| /* |
| * Copyright 2014 Freescale Semiconductor, Inc. |
| * |
| * calculate the organization and timing parameter |
| * from ddr3 spd, please refer to the spec |
| * JEDEC standard No.21-C 4_01_02_12R23A.pdf |
| * |
| * |
| */ |
| |
| #include <common.h> |
| #include <fsl_ddr_sdram.h> |
| |
| #include <fsl_ddr.h> |
| |
| /* |
| * Calculate the Density of each Physical Rank. |
| * Returned size is in bytes. |
| * |
| * Total DIMM size = |
| * sdram capacity(bit) / 8 * primary bus width / sdram width |
| * * Logical Ranks per DIMM |
| * |
| * where: sdram capacity = spd byte4[3:0] |
| * primary bus width = spd byte13[2:0] |
| * sdram width = spd byte12[2:0] |
| * Logical Ranks per DIMM = spd byte12[5:3] for SDP, DDP, QDP |
| * spd byte12{5:3] * spd byte6[6:4] for 3DS |
| * |
| * To simplify each rank size = total DIMM size / Number of Package Ranks |
| * where Number of Package Ranks = spd byte12[5:3] |
| * |
| * SPD byte4 - sdram density and banks |
| * bit[3:0] size(bit) size(byte) |
| * 0000 256Mb 32MB |
| * 0001 512Mb 64MB |
| * 0010 1Gb 128MB |
| * 0011 2Gb 256MB |
| * 0100 4Gb 512MB |
| * 0101 8Gb 1GB |
| * 0110 16Gb 2GB |
| * 0111 32Gb 4GB |
| * |
| * SPD byte13 - module memory bus width |
| * bit[2:0] primary bus width |
| * 000 8bits |
| * 001 16bits |
| * 010 32bits |
| * 011 64bits |
| * |
| * SPD byte12 - module organization |
| * bit[2:0] sdram device width |
| * 000 4bits |
| * 001 8bits |
| * 010 16bits |
| * 011 32bits |
| * |
| * SPD byte12 - module organization |
| * bit[5:3] number of package ranks per DIMM |
| * 000 1 |
| * 001 2 |
| * 010 3 |
| * 011 4 |
| * |
| * SPD byte6 - SDRAM package type |
| * bit[6:4] Die count |
| * 000 1 |
| * 001 2 |
| * 010 3 |
| * 011 4 |
| * 100 5 |
| * 101 6 |
| * 110 7 |
| * 111 8 |
| * |
| * SPD byte6 - SRAM package type |
| * bit[1:0] Signal loading |
| * 00 Not specified |
| * 01 Multi load stack |
| * 10 Sigle load stack (3DS) |
| * 11 Reserved |
| */ |
| static unsigned long long |
| compute_ranksize(const struct ddr4_spd_eeprom_s *spd) |
| { |
| unsigned long long bsize; |
| |
| int nbit_sdram_cap_bsize = 0; |
| int nbit_primary_bus_width = 0; |
| int nbit_sdram_width = 0; |
| int die_count = 0; |
| bool package_3ds; |
| |
| if ((spd->density_banks & 0xf) <= 7) |
| nbit_sdram_cap_bsize = (spd->density_banks & 0xf) + 28; |
| if ((spd->bus_width & 0x7) < 4) |
| nbit_primary_bus_width = (spd->bus_width & 0x7) + 3; |
| if ((spd->organization & 0x7) < 4) |
| nbit_sdram_width = (spd->organization & 0x7) + 2; |
| package_3ds = (spd->package_type & 0x3) == 0x2; |
| if (package_3ds) |
| die_count = (spd->package_type >> 4) & 0x7; |
| |
| bsize = 1ULL << (nbit_sdram_cap_bsize - 3 + |
| nbit_primary_bus_width - nbit_sdram_width + |
| die_count); |
| |
| debug("DDR: DDR III rank density = 0x%16llx\n", bsize); |
| |
| return bsize; |
| } |
| |
| #define spd_to_ps(mtb, ftb) \ |
| (mtb * pdimm->mtb_ps + (ftb * pdimm->ftb_10th_ps) / 10) |
| /* |
| * ddr_compute_dimm_parameters for DDR4 SPD |
| * |
| * Compute DIMM parameters based upon the SPD information in spd. |
| * Writes the results to the dimm_params_t structure pointed by pdimm. |
| * |
| */ |
| unsigned int |
| ddr_compute_dimm_parameters(const generic_spd_eeprom_t *spd, |
| dimm_params_t *pdimm, |
| unsigned int dimm_number) |
| { |
| unsigned int retval; |
| int i; |
| const u8 udimm_rc_e_dq[18] = { |
| 0x0c, 0x2c, 0x15, 0x35, 0x15, 0x35, 0x0b, 0x2c, 0x15, |
| 0x35, 0x0b, 0x35, 0x0b, 0x2c, 0x0b, 0x35, 0x15, 0x36 |
| }; |
| int spd_error = 0; |
| u8 *ptr; |
| |
| if (spd->mem_type) { |
| if (spd->mem_type != SPD_MEMTYPE_DDR4) { |
| printf("DIMM %u: is not a DDR4 SPD.\n", dimm_number); |
| return 1; |
| } |
| } else { |
| memset(pdimm, 0, sizeof(dimm_params_t)); |
| return 1; |
| } |
| |
| retval = ddr4_spd_check(spd); |
| if (retval) { |
| printf("DIMM %u: failed checksum\n", dimm_number); |
| return 2; |
| } |
| |
| /* |
| * The part name in ASCII in the SPD EEPROM is not null terminated. |
| * Guarantee null termination here by presetting all bytes to 0 |
| * and copying the part name in ASCII from the SPD onto it |
| */ |
| memset(pdimm->mpart, 0, sizeof(pdimm->mpart)); |
| if ((spd->info_size_crc & 0xF) > 2) |
| memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1); |
| |
| /* DIMM organization parameters */ |
| pdimm->n_ranks = ((spd->organization >> 3) & 0x7) + 1; |
| pdimm->rank_density = compute_ranksize(spd); |
| pdimm->capacity = pdimm->n_ranks * pdimm->rank_density; |
| pdimm->primary_sdram_width = 1 << (3 + (spd->bus_width & 0x7)); |
| if ((spd->bus_width >> 3) & 0x3) |
| pdimm->ec_sdram_width = 8; |
| else |
| pdimm->ec_sdram_width = 0; |
| pdimm->data_width = pdimm->primary_sdram_width |
| + pdimm->ec_sdram_width; |
| pdimm->device_width = 1 << ((spd->organization & 0x7) + 2); |
| |
| /* These are the types defined by the JEDEC SPD spec */ |
| pdimm->mirrored_dimm = 0; |
| pdimm->registered_dimm = 0; |
| switch (spd->module_type & DDR4_SPD_MODULETYPE_MASK) { |
| case DDR4_SPD_MODULETYPE_RDIMM: |
| /* Registered/buffered DIMMs */ |
| pdimm->registered_dimm = 1; |
| break; |
| |
| case DDR4_SPD_MODULETYPE_UDIMM: |
| case DDR4_SPD_MODULETYPE_SO_DIMM: |
| /* Unbuffered DIMMs */ |
| if (spd->mod_section.unbuffered.addr_mapping & 0x1) |
| pdimm->mirrored_dimm = 1; |
| if ((spd->mod_section.unbuffered.mod_height & 0xe0) == 0 && |
| (spd->mod_section.unbuffered.ref_raw_card == 0x04)) { |
| /* Fix SPD error found on DIMMs with raw card E0 */ |
| for (i = 0; i < 18; i++) { |
| if (spd->mapping[i] == udimm_rc_e_dq[i]) |
| continue; |
| spd_error = 1; |
| debug("SPD byte %d: 0x%x, should be 0x%x\n", |
| 60 + i, spd->mapping[i], |
| udimm_rc_e_dq[i]); |
| ptr = (u8 *)&spd->mapping[i]; |
| *ptr = udimm_rc_e_dq[i]; |
| } |
| if (spd_error) |
| puts("SPD DQ mapping error fixed\n"); |
| } |
| break; |
| |
| default: |
| printf("unknown module_type 0x%02X\n", spd->module_type); |
| return 1; |
| } |
| |
| /* SDRAM device parameters */ |
| pdimm->n_row_addr = ((spd->addressing >> 3) & 0x7) + 12; |
| pdimm->n_col_addr = (spd->addressing & 0x7) + 9; |
| pdimm->bank_addr_bits = (spd->density_banks >> 4) & 0x3; |
| pdimm->bank_group_bits = (spd->density_banks >> 6) & 0x3; |
| |
| /* |
| * The SPD spec has not the ECC bit, |
| * We consider the DIMM as ECC capability |
| * when the extension bus exist |
| */ |
| if (pdimm->ec_sdram_width) |
| pdimm->edc_config = 0x02; |
| else |
| pdimm->edc_config = 0x00; |
| |
| /* |
| * The SPD spec has not the burst length byte |
| * but DDR4 spec has nature BL8 and BC4, |
| * BL8 -bit3, BC4 -bit2 |
| */ |
| pdimm->burst_lengths_bitmask = 0x0c; |
| pdimm->row_density = __ilog2(pdimm->rank_density); |
| |
| /* MTB - medium timebase |
| * The MTB in the SPD spec is 125ps, |
| * |
| * FTB - fine timebase |
| * use 1/10th of ps as our unit to avoid floating point |
| * eg, 10 for 1ps, 25 for 2.5ps, 50 for 5ps |
| */ |
| if ((spd->timebases & 0xf) == 0x0) { |
| pdimm->mtb_ps = 125; |
| pdimm->ftb_10th_ps = 10; |
| |
| } else { |
| printf("Unknown Timebases\n"); |
| } |
| |
| /* sdram minimum cycle time */ |
| pdimm->tckmin_x_ps = spd_to_ps(spd->tck_min, spd->fine_tck_min); |
| |
| /* sdram max cycle time */ |
| pdimm->tckmax_ps = spd_to_ps(spd->tck_max, spd->fine_tck_max); |
| |
| /* |
| * CAS latency supported |
| * bit0 - CL7 |
| * bit4 - CL11 |
| * bit8 - CL15 |
| * bit12- CL19 |
| * bit16- CL23 |
| */ |
| pdimm->caslat_x = (spd->caslat_b1 << 7) | |
| (spd->caslat_b2 << 15) | |
| (spd->caslat_b3 << 23); |
| |
| BUG_ON(spd->caslat_b4 != 0); |
| |
| /* |
| * min CAS latency time |
| */ |
| pdimm->taa_ps = spd_to_ps(spd->taa_min, spd->fine_taa_min); |
| |
| /* |
| * min RAS to CAS delay time |
| */ |
| pdimm->trcd_ps = spd_to_ps(spd->trcd_min, spd->fine_trcd_min); |
| |
| /* |
| * Min Row Precharge Delay Time |
| */ |
| pdimm->trp_ps = spd_to_ps(spd->trp_min, spd->fine_trp_min); |
| |
| /* min active to precharge delay time */ |
| pdimm->tras_ps = (((spd->tras_trc_ext & 0xf) << 8) + |
| spd->tras_min_lsb) * pdimm->mtb_ps; |
| |
| /* min active to actice/refresh delay time */ |
| pdimm->trc_ps = spd_to_ps((((spd->tras_trc_ext & 0xf0) << 4) + |
| spd->trc_min_lsb), spd->fine_trc_min); |
| /* Min Refresh Recovery Delay Time */ |
| pdimm->trfc1_ps = ((spd->trfc1_min_msb << 8) | (spd->trfc1_min_lsb)) * |
| pdimm->mtb_ps; |
| pdimm->trfc2_ps = ((spd->trfc2_min_msb << 8) | (spd->trfc2_min_lsb)) * |
| pdimm->mtb_ps; |
| pdimm->trfc4_ps = ((spd->trfc4_min_msb << 8) | (spd->trfc4_min_lsb)) * |
| pdimm->mtb_ps; |
| /* min four active window delay time */ |
| pdimm->tfaw_ps = (((spd->tfaw_msb & 0xf) << 8) | spd->tfaw_min) * |
| pdimm->mtb_ps; |
| |
| /* min row active to row active delay time, different bank group */ |
| pdimm->trrds_ps = spd_to_ps(spd->trrds_min, spd->fine_trrds_min); |
| /* min row active to row active delay time, same bank group */ |
| pdimm->trrdl_ps = spd_to_ps(spd->trrdl_min, spd->fine_trrdl_min); |
| /* min CAS to CAS Delay Time (tCCD_Lmin), same bank group */ |
| pdimm->tccdl_ps = spd_to_ps(spd->tccdl_min, spd->fine_tccdl_min); |
| |
| /* |
| * Average periodic refresh interval |
| * tREFI = 7.8 us at normal temperature range |
| */ |
| pdimm->refresh_rate_ps = 7800000; |
| |
| for (i = 0; i < 18; i++) |
| pdimm->dq_mapping[i] = spd->mapping[i]; |
| |
| pdimm->dq_mapping_ors = ((spd->mapping[0] >> 6) & 0x3) == 0 ? 1 : 0; |
| |
| return 0; |
| } |