| /* |
| * (C) Copyright 2002 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <common.h> |
| #include <malloc.h> |
| #include <net.h> |
| #include <netdev.h> |
| #include <asm/io.h> |
| #include <pci.h> |
| #include <miiphy.h> |
| |
| #undef DEBUG |
| |
| /* Ethernet chip registers. |
| */ |
| #define SCBStatus 0 /* Rx/Command Unit Status *Word* */ |
| #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */ |
| #define SCBCmd 2 /* Rx/Command Unit Command *Word* */ |
| #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */ |
| #define SCBPointer 4 /* General purpose pointer. */ |
| #define SCBPort 8 /* Misc. commands and operands. */ |
| #define SCBflash 12 /* Flash memory control. */ |
| #define SCBeeprom 14 /* EEPROM memory control. */ |
| #define SCBCtrlMDI 16 /* MDI interface control. */ |
| #define SCBEarlyRx 20 /* Early receive byte count. */ |
| #define SCBGenControl 28 /* 82559 General Control Register */ |
| #define SCBGenStatus 29 /* 82559 General Status register */ |
| |
| /* 82559 SCB status word defnitions |
| */ |
| #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */ |
| #define SCB_STATUS_FR 0x4000 /* frame received */ |
| #define SCB_STATUS_CNA 0x2000 /* CU left active state */ |
| #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */ |
| #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */ |
| #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */ |
| #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */ |
| |
| #define SCB_INTACK_MASK 0xFD00 /* all the above */ |
| |
| #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA) |
| #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR) |
| |
| /* System control block commands |
| */ |
| /* CU Commands */ |
| #define CU_NOP 0x0000 |
| #define CU_START 0x0010 |
| #define CU_RESUME 0x0020 |
| #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */ |
| #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */ |
| #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */ |
| #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */ |
| |
| /* RUC Commands */ |
| #define RUC_NOP 0x0000 |
| #define RUC_START 0x0001 |
| #define RUC_RESUME 0x0002 |
| #define RUC_ABORT 0x0004 |
| #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */ |
| #define RUC_RESUMENR 0x0007 |
| |
| #define CU_CMD_MASK 0x00f0 |
| #define RU_CMD_MASK 0x0007 |
| |
| #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */ |
| #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */ |
| |
| #define CU_STATUS_MASK 0x00C0 |
| #define RU_STATUS_MASK 0x003C |
| |
| #define RU_STATUS_IDLE (0<<2) |
| #define RU_STATUS_SUS (1<<2) |
| #define RU_STATUS_NORES (2<<2) |
| #define RU_STATUS_READY (4<<2) |
| #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2)) |
| #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2)) |
| #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2)) |
| |
| /* 82559 Port interface commands. |
| */ |
| #define I82559_RESET 0x00000000 /* Software reset */ |
| #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */ |
| #define I82559_SELECTIVE_RESET 0x00000002 |
| #define I82559_DUMP 0x00000003 |
| #define I82559_DUMP_WAKEUP 0x00000007 |
| |
| /* 82559 Eeprom interface. |
| */ |
| #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */ |
| #define EE_CS 0x02 /* EEPROM chip select. */ |
| #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */ |
| #define EE_WRITE_0 0x01 |
| #define EE_WRITE_1 0x05 |
| #define EE_DATA_READ 0x08 /* EEPROM chip data out. */ |
| #define EE_ENB (0x4800 | EE_CS) |
| #define EE_CMD_BITS 3 |
| #define EE_DATA_BITS 16 |
| |
| /* The EEPROM commands include the alway-set leading bit. |
| */ |
| #define EE_EWENB_CMD (4 << addr_len) |
| #define EE_WRITE_CMD (5 << addr_len) |
| #define EE_READ_CMD (6 << addr_len) |
| #define EE_ERASE_CMD (7 << addr_len) |
| |
| /* Receive frame descriptors. |
| */ |
| struct RxFD { |
| volatile u16 status; |
| volatile u16 control; |
| volatile u32 link; /* struct RxFD * */ |
| volatile u32 rx_buf_addr; /* void * */ |
| volatile u32 count; |
| |
| volatile u8 data[PKTSIZE_ALIGN]; |
| }; |
| |
| #define RFD_STATUS_C 0x8000 /* completion of received frame */ |
| #define RFD_STATUS_OK 0x2000 /* frame received with no errors */ |
| |
| #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */ |
| #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */ |
| #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */ |
| #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */ |
| |
| #define RFD_COUNT_MASK 0x3fff |
| #define RFD_COUNT_F 0x4000 |
| #define RFD_COUNT_EOF 0x8000 |
| |
| #define RFD_RX_CRC 0x0800 /* crc error */ |
| #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */ |
| #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */ |
| #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */ |
| #define RFD_RX_SHORT 0x0080 /* short frame error */ |
| #define RFD_RX_LENGTH 0x0020 |
| #define RFD_RX_ERROR 0x0010 /* receive error */ |
| #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */ |
| #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */ |
| #define RFD_RX_TCO 0x0001 /* TCO indication */ |
| |
| /* Transmit frame descriptors |
| */ |
| struct TxFD { /* Transmit frame descriptor set. */ |
| volatile u16 status; |
| volatile u16 command; |
| volatile u32 link; /* void * */ |
| volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */ |
| volatile s32 count; |
| |
| volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */ |
| volatile s32 tx_buf_size0; /* Length of Tx frame. */ |
| volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */ |
| volatile s32 tx_buf_size1; /* Length of Tx frame. */ |
| }; |
| |
| #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */ |
| #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */ |
| #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */ |
| #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */ |
| #define TxCB_CMD_S 0x4000 /* suspend on completion */ |
| #define TxCB_CMD_EL 0x8000 /* last command block in CBL */ |
| |
| #define TxCB_COUNT_MASK 0x3fff |
| #define TxCB_COUNT_EOF 0x8000 |
| |
| /* The Speedo3 Rx and Tx frame/buffer descriptors. |
| */ |
| struct descriptor { /* A generic descriptor. */ |
| volatile u16 status; |
| volatile u16 command; |
| volatile u32 link; /* struct descriptor * */ |
| |
| unsigned char params[0]; |
| }; |
| |
| #define CONFIG_SYS_CMD_EL 0x8000 |
| #define CONFIG_SYS_CMD_SUSPEND 0x4000 |
| #define CONFIG_SYS_CMD_INT 0x2000 |
| #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */ |
| #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */ |
| |
| #define CONFIG_SYS_STATUS_C 0x8000 |
| #define CONFIG_SYS_STATUS_OK 0x2000 |
| |
| /* Misc. |
| */ |
| #define NUM_RX_DESC PKTBUFSRX |
| #define NUM_TX_DESC 1 /* Number of TX descriptors */ |
| |
| #define TOUT_LOOP 1000000 |
| |
| #define ETH_ALEN 6 |
| |
| static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */ |
| static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */ |
| static int rx_next; /* RX descriptor ring pointer */ |
| static int tx_next; /* TX descriptor ring pointer */ |
| static int tx_threshold; |
| |
| /* |
| * The parameters for a CmdConfigure operation. |
| * There are so many options that it would be difficult to document |
| * each bit. We mostly use the default or recommended settings. |
| */ |
| static const char i82557_config_cmd[] = { |
| 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */ |
| 0, 0x2E, 0, 0x60, 0, |
| 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */ |
| 0x3f, 0x05, |
| }; |
| static const char i82558_config_cmd[] = { |
| 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */ |
| 0, 0x2E, 0, 0x60, 0x08, 0x88, |
| 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */ |
| 0x31, 0x05, |
| }; |
| |
| static void init_rx_ring (struct eth_device *dev); |
| static void purge_tx_ring (struct eth_device *dev); |
| |
| static void read_hw_addr (struct eth_device *dev, bd_t * bis); |
| |
| static int eepro100_init (struct eth_device *dev, bd_t * bis); |
| static int eepro100_send(struct eth_device *dev, void *packet, int length); |
| static int eepro100_recv (struct eth_device *dev); |
| static void eepro100_halt (struct eth_device *dev); |
| |
| #if defined(CONFIG_E500) |
| #define bus_to_phys(a) (a) |
| #define phys_to_bus(a) (a) |
| #else |
| #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a) |
| #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a) |
| #endif |
| |
| static inline int INW (struct eth_device *dev, u_long addr) |
| { |
| return le16_to_cpu (*(volatile u16 *) (addr + dev->iobase)); |
| } |
| |
| static inline void OUTW (struct eth_device *dev, int command, u_long addr) |
| { |
| *(volatile u16 *) ((addr + dev->iobase)) = cpu_to_le16 (command); |
| } |
| |
| static inline void OUTL (struct eth_device *dev, int command, u_long addr) |
| { |
| *(volatile u32 *) ((addr + dev->iobase)) = cpu_to_le32 (command); |
| } |
| |
| #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII) |
| static inline int INL (struct eth_device *dev, u_long addr) |
| { |
| return le32_to_cpu (*(volatile u32 *) (addr + dev->iobase)); |
| } |
| |
| static int get_phyreg (struct eth_device *dev, unsigned char addr, |
| unsigned char reg, unsigned short *value) |
| { |
| int cmd; |
| int timeout = 50; |
| |
| /* read requested data */ |
| cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16); |
| OUTL (dev, cmd, SCBCtrlMDI); |
| |
| do { |
| udelay(1000); |
| cmd = INL (dev, SCBCtrlMDI); |
| } while (!(cmd & (1 << 28)) && (--timeout)); |
| |
| if (timeout == 0) |
| return -1; |
| |
| *value = (unsigned short) (cmd & 0xffff); |
| |
| return 0; |
| } |
| |
| static int set_phyreg (struct eth_device *dev, unsigned char addr, |
| unsigned char reg, unsigned short value) |
| { |
| int cmd; |
| int timeout = 50; |
| |
| /* write requested data */ |
| cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16); |
| OUTL (dev, cmd | value, SCBCtrlMDI); |
| |
| while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout)) |
| udelay(1000); |
| |
| if (timeout == 0) |
| return -1; |
| |
| return 0; |
| } |
| |
| /* Check if given phyaddr is valid, i.e. there is a PHY connected. |
| * Do this by checking model value field from ID2 register. |
| */ |
| static struct eth_device* verify_phyaddr (const char *devname, |
| unsigned char addr) |
| { |
| struct eth_device *dev; |
| unsigned short value; |
| unsigned char model; |
| |
| dev = eth_get_dev_by_name(devname); |
| if (dev == NULL) { |
| printf("%s: no such device\n", devname); |
| return NULL; |
| } |
| |
| /* read id2 register */ |
| if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) { |
| printf("%s: mii read timeout!\n", devname); |
| return NULL; |
| } |
| |
| /* get model */ |
| model = (unsigned char)((value >> 4) & 0x003f); |
| |
| if (model == 0) { |
| printf("%s: no PHY at address %d\n", devname, addr); |
| return NULL; |
| } |
| |
| return dev; |
| } |
| |
| static int eepro100_miiphy_read(const char *devname, unsigned char addr, |
| unsigned char reg, unsigned short *value) |
| { |
| struct eth_device *dev; |
| |
| dev = verify_phyaddr(devname, addr); |
| if (dev == NULL) |
| return -1; |
| |
| if (get_phyreg(dev, addr, reg, value) != 0) { |
| printf("%s: mii read timeout!\n", devname); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int eepro100_miiphy_write(const char *devname, unsigned char addr, |
| unsigned char reg, unsigned short value) |
| { |
| struct eth_device *dev; |
| |
| dev = verify_phyaddr(devname, addr); |
| if (dev == NULL) |
| return -1; |
| |
| if (set_phyreg(dev, addr, reg, value) != 0) { |
| printf("%s: mii write timeout!\n", devname); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| #endif |
| |
| /* Wait for the chip get the command. |
| */ |
| static int wait_for_eepro100 (struct eth_device *dev) |
| { |
| int i; |
| |
| for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) { |
| if (i >= TOUT_LOOP) { |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| static struct pci_device_id supported[] = { |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559}, |
| {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER}, |
| {} |
| }; |
| |
| int eepro100_initialize (bd_t * bis) |
| { |
| pci_dev_t devno; |
| int card_number = 0; |
| struct eth_device *dev; |
| u32 iobase, status; |
| int idx = 0; |
| |
| while (1) { |
| /* Find PCI device |
| */ |
| if ((devno = pci_find_devices (supported, idx++)) < 0) { |
| break; |
| } |
| |
| pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase); |
| iobase &= ~0xf; |
| |
| #ifdef DEBUG |
| printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n", |
| iobase); |
| #endif |
| |
| pci_write_config_dword (devno, |
| PCI_COMMAND, |
| PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); |
| |
| /* Check if I/O accesses and Bus Mastering are enabled. |
| */ |
| pci_read_config_dword (devno, PCI_COMMAND, &status); |
| if (!(status & PCI_COMMAND_MEMORY)) { |
| printf ("Error: Can not enable MEM access.\n"); |
| continue; |
| } |
| |
| if (!(status & PCI_COMMAND_MASTER)) { |
| printf ("Error: Can not enable Bus Mastering.\n"); |
| continue; |
| } |
| |
| dev = (struct eth_device *) malloc (sizeof *dev); |
| if (!dev) { |
| printf("eepro100: Can not allocate memory\n"); |
| break; |
| } |
| memset(dev, 0, sizeof(*dev)); |
| |
| sprintf (dev->name, "i82559#%d", card_number); |
| dev->priv = (void *) devno; /* this have to come before bus_to_phys() */ |
| dev->iobase = bus_to_phys (iobase); |
| dev->init = eepro100_init; |
| dev->halt = eepro100_halt; |
| dev->send = eepro100_send; |
| dev->recv = eepro100_recv; |
| |
| eth_register (dev); |
| |
| #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII) |
| /* register mii command access routines */ |
| miiphy_register(dev->name, |
| eepro100_miiphy_read, eepro100_miiphy_write); |
| #endif |
| |
| card_number++; |
| |
| /* Set the latency timer for value. |
| */ |
| pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20); |
| |
| udelay (10 * 1000); |
| |
| read_hw_addr (dev, bis); |
| } |
| |
| return card_number; |
| } |
| |
| |
| static int eepro100_init (struct eth_device *dev, bd_t * bis) |
| { |
| int i, status = -1; |
| int tx_cur; |
| struct descriptor *ias_cmd, *cfg_cmd; |
| |
| /* Reset the ethernet controller |
| */ |
| OUTL (dev, I82559_SELECTIVE_RESET, SCBPort); |
| udelay (20); |
| |
| OUTL (dev, I82559_RESET, SCBPort); |
| udelay (20); |
| |
| if (!wait_for_eepro100 (dev)) { |
| printf ("Error: Can not reset ethernet controller.\n"); |
| goto Done; |
| } |
| OUTL (dev, 0, SCBPointer); |
| OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd); |
| |
| if (!wait_for_eepro100 (dev)) { |
| printf ("Error: Can not reset ethernet controller.\n"); |
| goto Done; |
| } |
| OUTL (dev, 0, SCBPointer); |
| OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd); |
| |
| /* Initialize Rx and Tx rings. |
| */ |
| init_rx_ring (dev); |
| purge_tx_ring (dev); |
| |
| /* Tell the adapter where the RX ring is located. |
| */ |
| if (!wait_for_eepro100 (dev)) { |
| printf ("Error: Can not reset ethernet controller.\n"); |
| goto Done; |
| } |
| |
| OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer); |
| OUTW (dev, SCB_M | RUC_START, SCBCmd); |
| |
| /* Send the Configure frame */ |
| tx_cur = tx_next; |
| tx_next = ((tx_next + 1) % NUM_TX_DESC); |
| |
| cfg_cmd = (struct descriptor *) &tx_ring[tx_cur]; |
| cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE)); |
| cfg_cmd->status = 0; |
| cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next])); |
| |
| memcpy (cfg_cmd->params, i82558_config_cmd, |
| sizeof (i82558_config_cmd)); |
| |
| if (!wait_for_eepro100 (dev)) { |
| printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n"); |
| goto Done; |
| } |
| |
| OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer); |
| OUTW (dev, SCB_M | CU_START, SCBCmd); |
| |
| for (i = 0; |
| !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C); |
| i++) { |
| if (i >= TOUT_LOOP) { |
| printf ("%s: Tx error buffer not ready\n", dev->name); |
| goto Done; |
| } |
| } |
| |
| if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) { |
| printf ("TX error status = 0x%08X\n", |
| le16_to_cpu (tx_ring[tx_cur].status)); |
| goto Done; |
| } |
| |
| /* Send the Individual Address Setup frame |
| */ |
| tx_cur = tx_next; |
| tx_next = ((tx_next + 1) % NUM_TX_DESC); |
| |
| ias_cmd = (struct descriptor *) &tx_ring[tx_cur]; |
| ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS)); |
| ias_cmd->status = 0; |
| ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next])); |
| |
| memcpy (ias_cmd->params, dev->enetaddr, 6); |
| |
| /* Tell the adapter where the TX ring is located. |
| */ |
| if (!wait_for_eepro100 (dev)) { |
| printf ("Error: Can not reset ethernet controller.\n"); |
| goto Done; |
| } |
| |
| OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer); |
| OUTW (dev, SCB_M | CU_START, SCBCmd); |
| |
| for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C); |
| i++) { |
| if (i >= TOUT_LOOP) { |
| printf ("%s: Tx error buffer not ready\n", |
| dev->name); |
| goto Done; |
| } |
| } |
| |
| if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) { |
| printf ("TX error status = 0x%08X\n", |
| le16_to_cpu (tx_ring[tx_cur].status)); |
| goto Done; |
| } |
| |
| status = 0; |
| |
| Done: |
| return status; |
| } |
| |
| static int eepro100_send(struct eth_device *dev, void *packet, int length) |
| { |
| int i, status = -1; |
| int tx_cur; |
| |
| if (length <= 0) { |
| printf ("%s: bad packet size: %d\n", dev->name, length); |
| goto Done; |
| } |
| |
| tx_cur = tx_next; |
| tx_next = (tx_next + 1) % NUM_TX_DESC; |
| |
| tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT | |
| TxCB_CMD_SF | |
| TxCB_CMD_S | |
| TxCB_CMD_EL ); |
| tx_ring[tx_cur].status = 0; |
| tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold); |
| tx_ring[tx_cur].link = |
| cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next])); |
| tx_ring[tx_cur].tx_desc_addr = |
| cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0)); |
| tx_ring[tx_cur].tx_buf_addr0 = |
| cpu_to_le32 (phys_to_bus ((u_long) packet)); |
| tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length); |
| |
| if (!wait_for_eepro100 (dev)) { |
| printf ("%s: Tx error ethernet controller not ready.\n", |
| dev->name); |
| goto Done; |
| } |
| |
| /* Send the packet. |
| */ |
| OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer); |
| OUTW (dev, SCB_M | CU_START, SCBCmd); |
| |
| for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C); |
| i++) { |
| if (i >= TOUT_LOOP) { |
| printf ("%s: Tx error buffer not ready\n", dev->name); |
| goto Done; |
| } |
| } |
| |
| if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) { |
| printf ("TX error status = 0x%08X\n", |
| le16_to_cpu (tx_ring[tx_cur].status)); |
| goto Done; |
| } |
| |
| status = length; |
| |
| Done: |
| return status; |
| } |
| |
| static int eepro100_recv (struct eth_device *dev) |
| { |
| u16 status, stat; |
| int rx_prev, length = 0; |
| |
| stat = INW (dev, SCBStatus); |
| OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus); |
| |
| for (;;) { |
| status = le16_to_cpu (rx_ring[rx_next].status); |
| |
| if (!(status & RFD_STATUS_C)) { |
| break; |
| } |
| |
| /* Valid frame status. |
| */ |
| if ((status & RFD_STATUS_OK)) { |
| /* A valid frame received. |
| */ |
| length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff; |
| |
| /* Pass the packet up to the protocol |
| * layers. |
| */ |
| net_process_received_packet((u8 *)rx_ring[rx_next].data, |
| length); |
| } else { |
| /* There was an error. |
| */ |
| printf ("RX error status = 0x%08X\n", status); |
| } |
| |
| rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S); |
| rx_ring[rx_next].status = 0; |
| rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16); |
| |
| rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC; |
| rx_ring[rx_prev].control = 0; |
| |
| /* Update entry information. |
| */ |
| rx_next = (rx_next + 1) % NUM_RX_DESC; |
| } |
| |
| if (stat & SCB_STATUS_RNR) { |
| |
| printf ("%s: Receiver is not ready, restart it !\n", dev->name); |
| |
| /* Reinitialize Rx ring. |
| */ |
| init_rx_ring (dev); |
| |
| if (!wait_for_eepro100 (dev)) { |
| printf ("Error: Can not restart ethernet controller.\n"); |
| goto Done; |
| } |
| |
| OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer); |
| OUTW (dev, SCB_M | RUC_START, SCBCmd); |
| } |
| |
| Done: |
| return length; |
| } |
| |
| static void eepro100_halt (struct eth_device *dev) |
| { |
| /* Reset the ethernet controller |
| */ |
| OUTL (dev, I82559_SELECTIVE_RESET, SCBPort); |
| udelay (20); |
| |
| OUTL (dev, I82559_RESET, SCBPort); |
| udelay (20); |
| |
| if (!wait_for_eepro100 (dev)) { |
| printf ("Error: Can not reset ethernet controller.\n"); |
| goto Done; |
| } |
| OUTL (dev, 0, SCBPointer); |
| OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd); |
| |
| if (!wait_for_eepro100 (dev)) { |
| printf ("Error: Can not reset ethernet controller.\n"); |
| goto Done; |
| } |
| OUTL (dev, 0, SCBPointer); |
| OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd); |
| |
| Done: |
| return; |
| } |
| |
| /* SROM Read. |
| */ |
| static int read_eeprom (struct eth_device *dev, int location, int addr_len) |
| { |
| unsigned short retval = 0; |
| int read_cmd = location | EE_READ_CMD; |
| int i; |
| |
| OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom); |
| OUTW (dev, EE_ENB, SCBeeprom); |
| |
| /* Shift the read command bits out. */ |
| for (i = 12; i >= 0; i--) { |
| short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; |
| |
| OUTW (dev, EE_ENB | dataval, SCBeeprom); |
| udelay (1); |
| OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom); |
| udelay (1); |
| } |
| OUTW (dev, EE_ENB, SCBeeprom); |
| |
| for (i = 15; i >= 0; i--) { |
| OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom); |
| udelay (1); |
| retval = (retval << 1) | |
| ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0); |
| OUTW (dev, EE_ENB, SCBeeprom); |
| udelay (1); |
| } |
| |
| /* Terminate the EEPROM access. */ |
| OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom); |
| return retval; |
| } |
| |
| #ifdef CONFIG_EEPRO100_SROM_WRITE |
| int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data) |
| { |
| unsigned short dataval; |
| int enable_cmd = 0x3f | EE_EWENB_CMD; |
| int write_cmd = location | EE_WRITE_CMD; |
| int i; |
| unsigned long datalong, tmplong; |
| |
| OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); |
| udelay(1); |
| OUTW(dev, EE_ENB, SCBeeprom); |
| |
| /* Shift the enable command bits out. */ |
| for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--) |
| { |
| dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0; |
| OUTW(dev, EE_ENB | dataval, SCBeeprom); |
| udelay(1); |
| OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom); |
| udelay(1); |
| } |
| |
| OUTW(dev, EE_ENB, SCBeeprom); |
| udelay(1); |
| OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); |
| udelay(1); |
| OUTW(dev, EE_ENB, SCBeeprom); |
| |
| |
| /* Shift the write command bits out. */ |
| for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--) |
| { |
| dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0; |
| OUTW(dev, EE_ENB | dataval, SCBeeprom); |
| udelay(1); |
| OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom); |
| udelay(1); |
| } |
| |
| /* Write the data */ |
| datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8)); |
| |
| for (i = 0; i< EE_DATA_BITS; i++) |
| { |
| /* Extract and move data bit to bit DI */ |
| dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0; |
| |
| OUTW(dev, EE_ENB | dataval, SCBeeprom); |
| udelay(1); |
| OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom); |
| udelay(1); |
| OUTW(dev, EE_ENB | dataval, SCBeeprom); |
| udelay(1); |
| |
| datalong = datalong << 1; /* Adjust significant data bit*/ |
| } |
| |
| /* Finish up command (toggle CS) */ |
| OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); |
| udelay(1); /* delay for more than 250 ns */ |
| OUTW(dev, EE_ENB, SCBeeprom); |
| |
| /* Wait for programming ready (D0 = 1) */ |
| tmplong = 10; |
| do |
| { |
| dataval = INW(dev, SCBeeprom); |
| if (dataval & EE_DATA_READ) |
| break; |
| udelay(10000); |
| } |
| while (-- tmplong); |
| |
| if (tmplong == 0) |
| { |
| printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n"); |
| return -1; |
| } |
| |
| /* Terminate the EEPROM access. */ |
| OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom); |
| |
| return 0; |
| } |
| #endif |
| |
| static void init_rx_ring (struct eth_device *dev) |
| { |
| int i; |
| |
| for (i = 0; i < NUM_RX_DESC; i++) { |
| rx_ring[i].status = 0; |
| rx_ring[i].control = |
| (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0; |
| rx_ring[i].link = |
| cpu_to_le32 (phys_to_bus |
| ((u32) & rx_ring[(i + 1) % NUM_RX_DESC])); |
| rx_ring[i].rx_buf_addr = 0xffffffff; |
| rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16); |
| } |
| |
| rx_next = 0; |
| } |
| |
| static void purge_tx_ring (struct eth_device *dev) |
| { |
| int i; |
| |
| tx_next = 0; |
| tx_threshold = 0x01208000; |
| |
| for (i = 0; i < NUM_TX_DESC; i++) { |
| tx_ring[i].status = 0; |
| tx_ring[i].command = 0; |
| tx_ring[i].link = 0; |
| tx_ring[i].tx_desc_addr = 0; |
| tx_ring[i].count = 0; |
| |
| tx_ring[i].tx_buf_addr0 = 0; |
| tx_ring[i].tx_buf_size0 = 0; |
| tx_ring[i].tx_buf_addr1 = 0; |
| tx_ring[i].tx_buf_size1 = 0; |
| } |
| } |
| |
| static void read_hw_addr (struct eth_device *dev, bd_t * bis) |
| { |
| u16 sum = 0; |
| int i, j; |
| int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6; |
| |
| for (j = 0, i = 0; i < 0x40; i++) { |
| u16 value = read_eeprom (dev, i, addr_len); |
| |
| sum += value; |
| if (i < 3) { |
| dev->enetaddr[j++] = value; |
| dev->enetaddr[j++] = value >> 8; |
| } |
| } |
| |
| if (sum != 0xBABA) { |
| memset (dev->enetaddr, 0, ETH_ALEN); |
| #ifdef DEBUG |
| printf ("%s: Invalid EEPROM checksum %#4.4x, " |
| "check settings before activating this device!\n", |
| dev->name, sum); |
| #endif |
| } |
| } |