| } |
| |
| return 0; |
| } |
| |
| int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h, |
| char *str_guid, int parts_count) |
| { |
| gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE); |
| gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1); |
| gpt_h->header_size = cpu_to_le32(sizeof(gpt_header)); |
| gpt_h->my_lba = cpu_to_le64(1); |
| gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1); |
| gpt_h->first_usable_lba = cpu_to_le64(34); |
| gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34); |
| gpt_h->partition_entry_lba = cpu_to_le64(2); |
| gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS); |
| gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry)); |
| gpt_h->header_crc32 = 0; |
| gpt_h->partition_entry_array_crc32 = 0; |
| |
| if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid, |
| disk_partition_t *partitions, int parts_count) |
| { |
| int ret; |
| |
| gpt_header *gpt_h = calloc(1, PAD_TO_BLOCKSIZE(sizeof(gpt_header), |
| dev_desc)); |
| gpt_entry *gpt_e; |
| |
| if (gpt_h == NULL) { |
| printf("%s: calloc failed!\n", __func__); |
| return -1; |
| } |
| |
| gpt_e = calloc(1, PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS |
| * sizeof(gpt_entry), |
| dev_desc)); |
| if (gpt_e == NULL) { |
| printf("%s: calloc failed!\n", __func__); |
| free(gpt_h); |
| return -1; |
| } |
| |
| /* Generate Primary GPT header (LBA1) */ |
| ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count); |
| if (ret) |
| goto err; |
| |
| /* Generate partition entries */ |
| ret = gpt_fill_pte(gpt_h, gpt_e, partitions, parts_count); |
| if (ret) |
| goto err; |
| |
| /* Write GPT partition table */ |
| ret = write_gpt_table(dev_desc, gpt_h, gpt_e); |
| |
| err: |
| free(gpt_e); |
| free(gpt_h); |
| return ret; |
| } |
| |
| static void gpt_convert_efi_name_to_char(char *s, efi_char16_t *es, int n) |
| { |
| char *ess = (char *)es; |
| int i, j; |
| |
| memset(s, '\0', n); |
| |
| for (i = 0, j = 0; j < n; i += 2, j++) { |
| s[j] = ess[i]; |
| if (!ess[i]) |
| return; |
| } |
| } |
| |
| int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head, |
| gpt_entry **gpt_pte) |
| { |
| /* |
| * This function validates AND |
| * fills in the GPT header and PTE |
| */ |
| if (is_gpt_valid(dev_desc, |
| GPT_PRIMARY_PARTITION_TABLE_LBA, |
| gpt_head, gpt_pte) != 1) { |
| printf("%s: *** ERROR: Invalid GPT ***\n", |
| __func__); |
| return -1; |
| } |
| if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), |
| gpt_head, gpt_pte) != 1) { |
| printf("%s: *** ERROR: Invalid Backup GPT ***\n", |
| __func__); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| int gpt_verify_partitions(struct blk_desc *dev_desc, |
| disk_partition_t *partitions, int parts, |
| gpt_header *gpt_head, gpt_entry **gpt_pte) |
| { |
| char efi_str[PARTNAME_SZ + 1]; |
| u64 gpt_part_size; |
| gpt_entry *gpt_e; |
| int ret, i; |
| |
| ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte); |
| if (ret) |
| return ret; |
| |
| gpt_e = *gpt_pte; |
| |
| for (i = 0; i < parts; i++) { |
| if (i == gpt_head->num_partition_entries) { |
| error("More partitions than allowed!\n"); |
| return -1; |
| } |
| |
| /* Check if GPT and ENV partition names match */ |
| gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name, |
| PARTNAME_SZ + 1); |
| |
| debug("%s: part: %2d name - GPT: %16s, ENV: %16s ", |
| __func__, i, efi_str, partitions[i].name); |
| |
| if (strncmp(efi_str, (char *)partitions[i].name, |
| sizeof(partitions->name))) { |
| error("Partition name: %s does not match %s!\n", |
| efi_str, (char *)partitions[i].name); |
| return -1; |
| } |
| |
| /* Check if GPT and ENV sizes match */ |
| gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) - |
| le64_to_cpu(gpt_e[i].starting_lba) + 1; |
| debug("size(LBA) - GPT: %8llu, ENV: %8llu ", |
| (unsigned long long)gpt_part_size, |
| (unsigned long long)partitions[i].size); |
| |
| if (le64_to_cpu(gpt_part_size) != partitions[i].size) { |
| /* We do not check the extend partition size */ |
| if ((i == parts - 1) && (partitions[i].size == 0)) |
| continue; |
| |
| error("Partition %s size: %llu does not match %llu!\n", |
| efi_str, (unsigned long long)gpt_part_size, |
| (unsigned long long)partitions[i].size); |
| return -1; |
| } |
| |
| /* |
| * Start address is optional - check only if provided |
| * in '$partition' variable |
| */ |
| if (!partitions[i].start) { |
| debug("\n"); |
| continue; |
| } |
| |
| /* Check if GPT and ENV start LBAs match */ |
| debug("start LBA - GPT: %8llu, ENV: %8llu\n", |
| le64_to_cpu(gpt_e[i].starting_lba), |
| (unsigned long long)partitions[i].start); |
| |
| if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) { |
| error("Partition %s start: %llu does not match %llu!\n", |
| efi_str, le64_to_cpu(gpt_e[i].starting_lba), |
| (unsigned long long)partitions[i].start); |
| return -1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf) |
| { |
| gpt_header *gpt_h; |
| gpt_entry *gpt_e; |
| |
| /* determine start of GPT Header in the buffer */ |
| gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * |
| dev_desc->blksz); |
| if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA, |
| dev_desc->lba)) |
| return -1; |
| |
| /* determine start of GPT Entries in the buffer */ |
| gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * |
| dev_desc->blksz); |
| if (validate_gpt_entries(gpt_h, gpt_e)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf) |
| { |
| gpt_header *gpt_h; |
| gpt_entry *gpt_e; |
| int gpt_e_blk_cnt; |
| lbaint_t lba; |
| int cnt; |
| |
| if (is_valid_gpt_buf(dev_desc, buf)) |
| return -1; |
| |
| /* determine start of GPT Header in the buffer */ |
| gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA * |
| dev_desc->blksz); |
| |
| /* determine start of GPT Entries in the buffer */ |
| gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) * |
| dev_desc->blksz); |
| gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) * |
| le32_to_cpu(gpt_h->sizeof_partition_entry)), |
| dev_desc); |
| |
| /* write MBR */ |
| lba = 0; /* MBR is always at 0 */ |
| cnt = 1; /* MBR (1 block) */ |
| if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) { |
| printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", |
| __func__, "MBR", cnt, lba); |
| return 1; |
| } |
| |
| /* write Primary GPT */ |
| lba = GPT_PRIMARY_PARTITION_TABLE_LBA; |
| cnt = 1; /* GPT Header (1 block) */ |
| if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { |
| printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", |
| __func__, "Primary GPT Header", cnt, lba); |
| return 1; |
| } |
| |
| lba = le64_to_cpu(gpt_h->partition_entry_lba); |
| cnt = gpt_e_blk_cnt; |
| if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { |
| printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", |
| __func__, "Primary GPT Entries", cnt, lba); |
| return 1; |
| } |
| |
| prepare_backup_gpt_header(gpt_h); |
| |
| /* write Backup GPT */ |
| lba = le64_to_cpu(gpt_h->partition_entry_lba); |
| cnt = gpt_e_blk_cnt; |
| if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) { |
| printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", |
| __func__, "Backup GPT Entries", cnt, lba); |
| return 1; |
| } |
| |
| lba = le64_to_cpu(gpt_h->my_lba); |
| cnt = 1; /* GPT Header (1 block) */ |
| if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) { |
| printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n", |
| __func__, "Backup GPT Header", cnt, lba); |
| return 1; |
| } |
| |
| return 0; |
| } |
| #endif |
| |
| /* |
| * Private functions |
| */ |
| /* |
| * pmbr_part_valid(): Check for EFI partition signature |
| * |
| * Returns: 1 if EFI GPT partition type is found. |
| */ |
| static int pmbr_part_valid(struct partition *part) |
| { |
| if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT && |
| get_unaligned_le32(&part->start_sect) == 1UL) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * is_pmbr_valid(): test Protective MBR for validity |
| * |
| * Returns: 1 if PMBR is valid, 0 otherwise. |
| * Validity depends on two things: |
| * 1) MSDOS signature is in the last two bytes of the MBR |
| * 2) One partition of type 0xEE is found, checked by pmbr_part_valid() |
| */ |
| static int is_pmbr_valid(legacy_mbr * mbr) |
| { |
| int i = 0; |
| |
| if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE) |
| return 0; |
| |
| for (i = 0; i < 4; i++) { |
| if (pmbr_part_valid(&mbr->partition_record[i])) { |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| /** |
| * is_gpt_valid() - tests one GPT header and PTEs for validity |
| * |
| * lba is the logical block address of the GPT header to test |
| * gpt is a GPT header ptr, filled on return. |
| * ptes is a PTEs ptr, filled on return. |
| * |
| * Description: returns 1 if valid, 0 on error. |
| * If valid, returns pointers to PTEs. |
| */ |
| static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba, |
| gpt_header *pgpt_head, gpt_entry **pgpt_pte) |
| { |
| if (!dev_desc || !pgpt_head) { |
| printf("%s: Invalid Argument(s)\n", __func__); |
| return 0; |
| } |
| |
| /* Read GPT Header from device */ |
| if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) { |
| printf("*** ERROR: Can't read GPT header ***\n"); |
| return 0; |
| } |
| |
| if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba)) |
| return 0; |
| |
| /* Read and allocate Partition Table Entries */ |
| *pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head); |
| if (*pgpt_pte == NULL) { |
| printf("GPT: Failed to allocate memory for PTE\n"); |
| return 0; |
| } |
| |
| if (validate_gpt_entries(pgpt_head, *pgpt_pte)) { |
| free(*pgpt_pte); |
| return 0; |
| } |
| |
| /* We're done, all's well */ |
| return 1; |
| } |
| |
| /** |
| * alloc_read_gpt_entries(): reads partition entries from disk |
| * @dev_desc |
| * @gpt - GPT header |
| * |
| * Description: Returns ptes on success, NULL on error. |
| * Allocates space for PTEs based on information found in @gpt. |
| * Notes: remember to free pte when you're done! |
| */ |
| static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc, |
| gpt_header *pgpt_head) |
| { |
| size_t count = 0, blk_cnt; |
| lbaint_t blk; |
| gpt_entry *pte = NULL; |
| |
| if (!dev_desc || !pgpt_head) { |
| printf("%s: Invalid Argument(s)\n", __func__); |
| return NULL; |
| } |
| |
| count = le32_to_cpu(pgpt_head->num_partition_entries) * |
| le32_to_cpu(pgpt_head->sizeof_partition_entry); |
| |
| debug("%s: count = %u * %u = %lu\n", __func__, |
| (u32) le32_to_cpu(pgpt_head->num_partition_entries), |
| (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry), |
| (ulong)count); |
| |
| /* Allocate memory for PTE, remember to FREE */ |
| if (count != 0) { |
| pte = memalign(ARCH_DMA_MINALIGN, |
| PAD_TO_BLOCKSIZE(count, dev_desc)); |
| } |
| |
| if (count == 0 || pte == NULL) { |
| printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n", |
| __func__, (ulong)count); |
| return NULL; |
| } |
| |
| /* Read GPT Entries from device */ |
| blk = le64_to_cpu(pgpt_head->partition_entry_lba); |
| blk_cnt = BLOCK_CNT(count, dev_desc); |
| if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) { |
| printf("*** ERROR: Can't read GPT Entries ***\n"); |
| free(pte); |
| return NULL; |
| } |
| return pte; |
| } |
| |
| /** |
| * is_pte_valid(): validates a single Partition Table Entry |
| * @gpt_entry - Pointer to a single Partition Table Entry |
| * |
| * Description: returns 1 if valid, 0 on error. |
| */ |
| static int is_pte_valid(gpt_entry * pte) |
| { |
| efi_guid_t unused_guid; |
| |
| if (!pte) { |
| printf("%s: Invalid Argument(s)\n", __func__); |
| return 0; |
| } |
| |
| /* Only one validation for now: |
| * The GUID Partition Type != Unused Entry (ALL-ZERO) |
| */ |
| memset(unused_guid.b, 0, sizeof(unused_guid.b)); |
| |
| if (memcmp(pte->partition_type_guid.b, unused_guid.b, |
| sizeof(unused_guid.b)) == 0) { |
| |
| debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__, |
| (unsigned int)(uintptr_t)pte); |
| |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| /* |
| * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to |
| * check EFI first, since a DOS partition is often used as a 'protective MBR' |
| * with EFI. |
| */ |
| U_BOOT_PART_TYPE(a_efi) = { |
| .name = "EFI", |
| .part_type = PART_TYPE_EFI, |
| .max_entries = GPT_ENTRY_NUMBERS, |
| .get_info = part_get_info_ptr(part_get_info_efi), |
| .print = part_print_ptr(part_print_efi), |
| .test = part_test_efi, |
| }; |
| #endif |