blob: 38eff495ab1cf00881130dc2b02f8d6707eeaa67 [file] [log] [blame]
/*
* ***************************************************************************
* Copyright (C) 2015 Marvell International Ltd.
* ***************************************************************************
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 2 of the License, or any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
* ***************************************************************************
*/
/* pcie_advk.c
*
* Ported from Linux driver - driver/pci/host/pci-aardvark.c
*
* Author: Victor Gu <xigu@marvell.com>
* Hezi Shahmoon <hezi.shahmoon@marvell.com>
*
*/
#include <common.h>
#include <dm.h>
#include <pci.h>
#include <asm/io.h>
#include <asm-generic/gpio.h>
#include <dm/device_compat.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/ioport.h>
/* PCIe core registers */
#define PCIE_CORE_CMD_STATUS_REG 0x4
#define PCIE_CORE_CMD_IO_ACCESS_EN BIT(0)
#define PCIE_CORE_CMD_MEM_ACCESS_EN BIT(1)
#define PCIE_CORE_CMD_MEM_IO_REQ_EN BIT(2)
#define PCIE_CORE_DEV_REV_REG 0x8
#define PCIE_CORE_EXP_ROM_BAR_REG 0x30
#define PCIE_CORE_PCIEXP_CAP_OFF 0xc0
#define PCIE_CORE_DEV_CTRL_STATS_REG 0xc8
#define PCIE_CORE_DEV_CTRL_STATS_RELAX_ORDER_DISABLE (0 << 4)
#define PCIE_CORE_DEV_CTRL_STATS_SNOOP_DISABLE (0 << 11)
#define PCIE_CORE_DEV_CTRL_STATS_MAX_PAYLOAD_SIZE 0x2
#define PCIE_CORE_DEV_CTRL_STATS_MAX_PAYLOAD_SIZE_SHIFT 5
#define PCIE_CORE_DEV_CTRL_STATS_MAX_RD_REQ_SIZE 0x2
#define PCIE_CORE_DEV_CTRL_STATS_MAX_RD_REQ_SIZE_SHIFT 12
#define PCIE_CORE_LINK_CTRL_STAT_REG 0xd0
#define PCIE_CORE_LINK_TRAINING BIT(5)
#define PCIE_CORE_ERR_CAPCTL_REG 0x118
#define PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX BIT(5)
#define PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX_EN BIT(6)
#define PCIE_CORE_ERR_CAPCTL_ECRC_CHECK BIT(7)
#define PCIE_CORE_ERR_CAPCTL_ECRC_CHECK_RCV BIT(8)
/* PIO registers base address and register offsets */
#define PIO_BASE_ADDR 0x4000
#define PIO_CTRL (PIO_BASE_ADDR + 0x0)
#define PIO_CTRL_TYPE_MASK GENMASK(3, 0)
#define PIO_CTRL_ADDR_WIN_DISABLE BIT(24)
#define PIO_STAT (PIO_BASE_ADDR + 0x4)
#define PIO_COMPLETION_STATUS_SHIFT 7
#define PIO_COMPLETION_STATUS_MASK GENMASK(9, 7)
#define PIO_COMPLETION_STATUS_OK 0
#define PIO_COMPLETION_STATUS_UR 1
#define PIO_COMPLETION_STATUS_CRS 2
#define PIO_COMPLETION_STATUS_CA 4
#define PIO_NON_POSTED_REQ BIT(10)
#define PIO_ERR_STATUS BIT(11)
#define PIO_ADDR_LS (PIO_BASE_ADDR + 0x8)
#define PIO_ADDR_MS (PIO_BASE_ADDR + 0xc)
#define PIO_WR_DATA (PIO_BASE_ADDR + 0x10)
#define PIO_WR_DATA_STRB (PIO_BASE_ADDR + 0x14)
#define PIO_RD_DATA (PIO_BASE_ADDR + 0x18)
#define PIO_START (PIO_BASE_ADDR + 0x1c)
#define PIO_ISR (PIO_BASE_ADDR + 0x20)
/* Aardvark Control registers */
#define CONTROL_BASE_ADDR 0x4800
#define PCIE_CORE_CTRL0_REG (CONTROL_BASE_ADDR + 0x0)
#define PCIE_GEN_SEL_MSK 0x3
#define PCIE_GEN_SEL_SHIFT 0x0
#define SPEED_GEN_1 0
#define SPEED_GEN_2 1
#define SPEED_GEN_3 2
#define IS_RC_MSK 1
#define IS_RC_SHIFT 2
#define LANE_CNT_MSK 0x18
#define LANE_CNT_SHIFT 0x3
#define LANE_COUNT_1 (0 << LANE_CNT_SHIFT)
#define LANE_COUNT_2 (1 << LANE_CNT_SHIFT)
#define LANE_COUNT_4 (2 << LANE_CNT_SHIFT)
#define LANE_COUNT_8 (3 << LANE_CNT_SHIFT)
#define LINK_TRAINING_EN BIT(6)
#define PCIE_CORE_CTRL2_REG (CONTROL_BASE_ADDR + 0x8)
#define PCIE_CORE_CTRL2_RESERVED 0x7
#define PCIE_CORE_CTRL2_TD_ENABLE BIT(4)
#define PCIE_CORE_CTRL2_STRICT_ORDER_ENABLE BIT(5)
#define PCIE_CORE_CTRL2_ADDRWIN_MAP_ENABLE BIT(6)
/* PCIe window configuration */
#define OB_WIN_BASE_ADDR 0x4c00
#define OB_WIN_BLOCK_SIZE 0x20
#define OB_WIN_COUNT 8
#define OB_WIN_REG_ADDR(win, offset) (OB_WIN_BASE_ADDR + \
OB_WIN_BLOCK_SIZE * (win) + \
(offset))
#define OB_WIN_MATCH_LS(win) OB_WIN_REG_ADDR(win, 0x00)
#define OB_WIN_ENABLE BIT(0)
#define OB_WIN_MATCH_MS(win) OB_WIN_REG_ADDR(win, 0x04)
#define OB_WIN_REMAP_LS(win) OB_WIN_REG_ADDR(win, 0x08)
#define OB_WIN_REMAP_MS(win) OB_WIN_REG_ADDR(win, 0x0c)
#define OB_WIN_MASK_LS(win) OB_WIN_REG_ADDR(win, 0x10)
#define OB_WIN_MASK_MS(win) OB_WIN_REG_ADDR(win, 0x14)
#define OB_WIN_ACTIONS(win) OB_WIN_REG_ADDR(win, 0x18)
#define OB_WIN_DEFAULT_ACTIONS (OB_WIN_ACTIONS(OB_WIN_COUNT-1) + 0x4)
#define OB_WIN_FUNC_NUM_MASK GENMASK(31, 24)
#define OB_WIN_FUNC_NUM_SHIFT 24
#define OB_WIN_FUNC_NUM_ENABLE BIT(23)
#define OB_WIN_BUS_NUM_BITS_MASK GENMASK(22, 20)
#define OB_WIN_BUS_NUM_BITS_SHIFT 20
#define OB_WIN_MSG_CODE_ENABLE BIT(22)
#define OB_WIN_MSG_CODE_MASK GENMASK(21, 14)
#define OB_WIN_MSG_CODE_SHIFT 14
#define OB_WIN_MSG_PAYLOAD_LEN BIT(12)
#define OB_WIN_ATTR_ENABLE BIT(11)
#define OB_WIN_ATTR_TC_MASK GENMASK(10, 8)
#define OB_WIN_ATTR_TC_SHIFT 8
#define OB_WIN_ATTR_RELAXED BIT(7)
#define OB_WIN_ATTR_NOSNOOP BIT(6)
#define OB_WIN_ATTR_POISON BIT(5)
#define OB_WIN_ATTR_IDO BIT(4)
#define OB_WIN_TYPE_MASK GENMASK(3, 0)
#define OB_WIN_TYPE_SHIFT 0
#define OB_WIN_TYPE_MEM 0x0
#define OB_WIN_TYPE_IO 0x4
#define OB_WIN_TYPE_CONFIG_TYPE0 0x8
#define OB_WIN_TYPE_CONFIG_TYPE1 0x9
#define OB_WIN_TYPE_MSG 0xc
/* LMI registers base address and register offsets */
#define LMI_BASE_ADDR 0x6000
#define CFG_REG (LMI_BASE_ADDR + 0x0)
#define LTSSM_SHIFT 24
#define LTSSM_MASK 0x3f
#define LTSSM_L0 0x10
#define LTSSM_DISABLED 0x20
#define VENDOR_ID_REG (LMI_BASE_ADDR + 0x44)
/* PCIe core controller registers */
#define CTRL_CORE_BASE_ADDR 0x18000
#define CTRL_CONFIG_REG (CTRL_CORE_BASE_ADDR + 0x0)
#define CTRL_MODE_SHIFT 0x0
#define CTRL_MODE_MASK 0x1
#define PCIE_CORE_MODE_DIRECT 0x0
#define PCIE_CORE_MODE_COMMAND 0x1
/* Transaction types */
#define PCIE_CONFIG_RD_TYPE0 0x8
#define PCIE_CONFIG_RD_TYPE1 0x9
#define PCIE_CONFIG_WR_TYPE0 0xa
#define PCIE_CONFIG_WR_TYPE1 0xb
/* PCI_BDF shifts 8bit, so we need extra 4bit shift */
#define PCIE_BDF(b, d, f) (PCI_BDF(b, d, f) << 4)
#define PCIE_CONF_BUS(bus) (((bus) & 0xff) << 20)
#define PCIE_CONF_DEV(dev) (((dev) & 0x1f) << 15)
#define PCIE_CONF_FUNC(fun) (((fun) & 0x7) << 12)
#define PCIE_CONF_REG(reg) ((reg) & 0xffc)
#define PCIE_CONF_ADDR(bus, devfn, where) \
(PCIE_CONF_BUS(bus) | PCIE_CONF_DEV(PCI_SLOT(devfn)) | \
PCIE_CONF_FUNC(PCI_FUNC(devfn)) | PCIE_CONF_REG(where))
/* PCIe Retries & Timeout definitions */
#define PIO_MAX_RETRIES 1500
#define PIO_WAIT_TIMEOUT 1000
#define LINK_MAX_RETRIES 10
#define LINK_WAIT_TIMEOUT 100000
#define CFG_RD_CRS_VAL 0xFFFF0001
/**
* struct pcie_advk - Advk PCIe controller state
*
* @base: The base address of the register space.
* @first_busno: Bus number of the PCIe root-port.
* This may vary depending on the PCIe setup.
* @sec_busno: Bus number for the device behind the PCIe root-port.
* @dev: The pointer to PCI uclass device.
* @reset_gpio: GPIO descriptor for PERST.
* @cfgcache: Buffer for emulation of PCIe Root Port's PCI Bridge registers
* that are not available on Aardvark.
* @cfgcrssve: For CRSSVE emulation.
*/
struct pcie_advk {
void *base;
int first_busno;
int sec_busno;
struct udevice *dev;
struct gpio_desc reset_gpio;
u32 cfgcache[0x34 - 0x10];
bool cfgcrssve;
};
static inline void advk_writel(struct pcie_advk *pcie, uint val, uint reg)
{
writel(val, pcie->base + reg);
}
static inline uint advk_readl(struct pcie_advk *pcie, uint reg)
{
return readl(pcie->base + reg);
}
/**
* pcie_advk_addr_valid() - Check for valid bus address
*
* @pcie: Pointer to the PCI bus
* @busno: Bus number of PCI device
* @dev: Device number of PCI device
* @func: Function number of PCI device
* @bdf: The PCI device to access
*
* Return: true on valid, false on invalid
*/
static bool pcie_advk_addr_valid(struct pcie_advk *pcie,
int busno, u8 dev, u8 func)
{
/* On the primary (local) bus there is only one PCI Bridge */
if (busno == pcie->first_busno && (dev != 0 || func != 0))
return false;
/*
* In PCI-E only a single device (0) can exist on the secondary bus.
* Beyond the secondary bus, there might be a Switch and anything is
* possible.
*/
if (busno == pcie->sec_busno && dev != 0)
return false;
return true;
}
/**
* pcie_advk_wait_pio() - Wait for PIO access to be accomplished
*
* @pcie: The PCI device to access
*
* Wait up to 1.5 seconds for PIO access to be accomplished.
*
* Return positive - retry count if PIO access is accomplished.
* Return negative - error if PIO access is timed out.
*/
static int pcie_advk_wait_pio(struct pcie_advk *pcie)
{
uint start, isr;
uint count;
for (count = 1; count <= PIO_MAX_RETRIES; count++) {
start = advk_readl(pcie, PIO_START);
isr = advk_readl(pcie, PIO_ISR);
if (!start && isr)
return count;
/*
* Do not check the PIO state too frequently,
* 100us delay is appropriate.
*/
udelay(PIO_WAIT_TIMEOUT);
}
dev_err(pcie->dev, "PIO read/write transfer time out\n");
return -ETIMEDOUT;
}
/**
* pcie_advk_check_pio_status() - Validate PIO status and get the read result
*
* @pcie: Pointer to the PCI bus
* @allow_crs: Only for read requests, if CRS response is allowed
* @read_val: Pointer to the read result
*
* Return: 0 on success
*/
static int pcie_advk_check_pio_status(struct pcie_advk *pcie,
bool allow_crs,
uint *read_val)
{
int ret;
uint reg;
unsigned int status;
char *strcomp_status, *str_posted;
reg = advk_readl(pcie, PIO_STAT);
status = (reg & PIO_COMPLETION_STATUS_MASK) >>
PIO_COMPLETION_STATUS_SHIFT;
switch (status) {
case PIO_COMPLETION_STATUS_OK:
if (reg & PIO_ERR_STATUS) {
strcomp_status = "COMP_ERR";
ret = -EFAULT;
break;
}
/* Get the read result */
if (read_val)
*read_val = advk_readl(pcie, PIO_RD_DATA);
/* No error */
strcomp_status = NULL;
ret = 0;
break;
case PIO_COMPLETION_STATUS_UR:
strcomp_status = "UR";
ret = -EOPNOTSUPP;
break;
case PIO_COMPLETION_STATUS_CRS:
if (allow_crs && read_val) {
/* For reading, CRS is not an error status. */
*read_val = CFG_RD_CRS_VAL;
strcomp_status = NULL;
ret = 0;
} else {
strcomp_status = "CRS";
ret = -EAGAIN;
}
break;
case PIO_COMPLETION_STATUS_CA:
strcomp_status = "CA";
ret = -ECANCELED;
break;
default:
strcomp_status = "Unknown";
ret = -EINVAL;
break;
}
if (!strcomp_status)
return ret;
if (reg & PIO_NON_POSTED_REQ)
str_posted = "Non-posted";
else
str_posted = "Posted";
dev_dbg(pcie->dev, "%s PIO Response Status: %s, %#x @ %#x\n",
str_posted, strcomp_status, reg,
advk_readl(pcie, PIO_ADDR_LS));
return ret;
}
/**
* pcie_advk_read_config() - Read from configuration space
*
* @bus: Pointer to the PCI bus
* @bdf: Identifies the PCIe device to access
* @offset: The offset into the device's configuration space
* @valuep: A pointer at which to store the read value
* @size: Indicates the size of access to perform
*
* Read a value of size @size from offset @offset within the configuration
* space of the device identified by the bus, device & function numbers in @bdf
* on the PCI bus @bus.
*
* Return: 0 on success
*/
static int pcie_advk_read_config(const struct udevice *bus, pci_dev_t bdf,
uint offset, ulong *valuep,
enum pci_size_t size)
{
struct pcie_advk *pcie = dev_get_priv(bus);
int busno = PCI_BUS(bdf) - dev_seq(bus);
int retry_count;
bool allow_crs;
ulong data;
uint reg;
int ret;
dev_dbg(pcie->dev, "PCIE CFG read: (b,d,f)=(%2d,%2d,%2d) ",
PCI_BUS(bdf), PCI_DEV(bdf), PCI_FUNC(bdf));
if (!pcie_advk_addr_valid(pcie, busno, PCI_DEV(bdf), PCI_FUNC(bdf))) {
dev_dbg(pcie->dev, "- out of range\n");
*valuep = pci_get_ff(size);
return 0;
}
/*
* The configuration space of the PCI Bridge on primary (local) bus is
* not accessible via PIO transfers like all other PCIe devices. PCI
* Bridge config registers are available directly in Aardvark memory
* space starting at offset zero. Moreover PCI Bridge registers in the
* range 0x10 - 0x34 are not available and register 0x38 (Expansion ROM
* Base Address) is at offset 0x30.
* We therefore read configuration space content of the primary PCI
* Bridge from our virtual cache.
*/
if (busno == pcie->first_busno) {
if (offset >= 0x10 && offset < 0x34)
data = pcie->cfgcache[(offset - 0x10) / 4];
else if ((offset & ~3) == PCI_ROM_ADDRESS1)
data = advk_readl(pcie, PCIE_CORE_EXP_ROM_BAR_REG);
else
data = advk_readl(pcie, offset & ~3);
if ((offset & ~3) == (PCI_HEADER_TYPE & ~3)) {
/*
* Change Header Type of PCI Bridge device to Type 1
* (0x01, used by PCI Bridges) because hardwired value
* is Type 0 (0x00, used by Endpoint devices).
*/
data &= ~0x007f0000;
data |= PCI_HEADER_TYPE_BRIDGE << 16;
}
if ((offset & ~3) == PCIE_CORE_PCIEXP_CAP_OFF + PCI_EXP_RTCTL) {
/* CRSSVE bit is stored only in cache */
if (pcie->cfgcrssve)
data |= PCI_EXP_RTCTL_CRSSVE;
}
if ((offset & ~3) == PCIE_CORE_PCIEXP_CAP_OFF +
(PCI_EXP_RTCAP & ~3)) {
/* CRS is emulated below, so set CRSVIS capability */
data |= PCI_EXP_RTCAP_CRSVIS << 16;
}
*valuep = pci_conv_32_to_size(data, offset, size);
return 0;
}
/*
* Returning fabricated CRS value (0xFFFF0001) by PCIe Root Complex to
* OS is allowed only for 4-byte PCI_VENDOR_ID config read request and
* only when CRSSVE bit in Root Port PCIe device is enabled. In all
* other error PCIe Root Complex must return all-ones.
*
* U-Boot currently does not support handling of CRS return value for
* PCI_VENDOR_ID config read request and also does not set CRSSVE bit.
* So it means that pcie->cfgcrssve is false. But the code is prepared
* for returning CRS, so that if U-Boot does support CRS in the future,
* it will work for Aardvark.
*/
allow_crs = pcie->cfgcrssve;
if (advk_readl(pcie, PIO_START)) {
dev_err(pcie->dev,
"Previous PIO read/write transfer is still running\n");
if (allow_crs) {
*valuep = CFG_RD_CRS_VAL;
return 0;
}
*valuep = pci_get_ff(size);
return -EAGAIN;
}
/* Program the control register */
reg = advk_readl(pcie, PIO_CTRL);
reg &= ~PIO_CTRL_TYPE_MASK;
if (busno == pcie->sec_busno)
reg |= PCIE_CONFIG_RD_TYPE0;
else
reg |= PCIE_CONFIG_RD_TYPE1;
advk_writel(pcie, reg, PIO_CTRL);
/* Program the address registers */
reg = PCIE_BDF(busno, PCI_DEV(bdf), PCI_FUNC(bdf)) | PCIE_CONF_REG(offset);
advk_writel(pcie, reg, PIO_ADDR_LS);
advk_writel(pcie, 0, PIO_ADDR_MS);
retry_count = 0;
retry:
/* Start the transfer */
advk_writel(pcie, 1, PIO_ISR);
advk_writel(pcie, 1, PIO_START);
ret = pcie_advk_wait_pio(pcie);
if (ret < 0) {
if (allow_crs) {
*valuep = CFG_RD_CRS_VAL;
return 0;
}
*valuep = pci_get_ff(size);
return ret;
}
retry_count += ret;
/* Check PIO status and get the read result */
ret = pcie_advk_check_pio_status(pcie, allow_crs, &reg);
if (ret == -EAGAIN && retry_count < PIO_MAX_RETRIES)
goto retry;
if (ret) {
*valuep = pci_get_ff(size);
return ret;
}
dev_dbg(pcie->dev, "(addr,size,val)=(0x%04x, %d, 0x%08x)\n",
offset, size, reg);
*valuep = pci_conv_32_to_size(reg, offset, size);
return 0;
}
/**
* pcie_calc_datastrobe() - Calculate data strobe
*
* @offset: The offset into the device's configuration space
* @size: Indicates the size of access to perform
*
* Calculate data strobe according to offset and size
*
*/
static uint pcie_calc_datastrobe(uint offset, enum pci_size_t size)
{
uint bytes, data_strobe;
switch (size) {
case PCI_SIZE_8:
bytes = 1;
break;
case PCI_SIZE_16:
bytes = 2;
break;
default:
bytes = 4;
}
data_strobe = GENMASK(bytes - 1, 0) << (offset & 0x3);
return data_strobe;
}
/**
* pcie_advk_write_config() - Write to configuration space
*
* @bus: Pointer to the PCI bus
* @bdf: Identifies the PCIe device to access
* @offset: The offset into the device's configuration space
* @value: The value to write
* @size: Indicates the size of access to perform
*
* Write the value @value of size @size from offset @offset within the
* configuration space of the device identified by the bus, device & function
* numbers in @bdf on the PCI bus @bus.
*
* Return: 0 on success
*/
static int pcie_advk_write_config(struct udevice *bus, pci_dev_t bdf,
uint offset, ulong value,
enum pci_size_t size)
{
struct pcie_advk *pcie = dev_get_priv(bus);
int busno = PCI_BUS(bdf) - dev_seq(bus);
int retry_count;
ulong data;
uint reg;
int ret;
dev_dbg(pcie->dev, "PCIE CFG write: (b,d,f)=(%2d,%2d,%2d) ",
PCI_BUS(bdf), PCI_DEV(bdf), PCI_FUNC(bdf));
dev_dbg(pcie->dev, "(addr,size,val)=(0x%04x, %d, 0x%08lx)\n",
offset, size, value);
if (!pcie_advk_addr_valid(pcie, busno, PCI_DEV(bdf), PCI_FUNC(bdf))) {
dev_dbg(pcie->dev, "- out of range\n");
return 0;
}
/*
* As explained in pcie_advk_read_config(), for the configuration
* space of the primary PCI Bridge, we write the content into virtual
* cache.
*/
if (busno == pcie->first_busno) {
if (offset >= 0x10 && offset < 0x34) {
data = pcie->cfgcache[(offset - 0x10) / 4];
data = pci_conv_size_to_32(data, value, offset, size);
pcie->cfgcache[(offset - 0x10) / 4] = data;
} else if ((offset & ~3) == PCI_ROM_ADDRESS1) {
data = advk_readl(pcie, PCIE_CORE_EXP_ROM_BAR_REG);
data = pci_conv_size_to_32(data, value, offset, size);
advk_writel(pcie, data, PCIE_CORE_EXP_ROM_BAR_REG);
} else {
data = advk_readl(pcie, offset & ~3);
data = pci_conv_size_to_32(data, value, offset, size);
advk_writel(pcie, data, offset & ~3);
}
if (offset == PCI_PRIMARY_BUS)
pcie->first_busno = data & 0xff;
if (offset == PCI_SECONDARY_BUS ||
(offset == PCI_PRIMARY_BUS && size != PCI_SIZE_8))
pcie->sec_busno = (data >> 8) & 0xff;
if ((offset & ~3) == PCIE_CORE_PCIEXP_CAP_OFF + PCI_EXP_RTCTL)
pcie->cfgcrssve = data & PCI_EXP_RTCTL_CRSSVE;
return 0;
}
if (advk_readl(pcie, PIO_START)) {
dev_err(pcie->dev,
"Previous PIO read/write transfer is still running\n");
return -EAGAIN;
}
/* Program the control register */
reg = advk_readl(pcie, PIO_CTRL);
reg &= ~PIO_CTRL_TYPE_MASK;
if (busno == pcie->sec_busno)
reg |= PCIE_CONFIG_WR_TYPE0;
else
reg |= PCIE_CONFIG_WR_TYPE1;
advk_writel(pcie, reg, PIO_CTRL);
/* Program the address registers */
reg = PCIE_BDF(busno, PCI_DEV(bdf), PCI_FUNC(bdf)) | PCIE_CONF_REG(offset);
advk_writel(pcie, reg, PIO_ADDR_LS);
advk_writel(pcie, 0, PIO_ADDR_MS);
dev_dbg(pcie->dev, "\tPIO req. - addr = 0x%08x\n", reg);
/* Program the data register */
reg = pci_conv_size_to_32(0, value, offset, size);
advk_writel(pcie, reg, PIO_WR_DATA);
dev_dbg(pcie->dev, "\tPIO req. - val = 0x%08x\n", reg);
/* Program the data strobe */
reg = pcie_calc_datastrobe(offset, size);
advk_writel(pcie, reg, PIO_WR_DATA_STRB);
dev_dbg(pcie->dev, "\tPIO req. - strb = 0x%02x\n", reg);
retry_count = 0;
retry:
/* Start the transfer */
advk_writel(pcie, 1, PIO_ISR);
advk_writel(pcie, 1, PIO_START);
ret = pcie_advk_wait_pio(pcie);
if (ret < 0)
return ret;
retry_count += ret;
/* Check PIO status */
ret = pcie_advk_check_pio_status(pcie, false, NULL);
if (ret == -EAGAIN && retry_count < PIO_MAX_RETRIES)
goto retry;
return ret;
}
/**
* pcie_advk_link_up() - Check if PCIe link is up or not
*
* @pcie: The PCI device to access
*
* Return 1 (true) on link up.
* Return 0 (false) on link down.
*/
static int pcie_advk_link_up(struct pcie_advk *pcie)
{
u32 val, ltssm_state;
val = advk_readl(pcie, CFG_REG);
ltssm_state = (val >> LTSSM_SHIFT) & LTSSM_MASK;
return ltssm_state >= LTSSM_L0 && ltssm_state < LTSSM_DISABLED;
}
/**
* pcie_advk_wait_for_link() - Wait for link training to be accomplished
*
* @pcie: The PCI device to access
*
* Wait up to 1 second for link training to be accomplished.
*
* Return 1 (true) if link training ends up with link up success.
* Return 0 (false) if link training ends up with link up failure.
*/
static int pcie_advk_wait_for_link(struct pcie_advk *pcie)
{
int retries;
/* check if the link is up or not */
for (retries = 0; retries < LINK_MAX_RETRIES; retries++) {
if (pcie_advk_link_up(pcie)) {
printf("PCIe: Link up\n");
return 0;
}
udelay(LINK_WAIT_TIMEOUT);
}
printf("PCIe: Link down\n");
return -ETIMEDOUT;
}
/*
* Set PCIe address window register which could be used for memory
* mapping.
*/
static void pcie_advk_set_ob_win(struct pcie_advk *pcie, u8 win_num,
phys_addr_t match, phys_addr_t remap,
phys_addr_t mask, u32 actions)
{
advk_writel(pcie, OB_WIN_ENABLE |
lower_32_bits(match), OB_WIN_MATCH_LS(win_num));
advk_writel(pcie, upper_32_bits(match), OB_WIN_MATCH_MS(win_num));
advk_writel(pcie, lower_32_bits(remap), OB_WIN_REMAP_LS(win_num));
advk_writel(pcie, upper_32_bits(remap), OB_WIN_REMAP_MS(win_num));
advk_writel(pcie, lower_32_bits(mask), OB_WIN_MASK_LS(win_num));
advk_writel(pcie, upper_32_bits(mask), OB_WIN_MASK_MS(win_num));
advk_writel(pcie, actions, OB_WIN_ACTIONS(win_num));
}
static void pcie_advk_disable_ob_win(struct pcie_advk *pcie, u8 win_num)
{
advk_writel(pcie, 0, OB_WIN_MATCH_LS(win_num));
advk_writel(pcie, 0, OB_WIN_MATCH_MS(win_num));
advk_writel(pcie, 0, OB_WIN_REMAP_LS(win_num));
advk_writel(pcie, 0, OB_WIN_REMAP_MS(win_num));
advk_writel(pcie, 0, OB_WIN_MASK_LS(win_num));
advk_writel(pcie, 0, OB_WIN_MASK_MS(win_num));
advk_writel(pcie, 0, OB_WIN_ACTIONS(win_num));
}
static void pcie_advk_set_ob_region(struct pcie_advk *pcie, int *wins,
struct pci_region *region, u32 actions)
{
phys_addr_t phys_start = region->phys_start;
pci_addr_t bus_start = region->bus_start;
pci_size_t size = region->size;
phys_addr_t win_mask;
u64 win_size;
if (*wins == -1)
return;
/*
* The n-th PCIe window is configured by tuple (match, remap, mask)
* and an access to address A uses this window if A matches the
* match with given mask.
* So every PCIe window size must be a power of two and every start
* address must be aligned to window size. Minimal size is 64 KiB
* because lower 16 bits of mask must be zero. Remapped address
* may have set only bits from the mask.
*/
while (*wins < OB_WIN_COUNT && size > 0) {
/* Calculate the largest aligned window size */
win_size = (1ULL << (fls64(size) - 1)) |
(phys_start ? (1ULL << __ffs64(phys_start)) : 0);
win_size = 1ULL << __ffs64(win_size);
win_mask = ~(win_size - 1);
if (win_size < 0x10000 || (bus_start & ~win_mask))
break;
dev_dbg(pcie->dev,
"Configuring PCIe window %d: [0x%llx-0x%llx] as 0x%x\n",
*wins, (u64)phys_start, (u64)phys_start + win_size,
actions);
pcie_advk_set_ob_win(pcie, *wins, phys_start, bus_start,
win_mask, actions);
phys_start += win_size;
bus_start += win_size;
size -= win_size;
(*wins)++;
}
if (size > 0) {
*wins = -1;
dev_err(pcie->dev,
"Invalid PCIe region [0x%llx-0x%llx]\n",
(u64)region->phys_start,
(u64)region->phys_start + region->size);
}
}
/**
* pcie_advk_setup_hw() - PCIe initailzation
*
* @pcie: The PCI device to access
*
* Return: 0 on success
*/
static int pcie_advk_setup_hw(struct pcie_advk *pcie)
{
struct pci_region *io, *mem, *pref;
int i, wins;
u32 reg;
/* Set to Direct mode */
reg = advk_readl(pcie, CTRL_CONFIG_REG);
reg &= ~(CTRL_MODE_MASK << CTRL_MODE_SHIFT);
reg |= ((PCIE_CORE_MODE_DIRECT & CTRL_MODE_MASK) << CTRL_MODE_SHIFT);
advk_writel(pcie, reg, CTRL_CONFIG_REG);
/* Set PCI global control register to RC mode */
reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
reg |= (IS_RC_MSK << IS_RC_SHIFT);
advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG);
/*
* Replace incorrect PCI vendor id value 0x1b4b by correct value 0x11ab.
* VENDOR_ID_REG contains vendor id in low 16 bits and subsystem vendor
* id in high 16 bits. Updating this register changes readback value of
* read-only vendor id bits in PCIE_CORE_DEV_ID_REG register. Workaround
* for erratum 4.1: "The value of device and vendor ID is incorrect".
*/
advk_writel(pcie, 0x11ab11ab, VENDOR_ID_REG);
/*
* Change Class Code of PCI Bridge device to PCI Bridge (0x600400),
* because default value is Mass Storage Controller (0x010400), causing
* U-Boot to fail to recognize it as P2P Bridge.
*
* Note that this Aardvark PCI Bridge does not have a compliant Type 1
* Configuration Space and it even cannot be accessed via Aardvark's
* PCI config space access method. Something like config space is
* available in internal Aardvark registers starting at offset 0x0
* and is reported as Type 0. In range 0x10 - 0x34 it has totally
* different registers. So our driver reports Header Type as Type 1 and
* for the above mentioned range redirects access to the virtual
* cfgcache[] buffer, which avoids changing internal Aardvark registers.
*/
reg = advk_readl(pcie, PCIE_CORE_DEV_REV_REG);
reg &= ~0xffffff00;
reg |= (PCI_CLASS_BRIDGE_PCI << 8) << 8;
advk_writel(pcie, reg, PCIE_CORE_DEV_REV_REG);
/* Set Advanced Error Capabilities and Control PF0 register */
reg = PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX |
PCIE_CORE_ERR_CAPCTL_ECRC_CHK_TX_EN |
PCIE_CORE_ERR_CAPCTL_ECRC_CHECK |
PCIE_CORE_ERR_CAPCTL_ECRC_CHECK_RCV;
advk_writel(pcie, reg, PCIE_CORE_ERR_CAPCTL_REG);
/* Set PCIe Device Control and Status 1 PF0 register */
reg = PCIE_CORE_DEV_CTRL_STATS_RELAX_ORDER_DISABLE |
(PCIE_CORE_DEV_CTRL_STATS_MAX_PAYLOAD_SIZE <<
PCIE_CORE_DEV_CTRL_STATS_MAX_PAYLOAD_SIZE_SHIFT) |
(PCIE_CORE_DEV_CTRL_STATS_MAX_RD_REQ_SIZE <<
PCIE_CORE_DEV_CTRL_STATS_MAX_RD_REQ_SIZE_SHIFT) |
PCIE_CORE_DEV_CTRL_STATS_SNOOP_DISABLE;
advk_writel(pcie, reg, PCIE_CORE_DEV_CTRL_STATS_REG);
/* Program PCIe Control 2 to disable strict ordering */
reg = PCIE_CORE_CTRL2_RESERVED |
PCIE_CORE_CTRL2_TD_ENABLE;
advk_writel(pcie, reg, PCIE_CORE_CTRL2_REG);
/* Set GEN2 */
reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
reg &= ~PCIE_GEN_SEL_MSK;
reg |= SPEED_GEN_2;
advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG);
/* Set lane X1 */
reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
reg &= ~LANE_CNT_MSK;
reg |= LANE_COUNT_1;
advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG);
/* Enable link training */
reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
reg |= LINK_TRAINING_EN;
advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG);
/*
* Enable AXI address window location generation:
* When it is enabled, the default outbound window
* configurations (Default User Field: 0xD0074CFC)
* are used to transparent address translation for
* the outbound transactions. Thus, PCIe address
* windows are not required for transparent memory
* access when default outbound window configuration
* is set for memory access.
*/
reg = advk_readl(pcie, PCIE_CORE_CTRL2_REG);
reg |= PCIE_CORE_CTRL2_ADDRWIN_MAP_ENABLE;
advk_writel(pcie, reg, PCIE_CORE_CTRL2_REG);
/*
* Bypass the address window mapping for PIO:
* Since PIO access already contains all required
* info over AXI interface by PIO registers, the
* address window is not required.
*/
reg = advk_readl(pcie, PIO_CTRL);
reg |= PIO_CTRL_ADDR_WIN_DISABLE;
advk_writel(pcie, reg, PIO_CTRL);
/*
* Set memory access in Default User Field so it
* is not required to configure PCIe address for
* transparent memory access.
*/
advk_writel(pcie, OB_WIN_TYPE_MEM, OB_WIN_DEFAULT_ACTIONS);
/*
* Configure PCIe address windows for non-memory or
* non-transparent access as by default PCIe uses
* transparent memory access.
*/
wins = 0;
pci_get_regions(pcie->dev, &io, &mem, &pref);
if (io)
pcie_advk_set_ob_region(pcie, &wins, io, OB_WIN_TYPE_IO);
if (mem && mem->phys_start != mem->bus_start)
pcie_advk_set_ob_region(pcie, &wins, mem, OB_WIN_TYPE_MEM);
if (pref && pref->phys_start != pref->bus_start)
pcie_advk_set_ob_region(pcie, &wins, pref, OB_WIN_TYPE_MEM);
/* Disable remaining PCIe outbound windows */
for (i = ((wins >= 0) ? wins : 0); i < OB_WIN_COUNT; i++)
pcie_advk_disable_ob_win(pcie, i);
if (wins == -1)
return -EINVAL;
/* Wait for PCIe link up */
if (pcie_advk_wait_for_link(pcie))
return -ENXIO;
return 0;
}
/**
* pcie_advk_probe() - Probe the PCIe bus for active link
*
* @dev: A pointer to the device being operated on
*
* Probe for an active link on the PCIe bus and configure the controller
* to enable this port.
*
* Return: 0 on success, else -ENODEV
*/
static int pcie_advk_probe(struct udevice *dev)
{
struct pcie_advk *pcie = dev_get_priv(dev);
gpio_request_by_name(dev, "reset-gpios", 0, &pcie->reset_gpio,
GPIOD_IS_OUT);
/*
* Issue reset to add-in card through the dedicated GPIO.
* Some boards are connecting the card reset pin to common system
* reset wire and others are using separate GPIO port.
* In the last case we have to release a reset of the addon card
* using this GPIO.
*
* FIX-ME:
* The PCIe RESET signal is not supposed to be released along
* with the SOC RESET signal. It should be lowered as early as
* possible before PCIe PHY initialization. Moreover, the PCIe
* clock should be gated as well.
*/
if (dm_gpio_is_valid(&pcie->reset_gpio)) {
dev_dbg(dev, "Toggle PCIE Reset GPIO ...\n");
dm_gpio_set_value(&pcie->reset_gpio, 1);
mdelay(200);
dm_gpio_set_value(&pcie->reset_gpio, 0);
} else {
dev_warn(dev, "PCIE Reset on GPIO support is missing\n");
}
pcie->dev = pci_get_controller(dev);
/* PCI Bridge support 32-bit I/O and 64-bit prefetch mem addressing */
pcie->cfgcache[(PCI_IO_BASE - 0x10) / 4] =
PCI_IO_RANGE_TYPE_32 | (PCI_IO_RANGE_TYPE_32 << 8);
pcie->cfgcache[(PCI_PREF_MEMORY_BASE - 0x10) / 4] =
PCI_PREF_RANGE_TYPE_64 | (PCI_PREF_RANGE_TYPE_64 << 16);
return pcie_advk_setup_hw(pcie);
}
static int pcie_advk_remove(struct udevice *dev)
{
struct pcie_advk *pcie = dev_get_priv(dev);
u32 reg;
int i;
for (i = 0; i < OB_WIN_COUNT; i++)
pcie_advk_disable_ob_win(pcie, i);
reg = advk_readl(pcie, PCIE_CORE_CMD_STATUS_REG);
reg &= ~(PCIE_CORE_CMD_MEM_ACCESS_EN |
PCIE_CORE_CMD_IO_ACCESS_EN |
PCIE_CORE_CMD_MEM_IO_REQ_EN);
advk_writel(pcie, reg, PCIE_CORE_CMD_STATUS_REG);
reg = advk_readl(pcie, PCIE_CORE_CTRL0_REG);
reg &= ~LINK_TRAINING_EN;
advk_writel(pcie, reg, PCIE_CORE_CTRL0_REG);
return 0;
}
/**
* pcie_advk_of_to_plat() - Translate from DT to device state
*
* @dev: A pointer to the device being operated on
*
* Translate relevant data from the device tree pertaining to device @dev into
* state that the driver will later make use of. This state is stored in the
* device's private data structure.
*
* Return: 0 on success, else -EINVAL
*/
static int pcie_advk_of_to_plat(struct udevice *dev)
{
struct pcie_advk *pcie = dev_get_priv(dev);
/* Get the register base address */
pcie->base = (void *)dev_read_addr_index(dev, 0);
if ((fdt_addr_t)pcie->base == FDT_ADDR_T_NONE)
return -EINVAL;
return 0;
}
static const struct dm_pci_ops pcie_advk_ops = {
.read_config = pcie_advk_read_config,
.write_config = pcie_advk_write_config,
};
static const struct udevice_id pcie_advk_ids[] = {
{ .compatible = "marvell,armada-3700-pcie" },
{ }
};
U_BOOT_DRIVER(pcie_advk) = {
.name = "pcie_advk",
.id = UCLASS_PCI,
.of_match = pcie_advk_ids,
.ops = &pcie_advk_ops,
.of_to_plat = pcie_advk_of_to_plat,
.probe = pcie_advk_probe,
.remove = pcie_advk_remove,
.flags = DM_FLAG_OS_PREPARE,
.priv_auto = sizeof(struct pcie_advk),
};