blob: 7b9e10cd93ae37e7b42a4f3763a58029a1696767 [file] [log] [blame]
/*
* Copyright (c) 2011 The Chromium OS Authors.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/* Tegra20 Clock control functions */
#include <common.h>
#include <errno.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/tegra.h>
#include <asm/arch-tegra/clk_rst.h>
#include <asm/arch-tegra/timer.h>
#include <div64.h>
#include <fdtdec.h>
/*
* Clock types that we can use as a source. The Tegra20 has muxes for the
* peripheral clocks, and in most cases there are four options for the clock
* source. This gives us a clock 'type' and exploits what commonality exists
* in the device.
*
* Letters are obvious, except for T which means CLK_M, and S which means the
* clock derived from 32KHz. Beware that CLK_M (also called OSC in the
* datasheet) and PLL_M are different things. The former is the basic
* clock supplied to the SOC from an external oscillator. The latter is the
* memory clock PLL.
*
* See definitions in clock_id in the header file.
*/
enum clock_type_id {
CLOCK_TYPE_AXPT, /* PLL_A, PLL_X, PLL_P, CLK_M */
CLOCK_TYPE_MCPA, /* and so on */
CLOCK_TYPE_MCPT,
CLOCK_TYPE_PCM,
CLOCK_TYPE_PCMT,
CLOCK_TYPE_PCMT16, /* CLOCK_TYPE_PCMT with 16-bit divider */
CLOCK_TYPE_PCXTS,
CLOCK_TYPE_PDCT,
CLOCK_TYPE_COUNT,
CLOCK_TYPE_NONE = -1, /* invalid clock type */
};
enum {
CLOCK_MAX_MUX = 4 /* number of source options for each clock */
};
/*
* Clock source mux for each clock type. This just converts our enum into
* a list of mux sources for use by the code. Note that CLOCK_TYPE_PCXTS
* is special as it has 5 sources. Since it also has a different number of
* bits in its register for the source, we just handle it with a special
* case in the code.
*/
#define CLK(x) CLOCK_ID_ ## x
static enum clock_id clock_source[CLOCK_TYPE_COUNT][CLOCK_MAX_MUX] = {
{ CLK(AUDIO), CLK(XCPU), CLK(PERIPH), CLK(OSC) },
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(AUDIO) },
{ CLK(MEMORY), CLK(CGENERAL), CLK(PERIPH), CLK(OSC) },
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(NONE) },
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
{ CLK(PERIPH), CLK(CGENERAL), CLK(MEMORY), CLK(OSC) },
{ CLK(PERIPH), CLK(CGENERAL), CLK(XCPU), CLK(OSC) },
{ CLK(PERIPH), CLK(DISPLAY), CLK(CGENERAL), CLK(OSC) },
};
/*
* Clock peripheral IDs which sadly don't match up with PERIPH_ID. This is
* not in the header file since it is for purely internal use - we want
* callers to use the PERIPH_ID for all access to peripheral clocks to avoid
* confusion bewteen PERIPH_ID_... and PERIPHC_...
*
* We don't call this CLOCK_PERIPH_ID or PERIPH_CLOCK_ID as it would just be
* confusing.
*
* Note to SOC vendors: perhaps define a unified numbering for peripherals and
* use it for reset, clock enable, clock source/divider and even pinmuxing
* if you can.
*/
enum periphc_internal_id {
/* 0x00 */
PERIPHC_I2S1,
PERIPHC_I2S2,
PERIPHC_SPDIF_OUT,
PERIPHC_SPDIF_IN,
PERIPHC_PWM,
PERIPHC_SPI1,
PERIPHC_SPI2,
PERIPHC_SPI3,
/* 0x08 */
PERIPHC_XIO,
PERIPHC_I2C1,
PERIPHC_DVC_I2C,
PERIPHC_TWC,
PERIPHC_0c,
PERIPHC_10, /* PERIPHC_SPI1, what is this really? */
PERIPHC_DISP1,
PERIPHC_DISP2,
/* 0x10 */
PERIPHC_CVE,
PERIPHC_IDE0,
PERIPHC_VI,
PERIPHC_1c,
PERIPHC_SDMMC1,
PERIPHC_SDMMC2,
PERIPHC_G3D,
PERIPHC_G2D,
/* 0x18 */
PERIPHC_NDFLASH,
PERIPHC_SDMMC4,
PERIPHC_VFIR,
PERIPHC_EPP,
PERIPHC_MPE,
PERIPHC_MIPI,
PERIPHC_UART1,
PERIPHC_UART2,
/* 0x20 */
PERIPHC_HOST1X,
PERIPHC_21,
PERIPHC_TVO,
PERIPHC_HDMI,
PERIPHC_24,
PERIPHC_TVDAC,
PERIPHC_I2C2,
PERIPHC_EMC,
/* 0x28 */
PERIPHC_UART3,
PERIPHC_29,
PERIPHC_VI_SENSOR,
PERIPHC_2b,
PERIPHC_2c,
PERIPHC_SPI4,
PERIPHC_I2C3,
PERIPHC_SDMMC3,
/* 0x30 */
PERIPHC_UART4,
PERIPHC_UART5,
PERIPHC_VDE,
PERIPHC_OWR,
PERIPHC_NOR,
PERIPHC_CSITE,
PERIPHC_COUNT,
PERIPHC_NONE = -1,
};
/*
* Clock type for each peripheral clock source. We put the name in each
* record just so it is easy to match things up
*/
#define TYPE(name, type) type
static enum clock_type_id clock_periph_type[PERIPHC_COUNT] = {
/* 0x00 */
TYPE(PERIPHC_I2S1, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_I2S2, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_SPDIF_OUT, CLOCK_TYPE_AXPT),
TYPE(PERIPHC_SPDIF_IN, CLOCK_TYPE_PCM),
TYPE(PERIPHC_PWM, CLOCK_TYPE_PCXTS),
TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SPI22, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SPI3, CLOCK_TYPE_PCMT),
/* 0x08 */
TYPE(PERIPHC_XIO, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_I2C1, CLOCK_TYPE_PCMT16),
TYPE(PERIPHC_DVC_I2C, CLOCK_TYPE_PCMT16),
TYPE(PERIPHC_TWC, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SPI1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_DISP1, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_DISP2, CLOCK_TYPE_PDCT),
/* 0x10 */
TYPE(PERIPHC_CVE, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_IDE0, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SDMMC1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SDMMC2, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_G3D, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_G2D, CLOCK_TYPE_MCPA),
/* 0x18 */
TYPE(PERIPHC_NDFLASH, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_SDMMC4, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_VFIR, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_EPP, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_MPE, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_MIPI, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_UART1, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_UART2, CLOCK_TYPE_PCMT),
/* 0x20 */
TYPE(PERIPHC_HOST1X, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_TVO, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_HDMI, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_TVDAC, CLOCK_TYPE_PDCT),
TYPE(PERIPHC_I2C2, CLOCK_TYPE_PCMT16),
TYPE(PERIPHC_EMC, CLOCK_TYPE_MCPT),
/* 0x28 */
TYPE(PERIPHC_UART3, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_VI, CLOCK_TYPE_MCPA),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_NONE, CLOCK_TYPE_NONE),
TYPE(PERIPHC_SPI4, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_I2C3, CLOCK_TYPE_PCMT16),
TYPE(PERIPHC_SDMMC3, CLOCK_TYPE_PCMT),
/* 0x30 */
TYPE(PERIPHC_UART4, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_UART5, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_VDE, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_OWR, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_NOR, CLOCK_TYPE_PCMT),
TYPE(PERIPHC_CSITE, CLOCK_TYPE_PCMT),
};
/*
* This array translates a periph_id to a periphc_internal_id
*
* Not present/matched up:
* uint vi_sensor; _VI_SENSOR_0, 0x1A8
* SPDIF - which is both 0x08 and 0x0c
*
*/
#define NONE(name) (-1)
#define OFFSET(name, value) PERIPHC_ ## name
static s8 periph_id_to_internal_id[PERIPH_ID_COUNT] = {
/* Low word: 31:0 */
NONE(CPU),
NONE(RESERVED1),
NONE(RESERVED2),
NONE(AC97),
NONE(RTC),
NONE(TMR),
PERIPHC_UART1,
PERIPHC_UART2, /* and vfir 0x68 */
/* 0x08 */
NONE(GPIO),
PERIPHC_SDMMC2,
NONE(SPDIF), /* 0x08 and 0x0c, unclear which to use */
PERIPHC_I2S1,
PERIPHC_I2C1,
PERIPHC_NDFLASH,
PERIPHC_SDMMC1,
PERIPHC_SDMMC4,
/* 0x10 */
PERIPHC_TWC,
PERIPHC_PWM,
PERIPHC_I2S2,
PERIPHC_EPP,
PERIPHC_VI,
PERIPHC_G2D,
NONE(USBD),
NONE(ISP),
/* 0x18 */
PERIPHC_G3D,
PERIPHC_IDE0,
PERIPHC_DISP2,
PERIPHC_DISP1,
PERIPHC_HOST1X,
NONE(VCP),
NONE(RESERVED30),
NONE(CACHE2),
/* Middle word: 63:32 */
NONE(MEM),
NONE(AHBDMA),
NONE(APBDMA),
NONE(RESERVED35),
NONE(KBC),
NONE(STAT_MON),
NONE(PMC),
NONE(FUSE),
/* 0x28 */
NONE(KFUSE),
NONE(SBC1), /* SBC1, 0x34, is this SPI1? */
PERIPHC_NOR,
PERIPHC_SPI1,
PERIPHC_SPI2,
PERIPHC_XIO,
PERIPHC_SPI3,
PERIPHC_DVC_I2C,
/* 0x30 */
NONE(DSI),
PERIPHC_TVO, /* also CVE 0x40 */
PERIPHC_MIPI,
PERIPHC_HDMI,
PERIPHC_CSITE,
PERIPHC_TVDAC,
PERIPHC_I2C2,
PERIPHC_UART3,
/* 0x38 */
NONE(RESERVED56),
PERIPHC_EMC,
NONE(USB2),
NONE(USB3),
PERIPHC_MPE,
PERIPHC_VDE,
NONE(BSEA),
NONE(BSEV),
/* Upper word 95:64 */
NONE(SPEEDO),
PERIPHC_UART4,
PERIPHC_UART5,
PERIPHC_I2C3,
PERIPHC_SPI4,
PERIPHC_SDMMC3,
NONE(PCIE),
PERIPHC_OWR,
/* 0x48 */
NONE(AFI),
NONE(CORESIGHT),
NONE(PCIEXCLK),
NONE(AVPUCQ),
NONE(RESERVED76),
NONE(RESERVED77),
NONE(RESERVED78),
NONE(RESERVED79),
/* 0x50 */
NONE(RESERVED80),
NONE(RESERVED81),
NONE(RESERVED82),
NONE(RESERVED83),
NONE(IRAMA),
NONE(IRAMB),
NONE(IRAMC),
NONE(IRAMD),
/* 0x58 */
NONE(CRAM2),
};
/*
* Get the oscillator frequency, from the corresponding hardware configuration
* field. T20 has 4 frequencies that it supports.
*/
enum clock_osc_freq clock_get_osc_freq(void)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 reg;
reg = readl(&clkrst->crc_osc_ctrl);
return (reg & OSC_FREQ_MASK) >> OSC_FREQ_SHIFT;
}
/* Returns a pointer to the clock source register for a peripheral */
u32 *get_periph_source_reg(enum periph_id periph_id)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
enum periphc_internal_id internal_id;
assert(clock_periph_id_isvalid(periph_id));
internal_id = periph_id_to_internal_id[periph_id];
assert(internal_id != -1);
return &clkrst->crc_clk_src[internal_id];
}
/**
* Given a peripheral ID and the required source clock, this returns which
* value should be programmed into the source mux for that peripheral.
*
* There is special code here to handle the one source type with 5 sources.
*
* @param periph_id peripheral to start
* @param source PLL id of required parent clock
* @param mux_bits Set to number of bits in mux register: 2 or 4
* @param divider_bits Set to number of divider bits (8 or 16)
* @return mux value (0-4, or -1 if not found)
*/
int get_periph_clock_source(enum periph_id periph_id,
enum clock_id parent, int *mux_bits, int *divider_bits)
{
enum clock_type_id type;
enum periphc_internal_id internal_id;
int mux;
assert(clock_periph_id_isvalid(periph_id));
internal_id = periph_id_to_internal_id[periph_id];
assert(periphc_internal_id_isvalid(internal_id));
type = clock_periph_type[internal_id];
assert(clock_type_id_isvalid(type));
/*
* Special cases here for the clock with a 4-bit source mux and I2C
* with its 16-bit divisor
*/
if (type == CLOCK_TYPE_PCXTS)
*mux_bits = MASK_BITS_31_28;
else
*mux_bits = MASK_BITS_31_30;
if (type == CLOCK_TYPE_PCMT16)
*divider_bits = 16;
else
*divider_bits = 8;
for (mux = 0; mux < CLOCK_MAX_MUX; mux++)
if (clock_source[type][mux] == parent)
return mux;
/*
* Not found: it might be looking for the 'S' in CLOCK_TYPE_PCXTS
* which is not in our table. If not, then they are asking for a
* source which this peripheral can't access through its mux.
*/
assert(type == CLOCK_TYPE_PCXTS);
assert(parent == CLOCK_ID_SFROM32KHZ);
if (type == CLOCK_TYPE_PCXTS && parent == CLOCK_ID_SFROM32KHZ)
return 4; /* mux value for this clock */
/* if we get here, either us or the caller has made a mistake */
printf("Caller requested bad clock: periph=%d, parent=%d\n", periph_id,
parent);
return -1;
}
void clock_set_enable(enum periph_id periph_id, int enable)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 *clk = &clkrst->crc_clk_out_enb[PERIPH_REG(periph_id)];
u32 reg;
/* Enable/disable the clock to this peripheral */
assert(clock_periph_id_isvalid(periph_id));
reg = readl(clk);
if (enable)
reg |= PERIPH_MASK(periph_id);
else
reg &= ~PERIPH_MASK(periph_id);
writel(reg, clk);
}
void reset_set_enable(enum periph_id periph_id, int enable)
{
struct clk_rst_ctlr *clkrst =
(struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE;
u32 *reset = &clkrst->crc_rst_dev[PERIPH_REG(periph_id)];
u32 reg;
/* Enable/disable reset to the peripheral */
assert(clock_periph_id_isvalid(periph_id));
reg = readl(reset);
if (enable)
reg |= PERIPH_MASK(periph_id);
else
reg &= ~PERIPH_MASK(periph_id);
writel(reg, reset);
}
#ifdef CONFIG_OF_CONTROL
/*
* Convert a device tree clock ID to our peripheral ID. They are mostly
* the same but we are very cautious so we check that a valid clock ID is
* provided.
*
* @param clk_id Clock ID according to tegra20 device tree binding
* @return peripheral ID, or PERIPH_ID_NONE if the clock ID is invalid
*/
enum periph_id clk_id_to_periph_id(int clk_id)
{
if (clk_id > PERIPH_ID_COUNT)
return PERIPH_ID_NONE;
switch (clk_id) {
case PERIPH_ID_RESERVED1:
case PERIPH_ID_RESERVED2:
case PERIPH_ID_RESERVED30:
case PERIPH_ID_RESERVED35:
case PERIPH_ID_RESERVED56:
case PERIPH_ID_PCIEXCLK:
case PERIPH_ID_RESERVED76:
case PERIPH_ID_RESERVED77:
case PERIPH_ID_RESERVED78:
case PERIPH_ID_RESERVED79:
case PERIPH_ID_RESERVED80:
case PERIPH_ID_RESERVED81:
case PERIPH_ID_RESERVED82:
case PERIPH_ID_RESERVED83:
case PERIPH_ID_RESERVED91:
return PERIPH_ID_NONE;
default:
return clk_id;
}
}
#endif /* CONFIG_OF_CONTROL */
void clock_early_init(void)
{
/*
* PLLP output frequency set to 216MHz
* PLLC output frequency set to 600Mhz
*
* TODO: Can we calculate these values instead of hard-coding?
*/
switch (clock_get_osc_freq()) {
case CLOCK_OSC_FREQ_12_0: /* OSC is 12Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 432, 12, 1, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 600, 12, 0, 8);
break;
case CLOCK_OSC_FREQ_26_0: /* OSC is 26Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 432, 26, 1, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 600, 26, 0, 8);
break;
case CLOCK_OSC_FREQ_13_0: /* OSC is 13Mhz */
clock_set_rate(CLOCK_ID_PERIPH, 432, 13, 1, 8);
clock_set_rate(CLOCK_ID_CGENERAL, 600, 13, 0, 8);
break;
case CLOCK_OSC_FREQ_19_2:
default:
/*
* These are not supported. It is too early to print a
* message and the UART likely won't work anyway due to the
* oscillator being wrong.
*/
break;
}
}
void arch_timer_init(void)
{
}
#define PMC_SATA_PWRGT 0x1ac
#define PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE (1 << 5)
#define PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL (1 << 4)
#define PLLE_SS_CNTL 0x68
#define PLLE_SS_CNTL_SSCINCINTRV(x) (((x) & 0x3f) << 24)
#define PLLE_SS_CNTL_SSCINC(x) (((x) & 0xff) << 16)
#define PLLE_SS_CNTL_SSCBYP (1 << 12)
#define PLLE_SS_CNTL_INTERP_RESET (1 << 11)
#define PLLE_SS_CNTL_BYPASS_SS (1 << 10)
#define PLLE_SS_CNTL_SSCMAX(x) (((x) & 0x1ff) << 0)
#define PLLE_BASE 0x0e8
#define PLLE_BASE_ENABLE_CML (1 << 31)
#define PLLE_BASE_ENABLE (1 << 30)
#define PLLE_BASE_PLDIV_CML(x) (((x) & 0xf) << 24)
#define PLLE_BASE_PLDIV(x) (((x) & 0x3f) << 16)
#define PLLE_BASE_NDIV(x) (((x) & 0xff) << 8)
#define PLLE_BASE_MDIV(x) (((x) & 0xff) << 0)
#define PLLE_MISC 0x0ec
#define PLLE_MISC_SETUP_BASE(x) (((x) & 0xffff) << 16)
#define PLLE_MISC_PLL_READY (1 << 15)
#define PLLE_MISC_LOCK (1 << 11)
#define PLLE_MISC_LOCK_ENABLE (1 << 9)
#define PLLE_MISC_SETUP_EXT(x) (((x) & 0x3) << 2)
static int tegra_plle_train(void)
{
unsigned int timeout = 2000;
unsigned long value;
value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value |= PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value |= PMC_SATA_PWRGT_PLLE_IDDQ_SWCTL;
writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value = readl(NV_PA_PMC_BASE + PMC_SATA_PWRGT);
value &= ~PMC_SATA_PWRGT_PLLE_IDDQ_OVERRIDE;
writel(value, NV_PA_PMC_BASE + PMC_SATA_PWRGT);
do {
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
if (value & PLLE_MISC_PLL_READY)
break;
udelay(100);
} while (--timeout);
if (timeout == 0) {
error("timeout waiting for PLLE to become ready");
return -ETIMEDOUT;
}
return 0;
}
int tegra_plle_enable(void)
{
unsigned int timeout = 1000;
u32 value;
int err;
/* disable PLLE clock */
value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
value &= ~PLLE_BASE_ENABLE_CML;
value &= ~PLLE_BASE_ENABLE;
writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
/* clear lock enable and setup field */
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
value &= ~PLLE_MISC_LOCK_ENABLE;
value &= ~PLLE_MISC_SETUP_BASE(0xffff);
value &= ~PLLE_MISC_SETUP_EXT(0x3);
writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
if ((value & PLLE_MISC_PLL_READY) == 0) {
err = tegra_plle_train();
if (err < 0) {
error("failed to train PLLE: %d", err);
return err;
}
}
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
value |= PLLE_MISC_SETUP_BASE(0x7);
value |= PLLE_MISC_LOCK_ENABLE;
value |= PLLE_MISC_SETUP_EXT(0);
writel(value, NV_PA_CLK_RST_BASE + PLLE_MISC);
value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
value |= PLLE_SS_CNTL_SSCBYP | PLLE_SS_CNTL_INTERP_RESET |
PLLE_SS_CNTL_BYPASS_SS;
writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
value = readl(NV_PA_CLK_RST_BASE + PLLE_BASE);
value |= PLLE_BASE_ENABLE_CML | PLLE_BASE_ENABLE;
writel(value, NV_PA_CLK_RST_BASE + PLLE_BASE);
do {
value = readl(NV_PA_CLK_RST_BASE + PLLE_MISC);
if (value & PLLE_MISC_LOCK)
break;
udelay(2);
} while (--timeout);
if (timeout == 0) {
error("timeout waiting for PLLE to lock");
return -ETIMEDOUT;
}
udelay(50);
value = readl(NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
value &= ~PLLE_SS_CNTL_SSCINCINTRV(0x3f);
value |= PLLE_SS_CNTL_SSCINCINTRV(0x18);
value &= ~PLLE_SS_CNTL_SSCINC(0xff);
value |= PLLE_SS_CNTL_SSCINC(0x01);
value &= ~PLLE_SS_CNTL_SSCBYP;
value &= ~PLLE_SS_CNTL_INTERP_RESET;
value &= ~PLLE_SS_CNTL_BYPASS_SS;
value &= ~PLLE_SS_CNTL_SSCMAX(0x1ff);
value |= PLLE_SS_CNTL_SSCMAX(0x24);
writel(value, NV_PA_CLK_RST_BASE + PLLE_SS_CNTL);
return 0;
}