blob: de8750546699e0a66a5d70d9652184d1c5ba448b [file] [log] [blame]
/*
* Copyright (c) 2014 Google, Inc
* Written by Simon Glass <sjg@chromium.org>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <dm.h>
#include <errno.h>
#include <fdtdec.h>
#include <inttypes.h>
#include <pci.h>
#include <dm/lists.h>
#include <dm/root.h>
#include <dm/device-internal.h>
DECLARE_GLOBAL_DATA_PTR;
struct pci_controller *pci_bus_to_hose(int busnum)
{
struct udevice *bus;
int ret;
ret = uclass_get_device_by_seq(UCLASS_PCI, busnum, &bus);
if (ret) {
debug("%s: Cannot get bus %d: ret=%d\n", __func__, busnum, ret);
return NULL;
}
return dev_get_uclass_priv(bus);
}
/**
* pci_get_bus_max() - returns the bus number of the last active bus
*
* @return last bus number, or -1 if no active buses
*/
static int pci_get_bus_max(void)
{
struct udevice *bus;
struct uclass *uc;
int ret = -1;
ret = uclass_get(UCLASS_PCI, &uc);
uclass_foreach_dev(bus, uc) {
if (bus->seq > ret)
ret = bus->seq;
}
debug("%s: ret=%d\n", __func__, ret);
return ret;
}
int pci_last_busno(void)
{
struct pci_controller *hose;
struct udevice *bus;
struct uclass *uc;
int ret;
debug("pci_last_busno\n");
ret = uclass_get(UCLASS_PCI, &uc);
if (ret || list_empty(&uc->dev_head))
return -1;
/* Probe the last bus */
bus = list_entry(uc->dev_head.prev, struct udevice, uclass_node);
debug("bus = %p, %s\n", bus, bus->name);
assert(bus);
ret = device_probe(bus);
if (ret)
return ret;
/* If that bus has bridges, we may have new buses now. Get the last */
bus = list_entry(uc->dev_head.prev, struct udevice, uclass_node);
hose = dev_get_uclass_priv(bus);
debug("bus = %s, hose = %p\n", bus->name, hose);
return hose->last_busno;
}
int pci_get_ff(enum pci_size_t size)
{
switch (size) {
case PCI_SIZE_8:
return 0xff;
case PCI_SIZE_16:
return 0xffff;
default:
return 0xffffffff;
}
}
int pci_bus_find_devfn(struct udevice *bus, pci_dev_t find_devfn,
struct udevice **devp)
{
struct udevice *dev;
for (device_find_first_child(bus, &dev);
dev;
device_find_next_child(&dev)) {
struct pci_child_platdata *pplat;
pplat = dev_get_parent_platdata(dev);
if (pplat && pplat->devfn == find_devfn) {
*devp = dev;
return 0;
}
}
return -ENODEV;
}
int pci_bus_find_bdf(pci_dev_t bdf, struct udevice **devp)
{
struct udevice *bus;
int ret;
ret = uclass_get_device_by_seq(UCLASS_PCI, PCI_BUS(bdf), &bus);
if (ret)
return ret;
return pci_bus_find_devfn(bus, PCI_MASK_BUS(bdf), devp);
}
static int pci_device_matches_ids(struct udevice *dev,
struct pci_device_id *ids)
{
struct pci_child_platdata *pplat;
int i;
pplat = dev_get_parent_platdata(dev);
if (!pplat)
return -EINVAL;
for (i = 0; ids[i].vendor != 0; i++) {
if (pplat->vendor == ids[i].vendor &&
pplat->device == ids[i].device)
return i;
}
return -EINVAL;
}
int pci_bus_find_devices(struct udevice *bus, struct pci_device_id *ids,
int *indexp, struct udevice **devp)
{
struct udevice *dev;
/* Scan all devices on this bus */
for (device_find_first_child(bus, &dev);
dev;
device_find_next_child(&dev)) {
if (pci_device_matches_ids(dev, ids) >= 0) {
if ((*indexp)-- <= 0) {
*devp = dev;
return 0;
}
}
}
return -ENODEV;
}
int pci_find_device_id(struct pci_device_id *ids, int index,
struct udevice **devp)
{
struct udevice *bus;
/* Scan all known buses */
for (uclass_first_device(UCLASS_PCI, &bus);
bus;
uclass_next_device(&bus)) {
if (!pci_bus_find_devices(bus, ids, &index, devp))
return 0;
}
*devp = NULL;
return -ENODEV;
}
int pci_bus_write_config(struct udevice *bus, pci_dev_t bdf, int offset,
unsigned long value, enum pci_size_t size)
{
struct dm_pci_ops *ops;
ops = pci_get_ops(bus);
if (!ops->write_config)
return -ENOSYS;
return ops->write_config(bus, bdf, offset, value, size);
}
int pci_write_config(pci_dev_t bdf, int offset, unsigned long value,
enum pci_size_t size)
{
struct udevice *bus;
int ret;
ret = uclass_get_device_by_seq(UCLASS_PCI, PCI_BUS(bdf), &bus);
if (ret)
return ret;
return pci_bus_write_config(bus, PCI_MASK_BUS(bdf), offset, value,
size);
}
int pci_write_config32(pci_dev_t bdf, int offset, u32 value)
{
return pci_write_config(bdf, offset, value, PCI_SIZE_32);
}
int pci_write_config16(pci_dev_t bdf, int offset, u16 value)
{
return pci_write_config(bdf, offset, value, PCI_SIZE_16);
}
int pci_write_config8(pci_dev_t bdf, int offset, u8 value)
{
return pci_write_config(bdf, offset, value, PCI_SIZE_8);
}
int pci_bus_read_config(struct udevice *bus, pci_dev_t bdf, int offset,
unsigned long *valuep, enum pci_size_t size)
{
struct dm_pci_ops *ops;
ops = pci_get_ops(bus);
if (!ops->read_config)
return -ENOSYS;
return ops->read_config(bus, bdf, offset, valuep, size);
}
int pci_read_config(pci_dev_t bdf, int offset, unsigned long *valuep,
enum pci_size_t size)
{
struct udevice *bus;
int ret;
ret = uclass_get_device_by_seq(UCLASS_PCI, PCI_BUS(bdf), &bus);
if (ret)
return ret;
return pci_bus_read_config(bus, PCI_MASK_BUS(bdf), offset, valuep,
size);
}
int pci_read_config32(pci_dev_t bdf, int offset, u32 *valuep)
{
unsigned long value;
int ret;
ret = pci_read_config(bdf, offset, &value, PCI_SIZE_32);
if (ret)
return ret;
*valuep = value;
return 0;
}
int pci_read_config16(pci_dev_t bdf, int offset, u16 *valuep)
{
unsigned long value;
int ret;
ret = pci_read_config(bdf, offset, &value, PCI_SIZE_16);
if (ret)
return ret;
*valuep = value;
return 0;
}
int pci_read_config8(pci_dev_t bdf, int offset, u8 *valuep)
{
unsigned long value;
int ret;
ret = pci_read_config(bdf, offset, &value, PCI_SIZE_8);
if (ret)
return ret;
*valuep = value;
return 0;
}
int pci_auto_config_devices(struct udevice *bus)
{
struct pci_controller *hose = bus->uclass_priv;
unsigned int sub_bus;
struct udevice *dev;
int ret;
sub_bus = bus->seq;
debug("%s: start\n", __func__);
pciauto_config_init(hose);
for (ret = device_find_first_child(bus, &dev);
!ret && dev;
ret = device_find_next_child(&dev)) {
struct pci_child_platdata *pplat;
pplat = dev_get_parent_platdata(dev);
unsigned int max_bus;
pci_dev_t bdf;
bdf = PCI_ADD_BUS(bus->seq, pplat->devfn);
debug("%s: device %s\n", __func__, dev->name);
max_bus = pciauto_config_device(hose, bdf);
sub_bus = max(sub_bus, max_bus);
}
debug("%s: done\n", __func__);
return sub_bus;
}
int dm_pci_hose_probe_bus(struct pci_controller *hose, pci_dev_t bdf)
{
struct udevice *parent, *bus;
int sub_bus;
int ret;
debug("%s\n", __func__);
parent = hose->bus;
/* Find the bus within the parent */
ret = pci_bus_find_devfn(parent, bdf, &bus);
if (ret) {
debug("%s: Cannot find device %x on bus %s: %d\n", __func__,
bdf, parent->name, ret);
return ret;
}
sub_bus = pci_get_bus_max() + 1;
debug("%s: bus = %d/%s\n", __func__, sub_bus, bus->name);
pciauto_prescan_setup_bridge(hose, bdf, bus->seq);
ret = device_probe(bus);
if (ret) {
debug("%s: Cannot probe bus bus %s: %d\n", __func__, bus->name,
ret);
return ret;
}
if (sub_bus != bus->seq) {
printf("%s: Internal error, bus '%s' got seq %d, expected %d\n",
__func__, bus->name, bus->seq, sub_bus);
return -EPIPE;
}
sub_bus = pci_get_bus_max();
pciauto_postscan_setup_bridge(hose, bdf, sub_bus);
return sub_bus;
}
int pci_bind_bus_devices(struct udevice *bus)
{
ulong vendor, device;
ulong header_type;
pci_dev_t devfn, end;
bool found_multi;
int ret;
found_multi = false;
end = PCI_DEVFN(PCI_MAX_PCI_DEVICES - 1, PCI_MAX_PCI_FUNCTIONS - 1);
for (devfn = PCI_DEVFN(0, 0); devfn < end; devfn += PCI_DEVFN(0, 1)) {
struct pci_child_platdata *pplat;
struct udevice *dev;
ulong class;
if (PCI_FUNC(devfn) && !found_multi)
continue;
/* Check only the first access, we don't expect problems */
ret = pci_bus_read_config(bus, devfn, PCI_HEADER_TYPE,
&header_type, PCI_SIZE_8);
if (ret)
goto error;
pci_bus_read_config(bus, devfn, PCI_VENDOR_ID, &vendor,
PCI_SIZE_16);
if (vendor == 0xffff || vendor == 0x0000)
continue;
if (!PCI_FUNC(devfn))
found_multi = header_type & 0x80;
debug("%s: bus %d/%s: found device %x, function %d\n", __func__,
bus->seq, bus->name, PCI_DEV(devfn), PCI_FUNC(devfn));
pci_bus_read_config(bus, devfn, PCI_DEVICE_ID, &device,
PCI_SIZE_16);
pci_bus_read_config(bus, devfn, PCI_CLASS_DEVICE, &class,
PCI_SIZE_16);
/* Find this device in the device tree */
ret = pci_bus_find_devfn(bus, devfn, &dev);
/* If nothing in the device tree, bind a generic device */
if (ret == -ENODEV) {
char name[30], *str;
const char *drv;
sprintf(name, "pci_%x:%x.%x", bus->seq,
PCI_DEV(devfn), PCI_FUNC(devfn));
str = strdup(name);
if (!str)
return -ENOMEM;
drv = class == PCI_CLASS_BRIDGE_PCI ?
"pci_bridge_drv" : "pci_generic_drv";
ret = device_bind_driver(bus, drv, str, &dev);
}
if (ret)
return ret;
/* Update the platform data */
pplat = dev_get_parent_platdata(dev);
pplat->devfn = devfn;
pplat->vendor = vendor;
pplat->device = device;
pplat->class = class;
}
return 0;
error:
printf("Cannot read bus configuration: %d\n", ret);
return ret;
}
static int pci_uclass_post_bind(struct udevice *bus)
{
/*
* Scan the device tree for devices. This does not probe the PCI bus,
* as this is not permitted while binding. It just finds devices
* mentioned in the device tree.
*
* Before relocation, only bind devices marked for pre-relocation
* use.
*/
return dm_scan_fdt_node(bus, gd->fdt_blob, bus->of_offset,
gd->flags & GD_FLG_RELOC ? false : true);
}
static int decode_regions(struct pci_controller *hose, const void *blob,
int parent_node, int node)
{
int pci_addr_cells, addr_cells, size_cells;
int cells_per_record;
const u32 *prop;
int len;
int i;
prop = fdt_getprop(blob, node, "ranges", &len);
if (!prop)
return -EINVAL;
pci_addr_cells = fdt_address_cells(blob, node);
addr_cells = fdt_address_cells(blob, parent_node);
size_cells = fdt_size_cells(blob, node);
/* PCI addresses are always 3-cells */
len /= sizeof(u32);
cells_per_record = pci_addr_cells + addr_cells + size_cells;
hose->region_count = 0;
debug("%s: len=%d, cells_per_record=%d\n", __func__, len,
cells_per_record);
for (i = 0; i < MAX_PCI_REGIONS; i++, len -= cells_per_record) {
u64 pci_addr, addr, size;
int space_code;
u32 flags;
int type;
if (len < cells_per_record)
break;
flags = fdt32_to_cpu(prop[0]);
space_code = (flags >> 24) & 3;
pci_addr = fdtdec_get_number(prop + 1, 2);
prop += pci_addr_cells;
addr = fdtdec_get_number(prop, addr_cells);
prop += addr_cells;
size = fdtdec_get_number(prop, size_cells);
prop += size_cells;
debug("%s: region %d, pci_addr=%" PRIx64 ", addr=%" PRIx64
", size=%" PRIx64 ", space_code=%d\n", __func__,
hose->region_count, pci_addr, addr, size, space_code);
if (space_code & 2) {
type = flags & (1U << 30) ? PCI_REGION_PREFETCH :
PCI_REGION_MEM;
} else if (space_code & 1) {
type = PCI_REGION_IO;
} else {
continue;
}
debug(" - type=%d\n", type);
pci_set_region(hose->regions + hose->region_count++, pci_addr,
addr, size, type);
}
/* Add a region for our local memory */
pci_set_region(hose->regions + hose->region_count++, 0, 0,
gd->ram_size, PCI_REGION_MEM | PCI_REGION_SYS_MEMORY);
return 0;
}
static int pci_uclass_pre_probe(struct udevice *bus)
{
struct pci_controller *hose;
int ret;
debug("%s, bus=%d/%s, parent=%s\n", __func__, bus->seq, bus->name,
bus->parent->name);
hose = bus->uclass_priv;
/* For bridges, use the top-level PCI controller */
if (device_get_uclass_id(bus->parent) == UCLASS_ROOT) {
hose->ctlr = bus;
ret = decode_regions(hose, gd->fdt_blob, bus->parent->of_offset,
bus->of_offset);
if (ret) {
debug("%s: Cannot decode regions\n", __func__);
return ret;
}
} else {
struct pci_controller *parent_hose;
parent_hose = dev_get_uclass_priv(bus->parent);
hose->ctlr = parent_hose->bus;
}
hose->bus = bus;
hose->first_busno = bus->seq;
hose->last_busno = bus->seq;
return 0;
}
static int pci_uclass_post_probe(struct udevice *bus)
{
int ret;
/* Don't scan buses before relocation */
if (!(gd->flags & GD_FLG_RELOC))
return 0;
debug("%s: probing bus %d\n", __func__, bus->seq);
ret = pci_bind_bus_devices(bus);
if (ret)
return ret;
#ifdef CONFIG_PCI_PNP
ret = pci_auto_config_devices(bus);
#endif
return ret < 0 ? ret : 0;
}
static int pci_uclass_child_post_bind(struct udevice *dev)
{
struct pci_child_platdata *pplat;
struct fdt_pci_addr addr;
int ret;
if (dev->of_offset == -1)
return 0;
/*
* We could read vendor, device, class if available. But for now we
* just check the address.
*/
pplat = dev_get_parent_platdata(dev);
ret = fdtdec_get_pci_addr(gd->fdt_blob, dev->of_offset,
FDT_PCI_SPACE_CONFIG, "reg", &addr);
if (ret) {
if (ret != -ENOENT)
return -EINVAL;
} else {
/* extract the bdf from fdt_pci_addr */
pplat->devfn = addr.phys_hi & 0xffff00;
}
return 0;
}
int pci_bridge_read_config(struct udevice *bus, pci_dev_t devfn, uint offset,
ulong *valuep, enum pci_size_t size)
{
struct pci_controller *hose = bus->uclass_priv;
pci_dev_t bdf = PCI_ADD_BUS(bus->seq, devfn);
return pci_bus_read_config(hose->ctlr, bdf, offset, valuep, size);
}
int pci_bridge_write_config(struct udevice *bus, pci_dev_t devfn, uint offset,
ulong value, enum pci_size_t size)
{
struct pci_controller *hose = bus->uclass_priv;
pci_dev_t bdf = PCI_ADD_BUS(bus->seq, devfn);
return pci_bus_write_config(hose->ctlr, bdf, offset, value, size);
}
UCLASS_DRIVER(pci) = {
.id = UCLASS_PCI,
.name = "pci",
.flags = DM_UC_FLAG_SEQ_ALIAS,
.post_bind = pci_uclass_post_bind,
.pre_probe = pci_uclass_pre_probe,
.post_probe = pci_uclass_post_probe,
.child_post_bind = pci_uclass_child_post_bind,
.per_device_auto_alloc_size = sizeof(struct pci_controller),
.per_child_platdata_auto_alloc_size =
sizeof(struct pci_child_platdata),
};
static const struct dm_pci_ops pci_bridge_ops = {
.read_config = pci_bridge_read_config,
.write_config = pci_bridge_write_config,
};
static const struct udevice_id pci_bridge_ids[] = {
{ .compatible = "pci-bridge" },
{ }
};
U_BOOT_DRIVER(pci_bridge_drv) = {
.name = "pci_bridge_drv",
.id = UCLASS_PCI,
.of_match = pci_bridge_ids,
.ops = &pci_bridge_ops,
};
UCLASS_DRIVER(pci_generic) = {
.id = UCLASS_PCI_GENERIC,
.name = "pci_generic",
};
static const struct udevice_id pci_generic_ids[] = {
{ .compatible = "pci-generic" },
{ }
};
U_BOOT_DRIVER(pci_generic_drv) = {
.name = "pci_generic_drv",
.id = UCLASS_PCI_GENERIC,
.of_match = pci_generic_ids,
};