blob: 9b7067040a689f93d74bf9e4298b090bf4e27e5f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* board.c
*
* Board functions for TI AM335X based boards
*
* Copyright (C) 2011, Texas Instruments, Incorporated - http://www.ti.com/
*/
#include <common.h>
#include <dm.h>
#include <env.h>
#include <errno.h>
#include <hang.h>
#include <image.h>
#include <init.h>
#include <malloc.h>
#include <net.h>
#include <spl.h>
#include <serial.h>
#include <asm/arch/cpu.h>
#include <asm/arch/hardware.h>
#include <asm/arch/omap.h>
#include <asm/arch/ddr_defs.h>
#include <asm/arch/clock.h>
#include <asm/arch/clk_synthesizer.h>
#include <asm/arch/gpio.h>
#include <asm/arch/mmc_host_def.h>
#include <asm/arch/sys_proto.h>
#include <asm/arch/mem.h>
#include <asm/global_data.h>
#include <asm/io.h>
#include <asm/emif.h>
#include <asm/gpio.h>
#include <asm/omap_common.h>
#include <asm/omap_sec_common.h>
#include <asm/omap_mmc.h>
#include <i2c.h>
#include <miiphy.h>
#include <cpsw.h>
#include <linux/bitops.h>
#include <linux/compiler.h>
#include <linux/delay.h>
#include <power/tps65217.h>
#include <power/tps65910.h>
#include <env_internal.h>
#include <watchdog.h>
#include "../common/board_detect.h"
#include "../common/cape_detect.h"
#include "board.h"
DECLARE_GLOBAL_DATA_PTR;
/* GPIO that controls power to DDR on EVM-SK */
#define GPIO_TO_PIN(bank, gpio) (32 * (bank) + (gpio))
#define GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 7)
#define ICE_GPIO_DDR_VTT_EN GPIO_TO_PIN(0, 18)
#define GPIO_PR1_MII_CTRL GPIO_TO_PIN(3, 4)
#define GPIO_MUX_MII_CTRL GPIO_TO_PIN(3, 10)
#define GPIO_FET_SWITCH_CTRL GPIO_TO_PIN(0, 7)
#define GPIO_PHY_RESET GPIO_TO_PIN(2, 5)
#define GPIO_ETH0_MODE GPIO_TO_PIN(0, 11)
#define GPIO_ETH1_MODE GPIO_TO_PIN(1, 26)
static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
#define GPIO0_RISINGDETECT (AM33XX_GPIO0_BASE + OMAP_GPIO_RISINGDETECT)
#define GPIO1_RISINGDETECT (AM33XX_GPIO1_BASE + OMAP_GPIO_RISINGDETECT)
#define GPIO0_IRQSTATUS1 (AM33XX_GPIO0_BASE + OMAP_GPIO_IRQSTATUS1)
#define GPIO1_IRQSTATUS1 (AM33XX_GPIO1_BASE + OMAP_GPIO_IRQSTATUS1)
#define GPIO0_IRQSTATUSRAW (AM33XX_GPIO0_BASE + 0x024)
#define GPIO1_IRQSTATUSRAW (AM33XX_GPIO1_BASE + 0x024)
/*
* Read header information from EEPROM into global structure.
*/
#ifdef CONFIG_TI_I2C_BOARD_DETECT
void do_board_detect(void)
{
enable_i2c0_pin_mux();
enable_i2c2_pin_mux();
if (ti_i2c_eeprom_am_get(CONFIG_EEPROM_BUS_ADDRESS,
CONFIG_EEPROM_CHIP_ADDRESS))
printf("ti_i2c_eeprom_init failed\n");
}
#endif
#ifndef CONFIG_DM_SERIAL
struct serial_device *default_serial_console(void)
{
if (board_is_icev2())
return &eserial4_device;
else
return &eserial1_device;
}
#endif
#if !CONFIG_IS_ENABLED(SKIP_LOWLEVEL_INIT)
static const struct ddr_data ddr2_data = {
.datardsratio0 = MT47H128M16RT25E_RD_DQS,
.datafwsratio0 = MT47H128M16RT25E_PHY_FIFO_WE,
.datawrsratio0 = MT47H128M16RT25E_PHY_WR_DATA,
};
static const struct cmd_control ddr2_cmd_ctrl_data = {
.cmd0csratio = MT47H128M16RT25E_RATIO,
.cmd1csratio = MT47H128M16RT25E_RATIO,
.cmd2csratio = MT47H128M16RT25E_RATIO,
};
static const struct emif_regs ddr2_emif_reg_data = {
.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
};
static const struct emif_regs ddr2_evm_emif_reg_data = {
.sdram_config = MT47H128M16RT25E_EMIF_SDCFG,
.ref_ctrl = MT47H128M16RT25E_EMIF_SDREF,
.sdram_tim1 = MT47H128M16RT25E_EMIF_TIM1,
.sdram_tim2 = MT47H128M16RT25E_EMIF_TIM2,
.sdram_tim3 = MT47H128M16RT25E_EMIF_TIM3,
.ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
.emif_ddr_phy_ctlr_1 = MT47H128M16RT25E_EMIF_READ_LATENCY,
};
static const struct ddr_data ddr3_data = {
.datardsratio0 = MT41J128MJT125_RD_DQS,
.datawdsratio0 = MT41J128MJT125_WR_DQS,
.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE,
.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA,
};
static const struct ddr_data ddr3_beagleblack_data = {
.datardsratio0 = MT41K256M16HA125E_RD_DQS,
.datawdsratio0 = MT41K256M16HA125E_WR_DQS,
.datafwsratio0 = MT41K256M16HA125E_PHY_FIFO_WE,
.datawrsratio0 = MT41K256M16HA125E_PHY_WR_DATA,
};
static const struct ddr_data ddr3_evm_data = {
.datardsratio0 = MT41J512M8RH125_RD_DQS,
.datawdsratio0 = MT41J512M8RH125_WR_DQS,
.datafwsratio0 = MT41J512M8RH125_PHY_FIFO_WE,
.datawrsratio0 = MT41J512M8RH125_PHY_WR_DATA,
};
static const struct ddr_data ddr3_icev2_data = {
.datardsratio0 = MT41J128MJT125_RD_DQS_400MHz,
.datawdsratio0 = MT41J128MJT125_WR_DQS_400MHz,
.datafwsratio0 = MT41J128MJT125_PHY_FIFO_WE_400MHz,
.datawrsratio0 = MT41J128MJT125_PHY_WR_DATA_400MHz,
};
static const struct cmd_control ddr3_cmd_ctrl_data = {
.cmd0csratio = MT41J128MJT125_RATIO,
.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT,
.cmd1csratio = MT41J128MJT125_RATIO,
.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT,
.cmd2csratio = MT41J128MJT125_RATIO,
.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT,
};
static const struct cmd_control ddr3_beagleblack_cmd_ctrl_data = {
.cmd0csratio = MT41K256M16HA125E_RATIO,
.cmd0iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd1csratio = MT41K256M16HA125E_RATIO,
.cmd1iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
.cmd2csratio = MT41K256M16HA125E_RATIO,
.cmd2iclkout = MT41K256M16HA125E_INVERT_CLKOUT,
};
static const struct cmd_control ddr3_evm_cmd_ctrl_data = {
.cmd0csratio = MT41J512M8RH125_RATIO,
.cmd0iclkout = MT41J512M8RH125_INVERT_CLKOUT,
.cmd1csratio = MT41J512M8RH125_RATIO,
.cmd1iclkout = MT41J512M8RH125_INVERT_CLKOUT,
.cmd2csratio = MT41J512M8RH125_RATIO,
.cmd2iclkout = MT41J512M8RH125_INVERT_CLKOUT,
};
static const struct cmd_control ddr3_icev2_cmd_ctrl_data = {
.cmd0csratio = MT41J128MJT125_RATIO_400MHz,
.cmd0iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
.cmd1csratio = MT41J128MJT125_RATIO_400MHz,
.cmd1iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
.cmd2csratio = MT41J128MJT125_RATIO_400MHz,
.cmd2iclkout = MT41J128MJT125_INVERT_CLKOUT_400MHz,
};
static struct emif_regs ddr3_emif_reg_data = {
.sdram_config = MT41J128MJT125_EMIF_SDCFG,
.ref_ctrl = MT41J128MJT125_EMIF_SDREF,
.sdram_tim1 = MT41J128MJT125_EMIF_TIM1,
.sdram_tim2 = MT41J128MJT125_EMIF_TIM2,
.sdram_tim3 = MT41J128MJT125_EMIF_TIM3,
.zq_config = MT41J128MJT125_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY |
PHY_EN_DYN_PWRDN,
};
static struct emif_regs ddr3_beagleblack_emif_reg_data = {
.sdram_config = MT41K256M16HA125E_EMIF_SDCFG,
.ref_ctrl = MT41K256M16HA125E_EMIF_SDREF,
.sdram_tim1 = MT41K256M16HA125E_EMIF_TIM1,
.sdram_tim2 = MT41K256M16HA125E_EMIF_TIM2,
.sdram_tim3 = MT41K256M16HA125E_EMIF_TIM3,
.ocp_config = EMIF_OCP_CONFIG_BEAGLEBONE_BLACK,
.zq_config = MT41K256M16HA125E_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41K256M16HA125E_EMIF_READ_LATENCY,
};
static struct emif_regs ddr3_evm_emif_reg_data = {
.sdram_config = MT41J512M8RH125_EMIF_SDCFG,
.ref_ctrl = MT41J512M8RH125_EMIF_SDREF,
.sdram_tim1 = MT41J512M8RH125_EMIF_TIM1,
.sdram_tim2 = MT41J512M8RH125_EMIF_TIM2,
.sdram_tim3 = MT41J512M8RH125_EMIF_TIM3,
.ocp_config = EMIF_OCP_CONFIG_AM335X_EVM,
.zq_config = MT41J512M8RH125_ZQ_CFG,
.emif_ddr_phy_ctlr_1 = MT41J512M8RH125_EMIF_READ_LATENCY |
PHY_EN_DYN_PWRDN,
};
static struct emif_regs ddr3_icev2_emif_reg_data = {
.sdram_config = MT41J128MJT125_EMIF_SDCFG_400MHz,
.ref_ctrl = MT41J128MJT125_EMIF_SDREF_400MHz,
.sdram_tim1 = MT41J128MJT125_EMIF_TIM1_400MHz,
.sdram_tim2 = MT41J128MJT125_EMIF_TIM2_400MHz,
.sdram_tim3 = MT41J128MJT125_EMIF_TIM3_400MHz,
.zq_config = MT41J128MJT125_ZQ_CFG_400MHz,
.emif_ddr_phy_ctlr_1 = MT41J128MJT125_EMIF_READ_LATENCY_400MHz |
PHY_EN_DYN_PWRDN,
};
#ifdef CONFIG_SPL_OS_BOOT
int spl_start_uboot(void)
{
#ifdef CONFIG_SPL_SERIAL
/* break into full u-boot on 'c' */
if (serial_tstc() && serial_getc() == 'c')
return 1;
#endif
#ifdef CONFIG_SPL_ENV_SUPPORT
env_init();
env_load();
if (env_get_yesno("boot_os") != 1)
return 1;
#endif
return 0;
}
#endif
const struct dpll_params *get_dpll_ddr_params(void)
{
int ind = get_sys_clk_index();
if (board_is_evm_sk())
return &dpll_ddr3_303MHz[ind];
else if (board_is_pb() || board_is_bone_lt() || board_is_icev2())
return &dpll_ddr3_400MHz[ind];
else if (board_is_evm_15_or_later())
return &dpll_ddr3_303MHz[ind];
else
return &dpll_ddr2_266MHz[ind];
}
static u8 bone_not_connected_to_ac_power(void)
{
if (board_is_bone()) {
uchar pmic_status_reg;
if (tps65217_reg_read(TPS65217_STATUS,
&pmic_status_reg))
return 1;
if (!(pmic_status_reg & TPS65217_PWR_SRC_AC_BITMASK)) {
puts("No AC power, switching to default OPP\n");
return 1;
}
}
return 0;
}
const struct dpll_params *get_dpll_mpu_params(void)
{
int ind = get_sys_clk_index();
int freq = am335x_get_efuse_mpu_max_freq(cdev);
if (bone_not_connected_to_ac_power())
freq = MPUPLL_M_600;
if (board_is_pb() || board_is_bone_lt())
freq = MPUPLL_M_1000;
switch (freq) {
case MPUPLL_M_1000:
return &dpll_mpu_opp[ind][5];
case MPUPLL_M_800:
return &dpll_mpu_opp[ind][4];
case MPUPLL_M_720:
return &dpll_mpu_opp[ind][3];
case MPUPLL_M_600:
return &dpll_mpu_opp[ind][2];
case MPUPLL_M_500:
return &dpll_mpu_opp100;
case MPUPLL_M_300:
return &dpll_mpu_opp[ind][0];
}
return &dpll_mpu_opp[ind][0];
}
static void scale_vcores_bone(int freq)
{
int usb_cur_lim, mpu_vdd;
/*
* Only perform PMIC configurations if board rev > A1
* on Beaglebone White
*/
if (board_is_bone() && !strncmp(board_ti_get_rev(), "00A1", 4))
return;
if (power_tps65217_init(0))
return;
/*
* On Beaglebone White we need to ensure we have AC power
* before increasing the frequency.
*/
if (bone_not_connected_to_ac_power())
freq = MPUPLL_M_600;
/*
* Override what we have detected since we know if we have
* a Beaglebone Black it supports 1GHz.
*/
if (board_is_pb() || board_is_bone_lt())
freq = MPUPLL_M_1000;
switch (freq) {
case MPUPLL_M_1000:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1325MV;
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1800MA;
break;
case MPUPLL_M_800:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1275MV;
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
break;
case MPUPLL_M_720:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1200MV;
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
break;
case MPUPLL_M_600:
case MPUPLL_M_500:
case MPUPLL_M_300:
default:
mpu_vdd = TPS65217_DCDC_VOLT_SEL_1100MV;
usb_cur_lim = TPS65217_USB_INPUT_CUR_LIMIT_1300MA;
break;
}
if (tps65217_reg_write(TPS65217_PROT_LEVEL_NONE,
TPS65217_POWER_PATH,
usb_cur_lim,
TPS65217_USB_INPUT_CUR_LIMIT_MASK))
puts("tps65217_reg_write failure\n");
/* Set DCDC3 (CORE) voltage to 1.10V */
if (tps65217_voltage_update(TPS65217_DEFDCDC3,
TPS65217_DCDC_VOLT_SEL_1100MV)) {
puts("tps65217_voltage_update failure\n");
return;
}
/* Set DCDC2 (MPU) voltage */
if (tps65217_voltage_update(TPS65217_DEFDCDC2, mpu_vdd)) {
puts("tps65217_voltage_update failure\n");
return;
}
/*
* Set LDO3, LDO4 output voltage to 3.3V for Beaglebone.
* Set LDO3 to 1.8V and LDO4 to 3.3V for Beaglebone Black.
*/
if (board_is_bone()) {
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS1,
TPS65217_LDO_VOLTAGE_OUT_3_3,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
} else {
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS1,
TPS65217_LDO_VOLTAGE_OUT_1_8,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
}
if (tps65217_reg_write(TPS65217_PROT_LEVEL_2,
TPS65217_DEFLS2,
TPS65217_LDO_VOLTAGE_OUT_3_3,
TPS65217_LDO_MASK))
puts("tps65217_reg_write failure\n");
}
void scale_vcores_generic(int freq)
{
int sil_rev, mpu_vdd;
/*
* The GP EVM, IDK and EVM SK use a TPS65910 PMIC. For all
* MPU frequencies we support we use a CORE voltage of
* 1.10V. For MPU voltage we need to switch based on
* the frequency we are running at.
*/
if (power_tps65910_init(0))
return;
/*
* Depending on MPU clock and PG we will need a different
* VDD to drive at that speed.
*/
sil_rev = readl(&cdev->deviceid) >> 28;
mpu_vdd = am335x_get_tps65910_mpu_vdd(sil_rev, freq);
/* Tell the TPS65910 to use i2c */
tps65910_set_i2c_control();
/* First update MPU voltage. */
if (tps65910_voltage_update(MPU, mpu_vdd))
return;
/* Second, update the CORE voltage. */
if (tps65910_voltage_update(CORE, TPS65910_OP_REG_SEL_1_1_0))
return;
}
void gpi2c_init(void)
{
/* When needed to be invoked prior to BSS initialization */
static bool first_time = true;
if (first_time) {
enable_i2c0_pin_mux();
first_time = false;
}
}
void scale_vcores(void)
{
int freq;
gpi2c_init();
freq = am335x_get_efuse_mpu_max_freq(cdev);
if (board_is_beaglebonex())
scale_vcores_bone(freq);
else
scale_vcores_generic(freq);
}
void set_uart_mux_conf(void)
{
#if CONFIG_CONS_INDEX == 1
enable_uart0_pin_mux();
#elif CONFIG_CONS_INDEX == 2
enable_uart1_pin_mux();
#elif CONFIG_CONS_INDEX == 3
enable_uart2_pin_mux();
#elif CONFIG_CONS_INDEX == 4
enable_uart3_pin_mux();
#elif CONFIG_CONS_INDEX == 5
enable_uart4_pin_mux();
#elif CONFIG_CONS_INDEX == 6
enable_uart5_pin_mux();
#endif
}
void set_mux_conf_regs(void)
{
enable_board_pin_mux();
}
const struct ctrl_ioregs ioregs_evmsk = {
.cm0ioctl = MT41J128MJT125_IOCTRL_VALUE,
.cm1ioctl = MT41J128MJT125_IOCTRL_VALUE,
.cm2ioctl = MT41J128MJT125_IOCTRL_VALUE,
.dt0ioctl = MT41J128MJT125_IOCTRL_VALUE,
.dt1ioctl = MT41J128MJT125_IOCTRL_VALUE,
};
const struct ctrl_ioregs ioregs_bonelt = {
.cm0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.cm2ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt0ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
.dt1ioctl = MT41K256M16HA125E_IOCTRL_VALUE,
};
const struct ctrl_ioregs ioregs_evm15 = {
.cm0ioctl = MT41J512M8RH125_IOCTRL_VALUE,
.cm1ioctl = MT41J512M8RH125_IOCTRL_VALUE,
.cm2ioctl = MT41J512M8RH125_IOCTRL_VALUE,
.dt0ioctl = MT41J512M8RH125_IOCTRL_VALUE,
.dt1ioctl = MT41J512M8RH125_IOCTRL_VALUE,
};
const struct ctrl_ioregs ioregs = {
.cm0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.cm1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.cm2ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.dt0ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
.dt1ioctl = MT47H128M16RT25E_IOCTRL_VALUE,
};
void sdram_init(void)
{
if (board_is_evm_sk()) {
/*
* EVM SK 1.2A and later use gpio0_7 to enable DDR3.
* This is safe enough to do on older revs.
*/
gpio_request(GPIO_DDR_VTT_EN, "ddr_vtt_en");
gpio_direction_output(GPIO_DDR_VTT_EN, 1);
}
if (board_is_icev2()) {
gpio_request(ICE_GPIO_DDR_VTT_EN, "ddr_vtt_en");
gpio_direction_output(ICE_GPIO_DDR_VTT_EN, 1);
}
if (board_is_evm_sk())
config_ddr(303, &ioregs_evmsk, &ddr3_data,
&ddr3_cmd_ctrl_data, &ddr3_emif_reg_data, 0);
else if (board_is_pb() || board_is_bone_lt())
config_ddr(400, &ioregs_bonelt,
&ddr3_beagleblack_data,
&ddr3_beagleblack_cmd_ctrl_data,
&ddr3_beagleblack_emif_reg_data, 0);
else if (board_is_evm_15_or_later())
config_ddr(303, &ioregs_evm15, &ddr3_evm_data,
&ddr3_evm_cmd_ctrl_data, &ddr3_evm_emif_reg_data, 0);
else if (board_is_icev2())
config_ddr(400, &ioregs_evmsk, &ddr3_icev2_data,
&ddr3_icev2_cmd_ctrl_data, &ddr3_icev2_emif_reg_data,
0);
else if (board_is_gp_evm())
config_ddr(266, &ioregs, &ddr2_data,
&ddr2_cmd_ctrl_data, &ddr2_evm_emif_reg_data, 0);
else
config_ddr(266, &ioregs, &ddr2_data,
&ddr2_cmd_ctrl_data, &ddr2_emif_reg_data, 0);
}
#endif
#if defined(CONFIG_CLOCK_SYNTHESIZER) && (!defined(CONFIG_SPL_BUILD) || \
(defined(CONFIG_SPL_ETH) && defined(CONFIG_SPL_BUILD)))
static void request_and_set_gpio(int gpio, char *name, int val)
{
int ret;
ret = gpio_request(gpio, name);
if (ret < 0) {
printf("%s: Unable to request %s\n", __func__, name);
return;
}
ret = gpio_direction_output(gpio, 0);
if (ret < 0) {
printf("%s: Unable to set %s as output\n", __func__, name);
goto err_free_gpio;
}
gpio_set_value(gpio, val);
return;
err_free_gpio:
gpio_free(gpio);
}
#define REQUEST_AND_SET_GPIO(N) request_and_set_gpio(N, #N, 1);
#define REQUEST_AND_CLR_GPIO(N) request_and_set_gpio(N, #N, 0);
/**
* RMII mode on ICEv2 board needs 50MHz clock. Given the clock
* synthesizer With a capacitor of 18pF, and 25MHz input clock cycle
* PLL1 gives an output of 100MHz. So, configuring the div2/3 as 2 to
* give 50MHz output for Eth0 and 1.
*/
static struct clk_synth cdce913_data = {
.id = 0x81,
.capacitor = 0x90,
.mux = 0x6d,
.pdiv2 = 0x2,
.pdiv3 = 0x2,
};
#endif
#if defined(CONFIG_OF_BOARD_SETUP) && defined(CONFIG_OF_CONTROL) && \
defined(CONFIG_DM_ETH) && defined(CONFIG_DRIVER_TI_CPSW)
#define MAX_CPSW_SLAVES 2
/* At the moment, we do not want to stop booting for any failures here */
int ft_board_setup(void *fdt, struct bd_info *bd)
{
const char *slave_path, *enet_name;
int enetnode, slavenode, phynode;
struct udevice *ethdev;
char alias[16];
u32 phy_id[2];
int phy_addr;
int i, ret;
/* phy address fixup needed only on beagle bone family */
if (!board_is_beaglebonex())
goto done;
for (i = 0; i < MAX_CPSW_SLAVES; i++) {
sprintf(alias, "ethernet%d", i);
slave_path = fdt_get_alias(fdt, alias);
if (!slave_path)
continue;
slavenode = fdt_path_offset(fdt, slave_path);
if (slavenode < 0)
continue;
enetnode = fdt_parent_offset(fdt, slavenode);
enet_name = fdt_get_name(fdt, enetnode, NULL);
ethdev = eth_get_dev_by_name(enet_name);
if (!ethdev)
continue;
phy_addr = cpsw_get_slave_phy_addr(ethdev, i);
/* check for phy_id as well as phy-handle properties */
ret = fdtdec_get_int_array_count(fdt, slavenode, "phy_id",
phy_id, 2);
if (ret == 2) {
if (phy_id[1] != phy_addr) {
printf("fixing up phy_id for %s, old: %d, new: %d\n",
alias, phy_id[1], phy_addr);
phy_id[0] = cpu_to_fdt32(phy_id[0]);
phy_id[1] = cpu_to_fdt32(phy_addr);
do_fixup_by_path(fdt, slave_path, "phy_id",
phy_id, sizeof(phy_id), 0);
}
} else {
phynode = fdtdec_lookup_phandle(fdt, slavenode,
"phy-handle");
if (phynode < 0)
continue;
ret = fdtdec_get_int(fdt, phynode, "reg", -ENOENT);
if (ret < 0)
continue;
if (ret != phy_addr) {
printf("fixing up phy-handle for %s, old: %d, new: %d\n",
alias, ret, phy_addr);
fdt_setprop_u32(fdt, phynode, "reg",
cpu_to_fdt32(phy_addr));
}
}
}
done:
return 0;
}
#endif
static bool __maybe_unused prueth_is_mii = true;
/*
* Basic board specific setup. Pinmux has been handled already.
*/
int board_init(void)
{
#if defined(CONFIG_HW_WATCHDOG)
hw_watchdog_init();
#endif
gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
#if defined(CONFIG_NOR) || defined(CONFIG_MTD_RAW_NAND)
gpmc_init();
#endif
#if defined(CONFIG_CLOCK_SYNTHESIZER) && (!defined(CONFIG_SPL_BUILD) || \
(defined(CONFIG_SPL_ETH) && defined(CONFIG_SPL_BUILD)))
if (board_is_icev2()) {
int rv;
u32 reg;
bool eth0_is_mii = true;
bool eth1_is_mii = true;
REQUEST_AND_SET_GPIO(GPIO_PR1_MII_CTRL);
/* Make J19 status available on GPIO1_26 */
REQUEST_AND_CLR_GPIO(GPIO_MUX_MII_CTRL);
REQUEST_AND_SET_GPIO(GPIO_FET_SWITCH_CTRL);
/*
* Both ports can be set as RMII-CPSW or MII-PRU-ETH using
* jumpers near the port. Read the jumper value and set
* the pinmux, external mux and PHY clock accordingly.
* As jumper line is overridden by PHY RX_DV pin immediately
* after bootstrap (power-up/reset), we need to sample
* it during PHY reset using GPIO rising edge detection.
*/
REQUEST_AND_SET_GPIO(GPIO_PHY_RESET);
/* Enable rising edge IRQ on GPIO0_11 and GPIO 1_26 */
reg = readl(GPIO0_RISINGDETECT) | BIT(11);
writel(reg, GPIO0_RISINGDETECT);
reg = readl(GPIO1_RISINGDETECT) | BIT(26);
writel(reg, GPIO1_RISINGDETECT);
/* Reset PHYs to capture the Jumper setting */
gpio_set_value(GPIO_PHY_RESET, 0);
udelay(2); /* PHY datasheet states 1uS min. */
gpio_set_value(GPIO_PHY_RESET, 1);
reg = readl(GPIO0_IRQSTATUSRAW) & BIT(11);
if (reg) {
writel(reg, GPIO0_IRQSTATUS1); /* clear irq */
/* RMII mode */
printf("ETH0, CPSW\n");
eth0_is_mii = false;
} else {
/* MII mode */
printf("ETH0, PRU\n");
cdce913_data.pdiv3 = 4; /* 25MHz PHY clk */
}
reg = readl(GPIO1_IRQSTATUSRAW) & BIT(26);
if (reg) {
writel(reg, GPIO1_IRQSTATUS1); /* clear irq */
/* RMII mode */
printf("ETH1, CPSW\n");
gpio_set_value(GPIO_MUX_MII_CTRL, 1);
eth1_is_mii = false;
} else {
/* MII mode */
printf("ETH1, PRU\n");
cdce913_data.pdiv2 = 4; /* 25MHz PHY clk */
}
if (eth0_is_mii != eth1_is_mii) {
printf("Unsupported Ethernet port configuration\n");
printf("Both ports must be set as RMII or MII\n");
hang();
}
prueth_is_mii = eth0_is_mii;
/* disable rising edge IRQs */
reg = readl(GPIO0_RISINGDETECT) & ~BIT(11);
writel(reg, GPIO0_RISINGDETECT);
reg = readl(GPIO1_RISINGDETECT) & ~BIT(26);
writel(reg, GPIO1_RISINGDETECT);
rv = setup_clock_synthesizer(&cdce913_data);
if (rv) {
printf("Clock synthesizer setup failed %d\n", rv);
return rv;
}
/* reset PHYs */
gpio_set_value(GPIO_PHY_RESET, 0);
udelay(2); /* PHY datasheet states 1uS min. */
gpio_set_value(GPIO_PHY_RESET, 1);
}
#endif
return 0;
}
#ifdef CONFIG_BOARD_LATE_INIT
int board_late_init(void)
{
struct udevice *dev;
#if !defined(CONFIG_SPL_BUILD)
uint8_t mac_addr[6];
uint32_t mac_hi, mac_lo;
#endif
#ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
char *name = NULL;
if (board_is_bone_lt()) {
/* BeagleBoard.org BeagleBone Black Wireless: */
if (!strncmp(board_ti_get_rev(), "BWA", 3)) {
name = "BBBW";
}
/* SeeedStudio BeagleBone Green Wireless */
if (!strncmp(board_ti_get_rev(), "GW1", 3)) {
name = "BBGW";
}
/* BeagleBoard.org BeagleBone Blue */
if (!strncmp(board_ti_get_rev(), "BLA", 3)) {
name = "BBBL";
}
}
if (board_is_bbg1())
name = "BBG1";
if (board_is_bben())
name = "BBEN";
set_board_info_env(name);
/*
* Default FIT boot on HS devices. Non FIT images are not allowed
* on HS devices.
*/
if (get_device_type() == HS_DEVICE)
env_set("boot_fit", "1");
#endif
#if !defined(CONFIG_SPL_BUILD)
/* try reading mac address from efuse */
mac_lo = readl(&cdev->macid0l);
mac_hi = readl(&cdev->macid0h);
mac_addr[0] = mac_hi & 0xFF;
mac_addr[1] = (mac_hi & 0xFF00) >> 8;
mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
mac_addr[4] = mac_lo & 0xFF;
mac_addr[5] = (mac_lo & 0xFF00) >> 8;
if (!env_get("ethaddr")) {
printf("<ethaddr> not set. Validating first E-fuse MAC\n");
if (is_valid_ethaddr(mac_addr))
eth_env_set_enetaddr("ethaddr", mac_addr);
}
mac_lo = readl(&cdev->macid1l);
mac_hi = readl(&cdev->macid1h);
mac_addr[0] = mac_hi & 0xFF;
mac_addr[1] = (mac_hi & 0xFF00) >> 8;
mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
mac_addr[4] = mac_lo & 0xFF;
mac_addr[5] = (mac_lo & 0xFF00) >> 8;
if (!env_get("eth1addr")) {
if (is_valid_ethaddr(mac_addr))
eth_env_set_enetaddr("eth1addr", mac_addr);
}
env_set("ice_mii", prueth_is_mii ? "mii" : "rmii");
#endif
if (!env_get("serial#")) {
char *board_serial = env_get("board_serial");
char *ethaddr = env_get("ethaddr");
if (!board_serial || !strncmp(board_serial, "unknown", 7))
env_set("serial#", ethaddr);
else
env_set("serial#", board_serial);
}
/* Just probe the potentially supported cdce913 device */
uclass_get_device_by_name(UCLASS_CLK, "cdce913@65", &dev);
return 0;
}
#endif
/* CPSW plat */
#if !CONFIG_IS_ENABLED(OF_CONTROL)
struct cpsw_slave_data slave_data[] = {
{
.slave_reg_ofs = CPSW_SLAVE0_OFFSET,
.sliver_reg_ofs = CPSW_SLIVER0_OFFSET,
.phy_addr = 0,
},
{
.slave_reg_ofs = CPSW_SLAVE1_OFFSET,
.sliver_reg_ofs = CPSW_SLIVER1_OFFSET,
.phy_addr = 1,
},
};
struct cpsw_platform_data am335_eth_data = {
.cpsw_base = CPSW_BASE,
.version = CPSW_CTRL_VERSION_2,
.bd_ram_ofs = CPSW_BD_OFFSET,
.ale_reg_ofs = CPSW_ALE_OFFSET,
.cpdma_reg_ofs = CPSW_CPDMA_OFFSET,
.mdio_div = CPSW_MDIO_DIV,
.host_port_reg_ofs = CPSW_HOST_PORT_OFFSET,
.channels = 8,
.slaves = 2,
.slave_data = slave_data,
.ale_entries = 1024,
.mac_control = 0x20,
.active_slave = 0,
.mdio_base = 0x4a101000,
.gmii_sel = 0x44e10650,
.phy_sel_compat = "ti,am3352-cpsw-phy-sel",
.syscon_addr = 0x44e10630,
.macid_sel_compat = "cpsw,am33xx",
};
struct eth_pdata cpsw_pdata = {
.iobase = 0x4a100000,
.phy_interface = 0,
.priv_pdata = &am335_eth_data,
};
U_BOOT_DRVINFO(am335x_eth) = {
.name = "eth_cpsw",
.plat = &cpsw_pdata,
};
#endif
#ifdef CONFIG_SPL_LOAD_FIT
int board_fit_config_name_match(const char *name)
{
if (board_is_gp_evm() && !strcmp(name, "am335x-evm"))
return 0;
else if (board_is_bone() && !strcmp(name, "am335x-bone"))
return 0;
else if (board_is_bone_lt() && !strcmp(name, "am335x-boneblack"))
return 0;
else if (board_is_pb() && !strcmp(name, "am335x-pocketbeagle"))
return 0;
else if (board_is_evm_sk() && !strcmp(name, "am335x-evmsk"))
return 0;
else if (board_is_bbg1() && !strcmp(name, "am335x-bonegreen"))
return 0;
else if (board_is_icev2() && !strcmp(name, "am335x-icev2"))
return 0;
else if (board_is_bben() && !strcmp(name, "am335x-sancloud-bbe"))
return 0;
else
return -1;
}
#endif
#ifdef CONFIG_TI_SECURE_DEVICE
void board_fit_image_post_process(const void *fit, int node, void **p_image,
size_t *p_size)
{
secure_boot_verify_image(p_image, p_size);
}
#endif
#if !CONFIG_IS_ENABLED(OF_CONTROL)
static const struct omap_hsmmc_plat am335x_mmc0_plat = {
.base_addr = (struct hsmmc *)OMAP_HSMMC1_BASE,
.cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_4BIT,
.cfg.f_min = 400000,
.cfg.f_max = 52000000,
.cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195,
.cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
};
U_BOOT_DRVINFO(am335x_mmc0) = {
.name = "omap_hsmmc",
.plat = &am335x_mmc0_plat,
};
static const struct omap_hsmmc_plat am335x_mmc1_plat = {
.base_addr = (struct hsmmc *)OMAP_HSMMC2_BASE,
.cfg.host_caps = MMC_MODE_HS_52MHz | MMC_MODE_HS | MMC_MODE_8BIT,
.cfg.f_min = 400000,
.cfg.f_max = 52000000,
.cfg.voltages = MMC_VDD_32_33 | MMC_VDD_33_34 | MMC_VDD_165_195,
.cfg.b_max = CONFIG_SYS_MMC_MAX_BLK_COUNT,
};
U_BOOT_DRVINFO(am335x_mmc1) = {
.name = "omap_hsmmc",
.plat = &am335x_mmc1_plat,
};
#endif