blob: 6128d54b188ec2e867fb08e36def7ca507ccddc1 [file] [log] [blame]
/*
* Copyright (C) 2012 Altera Corporation <www.altera.com>
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <errno.h>
#include <fdtdec.h>
#include <libfdt.h>
#include <altera.h>
#include <miiphy.h>
#include <netdev.h>
#include <watchdog.h>
#include <asm/arch/reset_manager.h>
#include <asm/arch/scan_manager.h>
#include <asm/arch/system_manager.h>
#include <asm/arch/dwmmc.h>
#include <asm/arch/nic301.h>
#include <asm/arch/scu.h>
#include <asm/pl310.h>
#include <dt-bindings/reset/altr,rst-mgr.h>
DECLARE_GLOBAL_DATA_PTR;
static struct pl310_regs *const pl310 =
(struct pl310_regs *)CONFIG_SYS_PL310_BASE;
static struct socfpga_system_manager *sysmgr_regs =
(struct socfpga_system_manager *)SOCFPGA_SYSMGR_ADDRESS;
static struct socfpga_reset_manager *reset_manager_base =
(struct socfpga_reset_manager *)SOCFPGA_RSTMGR_ADDRESS;
static struct nic301_registers *nic301_regs =
(struct nic301_registers *)SOCFPGA_L3REGS_ADDRESS;
static struct scu_registers *scu_regs =
(struct scu_registers *)SOCFPGA_MPUSCU_ADDRESS;
int dram_init(void)
{
gd->ram_size = get_ram_size((long *)PHYS_SDRAM_1, PHYS_SDRAM_1_SIZE);
return 0;
}
void enable_caches(void)
{
#ifndef CONFIG_SYS_ICACHE_OFF
icache_enable();
#endif
#ifndef CONFIG_SYS_DCACHE_OFF
dcache_enable();
#endif
}
/*
* DesignWare Ethernet initialization
*/
#ifdef CONFIG_ETH_DESIGNWARE
static void dwmac_deassert_reset(const unsigned int of_reset_id)
{
u32 physhift, reset;
if (of_reset_id == EMAC0_RESET) {
physhift = SYSMGR_EMACGRP_CTRL_PHYSEL0_LSB;
reset = SOCFPGA_RESET(EMAC0);
} else if (of_reset_id == EMAC1_RESET) {
physhift = SYSMGR_EMACGRP_CTRL_PHYSEL1_LSB;
reset = SOCFPGA_RESET(EMAC1);
} else {
printf("GMAC: Invalid reset ID (%i)!\n", of_reset_id);
return;
}
/* Clearing emac0 PHY interface select to 0 */
clrbits_le32(&sysmgr_regs->emacgrp_ctrl,
SYSMGR_EMACGRP_CTRL_PHYSEL_MASK << physhift);
/* configure to PHY interface select choosed */
setbits_le32(&sysmgr_regs->emacgrp_ctrl,
SYSMGR_EMACGRP_CTRL_PHYSEL_ENUM_RGMII << physhift);
/* Release the EMAC controller from reset */
socfpga_per_reset(reset, 0);
}
int cpu_eth_init(bd_t *bis)
{
const void *fdt = gd->fdt_blob;
struct fdtdec_phandle_args args;
int nodes[2]; /* Max. two GMACs */
int ret, count;
int i, node;
/* Put both GMACs into RESET state. */
socfpga_per_reset(SOCFPGA_RESET(EMAC0), 1);
socfpga_per_reset(SOCFPGA_RESET(EMAC1), 1);
count = fdtdec_find_aliases_for_id(fdt, "ethernet",
COMPAT_ALTERA_SOCFPGA_DWMAC,
nodes, ARRAY_SIZE(nodes));
for (i = 0; i < count; i++) {
node = nodes[i];
if (node <= 0)
continue;
ret = fdtdec_parse_phandle_with_args(fdt, node, "resets",
"#reset-cells", 1, 0,
&args);
if (ret || (args.args_count != 1)) {
debug("GMAC%i: Failed to parse DT 'resets'!\n", i);
continue;
}
dwmac_deassert_reset(args.args[0]);
}
return 0;
}
#endif
#ifdef CONFIG_DWMMC
/*
* Initializes MMC controllers.
* to override, implement board_mmc_init()
*/
int cpu_mmc_init(bd_t *bis)
{
/*
* FIXME: Temporarily define CONFIG_HPS_SDMMC_BUSWIDTH to prevent breakage
* due to missing patches in u-boot/master . The upcoming patch will
* switch this to OF probing, so this whole block will go away.
*/
#define CONFIG_HPS_SDMMC_BUSWIDTH 8
return socfpga_dwmmc_init(SOCFPGA_SDMMC_ADDRESS,
CONFIG_HPS_SDMMC_BUSWIDTH, 0);
}
#endif
struct {
const char *mode;
const char *name;
} bsel_str[] = {
{ "rsvd", "Reserved", },
{ "fpga", "FPGA (HPS2FPGA Bridge)", },
{ "nand", "NAND Flash (1.8V)", },
{ "nand", "NAND Flash (3.0V)", },
{ "sd", "SD/MMC External Transceiver (1.8V)", },
{ "sd", "SD/MMC Internal Transceiver (3.0V)", },
{ "qspi", "QSPI Flash (1.8V)", },
{ "qspi", "QSPI Flash (3.0V)", },
};
static const struct {
const u16 pn;
const char *name;
const char *var;
} const socfpga_fpga_model[] = {
/* Cyclone V E */
{ 0x2b15, "Cyclone V, E/A2", "cv_e_a2" },
{ 0x2b05, "Cyclone V, E/A4", "cv_e_a4" },
{ 0x2b22, "Cyclone V, E/A5", "cv_e_a5" },
{ 0x2b13, "Cyclone V, E/A7", "cv_e_a7" },
{ 0x2b14, "Cyclone V, E/A9", "cv_e_a9" },
/* Cyclone V GX/GT */
{ 0x2b01, "Cyclone V, GX/C3", "cv_gx_c3" },
{ 0x2b12, "Cyclone V, GX/C4", "cv_gx_c4" },
{ 0x2b02, "Cyclone V, GX/C5 or GT/D5", "cv_gx_c5" },
{ 0x2b03, "Cyclone V, GX/C7 or GT/D7", "cv_gx_c7" },
{ 0x2b04, "Cyclone V, GX/C9 or GT/D9", "cv_gx_c9" },
/* Cyclone V SE/SX/ST */
{ 0x2d11, "Cyclone V, SE/A2 or SX/C2", "cv_se_a2" },
{ 0x2d01, "Cyclone V, SE/A4 or SX/C4", "cv_se_a4" },
{ 0x2d12, "Cyclone V, SE/A5 or SX/C5 or ST/D5", "cv_se_a5" },
{ 0x2d02, "Cyclone V, SE/A6 or SX/C6 or ST/D6", "cv_se_a6" },
/* Arria V */
{ 0x2d03, "Arria V, D5", "av_d5" },
};
static int socfpga_fpga_id(const bool print_id)
{
const u32 altera_mi = 0x6e;
const u32 id = scan_mgr_get_fpga_id();
const u32 lsb = id & 0x00000001;
const u32 mi = (id >> 1) & 0x000007ff;
const u32 pn = (id >> 12) & 0x0000ffff;
const u32 version = (id >> 28) & 0x0000000f;
int i;
if ((mi != altera_mi) || (lsb != 1)) {
printf("FPGA: Not Altera chip ID\n");
return -EINVAL;
}
for (i = 0; i < ARRAY_SIZE(socfpga_fpga_model); i++)
if (pn == socfpga_fpga_model[i].pn)
break;
if (i == ARRAY_SIZE(socfpga_fpga_model)) {
printf("FPGA: Unknown Altera chip, ID 0x%08x\n", id);
return -EINVAL;
}
if (print_id)
printf("FPGA: Altera %s, version 0x%01x\n",
socfpga_fpga_model[i].name, version);
return i;
}
/*
* Print CPU information
*/
#if defined(CONFIG_DISPLAY_CPUINFO)
int print_cpuinfo(void)
{
const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7;
puts("CPU: Altera SoCFPGA Platform\n");
socfpga_fpga_id(1);
printf("BOOT: %s\n", bsel_str[bsel].name);
return 0;
}
#endif
#ifdef CONFIG_ARCH_MISC_INIT
int arch_misc_init(void)
{
const u32 bsel = readl(&sysmgr_regs->bootinfo) & 0x7;
const int fpga_id = socfpga_fpga_id(0);
setenv("bootmode", bsel_str[bsel].mode);
if (fpga_id >= 0)
setenv("fpgatype", socfpga_fpga_model[fpga_id].var);
return 0;
}
#endif
#if defined(CONFIG_SYS_CONSOLE_IS_IN_ENV) && \
defined(CONFIG_SYS_CONSOLE_OVERWRITE_ROUTINE)
int overwrite_console(void)
{
return 0;
}
#endif
#ifdef CONFIG_FPGA
/*
* FPGA programming support for SoC FPGA Cyclone V
*/
static Altera_desc altera_fpga[] = {
{
/* Family */
Altera_SoCFPGA,
/* Interface type */
fast_passive_parallel,
/* No limitation as additional data will be ignored */
-1,
/* No device function table */
NULL,
/* Base interface address specified in driver */
NULL,
/* No cookie implementation */
0
},
};
/* add device descriptor to FPGA device table */
static void socfpga_fpga_add(void)
{
int i;
fpga_init();
for (i = 0; i < ARRAY_SIZE(altera_fpga); i++)
fpga_add(fpga_altera, &altera_fpga[i]);
}
#else
static inline void socfpga_fpga_add(void) {}
#endif
int arch_cpu_init(void)
{
#ifdef CONFIG_HW_WATCHDOG
/*
* In case the watchdog is enabled, make sure to (re-)configure it
* so that the defined timeout is valid. Otherwise the SPL (Perloader)
* timeout value is still active which might too short for Linux
* booting.
*/
hw_watchdog_init();
#else
/*
* If the HW watchdog is NOT enabled, make sure it is not running,
* for example because it was enabled in the preloader. This might
* trigger a watchdog-triggered reboot of Linux kernel later.
* Toggle watchdog reset, so watchdog in not running state.
*/
socfpga_per_reset(SOCFPGA_RESET(L4WD0), 1);
socfpga_per_reset(SOCFPGA_RESET(L4WD0), 0);
#endif
return 0;
}
/*
* Convert all NIC-301 AMBA slaves from secure to non-secure
*/
static void socfpga_nic301_slave_ns(void)
{
writel(0x1, &nic301_regs->lwhps2fpgaregs);
writel(0x1, &nic301_regs->hps2fpgaregs);
writel(0x1, &nic301_regs->acp);
writel(0x1, &nic301_regs->rom);
writel(0x1, &nic301_regs->ocram);
writel(0x1, &nic301_regs->sdrdata);
}
static uint32_t iswgrp_handoff[8];
int arch_early_init_r(void)
{
int i;
/*
* Write magic value into magic register to unlock support for
* issuing warm reset. The ancient kernel code expects this
* value to be written into the register by the bootloader, so
* to support that old code, we write it here instead of in the
* reset_cpu() function just before reseting the CPU.
*/
writel(0xae9efebc, &sysmgr_regs->romcodegrp_warmramgrp_enable);
for (i = 0; i < 8; i++) /* Cache initial SW setting regs */
iswgrp_handoff[i] = readl(&sysmgr_regs->iswgrp_handoff[i]);
socfpga_bridges_reset(1);
socfpga_nic301_slave_ns();
/*
* Private components security:
* U-Boot : configure private timer, global timer and cpu component
* access as non secure for kernel stage (as required by Linux)
*/
setbits_le32(&scu_regs->sacr, 0xfff);
/* Configure the L2 controller to make SDRAM start at 0 */
#ifdef CONFIG_SOCFPGA_VIRTUAL_TARGET
writel(0x2, &nic301_regs->remap);
#else
writel(0x1, &nic301_regs->remap); /* remap.mpuzero */
writel(0x1, &pl310->pl310_addr_filter_start);
#endif
/* Add device descriptor to FPGA device table */
socfpga_fpga_add();
#ifdef CONFIG_DESIGNWARE_SPI
/* Get Designware SPI controller out of reset */
socfpga_per_reset(SOCFPGA_RESET(SPIM0), 0);
socfpga_per_reset(SOCFPGA_RESET(SPIM1), 0);
#endif
return 0;
}
static void socfpga_sdram_apply_static_cfg(void)
{
const uint32_t staticcfg = SOCFPGA_SDR_ADDRESS + 0x505c;
const uint32_t applymask = 0x8;
uint32_t val = readl(staticcfg) | applymask;
/*
* SDRAM staticcfg register specific:
* When applying the register setting, the CPU must not access
* SDRAM. Luckily for us, we can abuse i-cache here to help us
* circumvent the SDRAM access issue. The idea is to make sure
* that the code is in one full i-cache line by branching past
* it and back. Once it is in the i-cache, we execute the core
* of the code and apply the register settings.
*
* The code below uses 7 instructions, while the Cortex-A9 has
* 32-byte cachelines, thus the limit is 8 instructions total.
*/
asm volatile(
".align 5 \n"
" b 2f \n"
"1: str %0, [%1] \n"
" dsb \n"
" isb \n"
" b 3f \n"
"2: b 1b \n"
"3: nop \n"
: : "r"(val), "r"(staticcfg) : "memory", "cc");
}
int do_bridge(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
{
if (argc != 2)
return CMD_RET_USAGE;
argv++;
switch (*argv[0]) {
case 'e': /* Enable */
writel(iswgrp_handoff[2], &sysmgr_regs->fpgaintfgrp_module);
socfpga_sdram_apply_static_cfg();
writel(iswgrp_handoff[3], SOCFPGA_SDR_ADDRESS + 0x5080);
writel(iswgrp_handoff[0], &reset_manager_base->brg_mod_reset);
writel(iswgrp_handoff[1], &nic301_regs->remap);
break;
case 'd': /* Disable */
writel(0, &sysmgr_regs->fpgaintfgrp_module);
writel(0, SOCFPGA_SDR_ADDRESS + 0x5080);
socfpga_sdram_apply_static_cfg();
writel(0, &reset_manager_base->brg_mod_reset);
writel(1, &nic301_regs->remap);
break;
default:
return CMD_RET_USAGE;
}
return 0;
}
U_BOOT_CMD(
bridge, 2, 1, do_bridge,
"SoCFPGA HPS FPGA bridge control",
"enable - Enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges\n"
"bridge disable - Enable HPS-to-FPGA, FPGA-to-HPS, LWHPS-to-FPGA bridges\n"
""
);