| /* |
| * (C) Copyright 2001 |
| * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc. |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| /************************************************************************* |
| * adaption for the Marvell DB64360 Board |
| * Ingo Assmus (ingo.assmus@keymile.com) |
| ************************************************************************/ |
| |
| |
| /* sdram_init.c - automatic memory sizing */ |
| |
| #include <common.h> |
| #include <74xx_7xx.h> |
| #include "../include/memory.h" |
| #include "../include/pci.h" |
| #include "../include/mv_gen_reg.h" |
| #include <net.h> |
| |
| #include "eth.h" |
| #include "mpsc.h" |
| #include "../common/i2c.h" |
| #include "64360.h" |
| #include "mv_regs.h" |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| #define MAP_PCI |
| |
| int set_dfcdlInit (void); /* setup delay line of Mv64360 */ |
| int mvDmaIsChannelActive (int); |
| int mvDmaSetMemorySpace (ulong, ulong, ulong, ulong, ulong); |
| int mvDmaTransfer (int, ulong, ulong, ulong, ulong); |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| int |
| memory_map_bank (unsigned int bankNo, |
| unsigned int bankBase, unsigned int bankLength) |
| { |
| #ifdef MAP_PCI |
| PCI_HOST host; |
| #endif |
| |
| |
| #ifdef DEBUG |
| if (bankLength > 0) { |
| printf ("mapping bank %d at %08x - %08x\n", |
| bankNo, bankBase, bankBase + bankLength - 1); |
| } else { |
| printf ("unmapping bank %d\n", bankNo); |
| } |
| #endif |
| |
| memoryMapBank (bankNo, bankBase, bankLength); |
| |
| #ifdef MAP_PCI |
| for (host = PCI_HOST0; host <= PCI_HOST1; host++) { |
| const int features = |
| PREFETCH_ENABLE | |
| DELAYED_READ_ENABLE | |
| AGGRESSIVE_PREFETCH | |
| READ_LINE_AGGRESSIVE_PREFETCH | |
| READ_MULTI_AGGRESSIVE_PREFETCH | |
| MAX_BURST_4 | PCI_NO_SWAP; |
| |
| pciMapMemoryBank (host, bankNo, bankBase, bankLength); |
| |
| pciSetRegionSnoopMode (host, bankNo, PCI_SNOOP_WB, bankBase, |
| bankLength); |
| |
| pciSetRegionFeatures (host, bankNo, features, bankBase, |
| bankLength); |
| } |
| #endif |
| return 0; |
| } |
| |
| #define GB (1 << 30) |
| |
| /* much of this code is based on (or is) the code in the pip405 port */ |
| /* thanks go to the authors of said port - Josh */ |
| |
| /* structure to store the relevant information about an sdram bank */ |
| typedef struct sdram_info { |
| uchar drb_size; |
| uchar registered, ecc; |
| uchar tpar; |
| uchar tras_clocks; |
| uchar burst_len; |
| uchar banks, slot; |
| } sdram_info_t; |
| |
| /* Typedefs for 'gtAuxilGetDIMMinfo' function */ |
| |
| typedef enum _memoryType { SDRAM, DDR } MEMORY_TYPE; |
| |
| typedef enum _voltageInterface { TTL_5V_TOLERANT, LVTTL, HSTL_1_5V, |
| SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN, |
| } VOLTAGE_INTERFACE; |
| |
| typedef enum _max_CL_supported_DDR { DDR_CL_1 = 1, DDR_CL_1_5 = 2, DDR_CL_2 = |
| 4, DDR_CL_2_5 = 8, DDR_CL_3 = 16, DDR_CL_3_5 = |
| 32, DDR_CL_FAULT } MAX_CL_SUPPORTED_DDR; |
| typedef enum _max_CL_supported_SD { SD_CL_1 = |
| 1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7, |
| SD_FAULT } MAX_CL_SUPPORTED_SD; |
| |
| |
| /* SDRAM/DDR information struct */ |
| typedef struct _gtMemoryDimmInfo { |
| MEMORY_TYPE memoryType; |
| unsigned int numOfRowAddresses; |
| unsigned int numOfColAddresses; |
| unsigned int numOfModuleBanks; |
| unsigned int dataWidth; |
| VOLTAGE_INTERFACE voltageInterface; |
| unsigned int errorCheckType; /* ECC , PARITY.. */ |
| unsigned int sdramWidth; /* 4,8,16 or 32 */ ; |
| unsigned int errorCheckDataWidth; /* 0 - no, 1 - Yes */ |
| unsigned int minClkDelay; |
| unsigned int burstLengthSupported; |
| unsigned int numOfBanksOnEachDevice; |
| unsigned int suportedCasLatencies; |
| unsigned int RefreshInterval; |
| unsigned int maxCASlatencySupported_LoP; /* LoP left of point (measured in ns) */ |
| unsigned int maxCASlatencySupported_RoP; /* RoP right of point (measured in ns) */ |
| MAX_CL_SUPPORTED_DDR maxClSupported_DDR; |
| MAX_CL_SUPPORTED_SD maxClSupported_SD; |
| unsigned int moduleBankDensity; |
| /* module attributes (true for yes) */ |
| bool bufferedAddrAndControlInputs; |
| bool registeredAddrAndControlInputs; |
| bool onCardPLL; |
| bool bufferedDQMBinputs; |
| bool registeredDQMBinputs; |
| bool differentialClockInput; |
| bool redundantRowAddressing; |
| |
| /* module general attributes */ |
| bool suportedAutoPreCharge; |
| bool suportedPreChargeAll; |
| bool suportedEarlyRasPreCharge; |
| bool suportedWrite1ReadBurst; |
| bool suported5PercentLowVCC; |
| bool suported5PercentUpperVCC; |
| /* module timing parameters */ |
| unsigned int minRasToCasDelay; |
| unsigned int minRowActiveRowActiveDelay; |
| unsigned int minRasPulseWidth; |
| unsigned int minRowPrechargeTime; /* measured in ns */ |
| |
| int addrAndCommandHoldTime; /* LoP left of point (measured in ns) */ |
| int addrAndCommandSetupTime; /* (measured in ns/100) */ |
| int dataInputSetupTime; /* LoP left of point (measured in ns) */ |
| int dataInputHoldTime; /* LoP left of point (measured in ns) */ |
| /* tAC times for highest 2nd and 3rd highest CAS Latency values */ |
| unsigned int clockToDataOut_LoP; /* LoP left of point (measured in ns) */ |
| unsigned int clockToDataOut_RoP; /* RoP right of point (measured in ns) */ |
| unsigned int clockToDataOutMinus1_LoP; /* LoP left of point (measured in ns) */ |
| unsigned int clockToDataOutMinus1_RoP; /* RoP right of point (measured in ns) */ |
| unsigned int clockToDataOutMinus2_LoP; /* LoP left of point (measured in ns) */ |
| unsigned int clockToDataOutMinus2_RoP; /* RoP right of point (measured in ns) */ |
| |
| unsigned int minimumCycleTimeAtMaxCasLatancy_LoP; /* LoP left of point (measured in ns) */ |
| unsigned int minimumCycleTimeAtMaxCasLatancy_RoP; /* RoP right of point (measured in ns) */ |
| |
| unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP; /* LoP left of point (measured in ns) */ |
| unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP; /* RoP right of point (measured in ns) */ |
| |
| unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP; /* LoP left of point (measured in ns) */ |
| unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP; /* RoP right of point (measured in ns) */ |
| |
| /* Parameters calculated from |
| the extracted DIMM information */ |
| unsigned int size; |
| unsigned int deviceDensity; /* 16,64,128,256 or 512 Mbit */ |
| unsigned int numberOfDevices; |
| uchar drb_size; /* DRAM size in n*64Mbit */ |
| uchar slot; /* Slot Number this module is inserted in */ |
| uchar spd_raw_data[128]; /* Content of SPD-EEPROM copied 1:1 */ |
| #ifdef DEBUG |
| uchar manufactura[8]; /* Content of SPD-EEPROM Byte 64-71 */ |
| uchar modul_id[18]; /* Content of SPD-EEPROM Byte 73-90 */ |
| uchar vendor_data[27]; /* Content of SPD-EEPROM Byte 99-125 */ |
| unsigned long modul_serial_no; /* Content of SPD-EEPROM Byte 95-98 */ |
| unsigned int manufac_date; /* Content of SPD-EEPROM Byte 93-94 */ |
| unsigned int modul_revision; /* Content of SPD-EEPROM Byte 91-92 */ |
| uchar manufac_place; /* Content of SPD-EEPROM Byte 72 */ |
| |
| #endif |
| } AUX_MEM_DIMM_INFO; |
| |
| |
| /* |
| * translate ns.ns/10 coding of SPD timing values |
| * into 10 ps unit values |
| */ |
| static inline unsigned short NS10to10PS (unsigned char spd_byte) |
| { |
| unsigned short ns, ns10; |
| |
| /* isolate upper nibble */ |
| ns = (spd_byte >> 4) & 0x0F; |
| /* isolate lower nibble */ |
| ns10 = (spd_byte & 0x0F); |
| |
| return (ns * 100 + ns10 * 10); |
| } |
| |
| /* |
| * translate ns coding of SPD timing values |
| * into 10 ps unit values |
| */ |
| static inline unsigned short NSto10PS (unsigned char spd_byte) |
| { |
| return (spd_byte * 100); |
| } |
| |
| /* This code reads the SPD chip on the sdram and populates |
| * the array which is passed in with the relevant information */ |
| /* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */ |
| static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo) |
| { |
| unsigned long spd_checksum; |
| |
| #ifdef ZUMA_NTL |
| /* zero all the values */ |
| memset (info, 0, sizeof (*info)); |
| |
| /* |
| if (!slot) { |
| info->slot = 0; |
| info->banks = 1; |
| info->registered = 0; |
| info->drb_size = 16;*/ /* 16 - 256MBit, 32 - 512MBit */ |
| /* info->tpar = 3; |
| info->tras_clocks = 5; |
| info->burst_len = 4; |
| */ |
| #ifdef CONFIG_MV64360_ECC |
| /* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */ |
| dimmInfo->errorCheckType = 2; |
| /* info->ecc = 2;*/ |
| #endif |
| } |
| |
| return 0; |
| |
| #else |
| uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR; |
| int ret; |
| unsigned int i, j, density = 1; |
| |
| #ifdef DEBUG |
| unsigned int k; |
| #endif |
| unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp; |
| int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint; |
| uchar supp_cal, cal_val; |
| ulong memclk, tmemclk; |
| ulong tmp; |
| uchar trp_clocks = 0, tras_clocks; |
| uchar data[128]; |
| |
| memclk = gd->bus_clk; |
| tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */ |
| |
| debug("before i2c read\n"); |
| |
| ret = i2c_read (addr, 0, 1, data, 128); |
| |
| debug("after i2c read\n"); |
| |
| /* zero all the values */ |
| memset (dimmInfo, 0, sizeof (*dimmInfo)); |
| |
| /* copy the SPD content 1:1 into the dimmInfo structure */ |
| for (i = 0; i <= 127; i++) { |
| dimmInfo->spd_raw_data[i] = data[i]; |
| } |
| |
| if (ret) { |
| debug("No DIMM in slot %d [err = %x]\n", slot, ret); |
| return 0; |
| } else |
| dimmInfo->slot = slot; /* start to fill up dimminfo for this "slot" */ |
| |
| #ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT |
| |
| for (i = 0; i <= 127; i++) { |
| printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i], |
| data[i]); |
| } |
| |
| #endif |
| #ifdef DEBUG |
| /* find Manufactura of Dimm Module */ |
| for (i = 0; i < sizeof (dimmInfo->manufactura); i++) { |
| dimmInfo->manufactura[i] = data[64 + i]; |
| } |
| printf ("\nThis RAM-Module is produced by: %s\n", |
| dimmInfo->manufactura); |
| |
| /* find Manul-ID of Dimm Module */ |
| for (i = 0; i < sizeof (dimmInfo->modul_id); i++) { |
| dimmInfo->modul_id[i] = data[73 + i]; |
| } |
| printf ("The Module-ID of this RAM-Module is: %s\n", |
| dimmInfo->modul_id); |
| |
| /* find Vendor-Data of Dimm Module */ |
| for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) { |
| dimmInfo->vendor_data[i] = data[99 + i]; |
| } |
| printf ("Vendor Data of this RAM-Module is: %s\n", |
| dimmInfo->vendor_data); |
| |
| /* find modul_serial_no of Dimm Module */ |
| dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95]))); |
| printf ("Serial No. of this RAM-Module is: %ld (%lx)\n", |
| dimmInfo->modul_serial_no, dimmInfo->modul_serial_no); |
| |
| /* find Manufac-Data of Dimm Module */ |
| dimmInfo->manufac_date = (*((unsigned int *) (&data[93]))); |
| printf ("Manufactoring Date of this RAM-Module is: %d.%d\n", data[93], data[94]); /*dimmInfo->manufac_date */ |
| |
| /* find modul_revision of Dimm Module */ |
| dimmInfo->modul_revision = (*((unsigned int *) (&data[91]))); |
| printf ("Module Revision of this RAM-Module is: %d.%d\n", data[91], data[92]); /* dimmInfo->modul_revision */ |
| |
| /* find manufac_place of Dimm Module */ |
| dimmInfo->manufac_place = (*((unsigned char *) (&data[72]))); |
| printf ("manufac_place of this RAM-Module is: %d\n", |
| dimmInfo->manufac_place); |
| |
| #endif |
| |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| /* calculate SPD checksum */ |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| spd_checksum = 0; |
| |
| for (i = 0; i <= 62; i++) { |
| spd_checksum += data[i]; |
| } |
| |
| if ((spd_checksum & 0xff) != data[63]) { |
| printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]); |
| hang (); |
| } |
| |
| else |
| printf ("SPD Checksum ok!\n"); |
| |
| |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| for (i = 2; i <= 35; i++) { |
| switch (i) { |
| case 2: /* Memory type (DDR / SDRAM) */ |
| dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM; |
| if (dimmInfo->memoryType == 0) |
| debug |
| ("Dram_type in slot %d is: SDRAM\n", |
| dimmInfo->slot); |
| if (dimmInfo->memoryType == 1) |
| debug |
| ("Dram_type in slot %d is: DDRAM\n", |
| dimmInfo->slot); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 3: /* Number Of Row Addresses */ |
| dimmInfo->numOfRowAddresses = data[i]; |
| debug |
| ("Module Number of row addresses: %d\n", |
| dimmInfo->numOfRowAddresses); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 4: /* Number Of Column Addresses */ |
| dimmInfo->numOfColAddresses = data[i]; |
| debug |
| ("Module Number of col addresses: %d\n", |
| dimmInfo->numOfColAddresses); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 5: /* Number Of Module Banks */ |
| dimmInfo->numOfModuleBanks = data[i]; |
| debug |
| ("Number of Banks on Mod. : %d\n", |
| dimmInfo->numOfModuleBanks); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 6: /* Data Width */ |
| dimmInfo->dataWidth = data[i]; |
| debug |
| ("Module Data Width: %d\n", |
| dimmInfo->dataWidth); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 8: /* Voltage Interface */ |
| switch (data[i]) { |
| case 0x0: |
| dimmInfo->voltageInterface = TTL_5V_TOLERANT; |
| debug |
| ("Module is TTL_5V_TOLERANT\n"); |
| break; |
| case 0x1: |
| dimmInfo->voltageInterface = LVTTL; |
| debug |
| ("Module is LVTTL\n"); |
| break; |
| case 0x2: |
| dimmInfo->voltageInterface = HSTL_1_5V; |
| debug |
| ("Module is TTL_5V_TOLERANT\n"); |
| break; |
| case 0x3: |
| dimmInfo->voltageInterface = SSTL_3_3V; |
| debug |
| ("Module is HSTL_1_5V\n"); |
| break; |
| case 0x4: |
| dimmInfo->voltageInterface = SSTL_2_5V; |
| debug |
| ("Module is SSTL_2_5V\n"); |
| break; |
| default: |
| dimmInfo->voltageInterface = VOLTAGE_UNKNOWN; |
| debug |
| ("Module is VOLTAGE_UNKNOWN\n"); |
| break; |
| } |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 9: /* Minimum Cycle Time At Max CasLatancy */ |
| shift = (dimmInfo->memoryType == DDR) ? 4 : 2; |
| mult = (dimmInfo->memoryType == DDR) ? 10 : 25; |
| maskLeftOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; |
| maskRightOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0xf : 0x03; |
| leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; |
| rightOfPoint = (data[i] & maskRightOfPoint) * mult; |
| dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP = |
| leftOfPoint; |
| dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP = |
| rightOfPoint; |
| debug |
| ("Minimum Cycle Time At Max CasLatancy: %d.%d [ns]\n", |
| leftOfPoint, rightOfPoint); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 10: /* Clock To Data Out */ |
| div = (dimmInfo->memoryType == DDR) ? 100 : 10; |
| time_tmp = |
| (((data[i] & 0xf0) >> 4) * 10) + |
| ((data[i] & 0x0f)); |
| leftOfPoint = time_tmp / div; |
| rightOfPoint = time_tmp % div; |
| dimmInfo->clockToDataOut_LoP = leftOfPoint; |
| dimmInfo->clockToDataOut_RoP = rightOfPoint; |
| debug("Clock To Data Out: %d.%2d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->clockToDataOut */ |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| /*#ifdef CONFIG_ECC */ |
| case 11: /* Error Check Type */ |
| dimmInfo->errorCheckType = data[i]; |
| debug |
| ("Error Check Type (0=NONE): %d\n", |
| dimmInfo->errorCheckType); |
| break; |
| /* #endif */ |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 12: /* Refresh Interval */ |
| dimmInfo->RefreshInterval = data[i]; |
| debug |
| ("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n", |
| dimmInfo->RefreshInterval); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 13: /* Sdram Width */ |
| dimmInfo->sdramWidth = data[i]; |
| debug |
| ("Sdram Width: %d\n", |
| dimmInfo->sdramWidth); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 14: /* Error Check Data Width */ |
| dimmInfo->errorCheckDataWidth = data[i]; |
| debug |
| ("Error Check Data Width: %d\n", |
| dimmInfo->errorCheckDataWidth); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 15: /* Minimum Clock Delay */ |
| dimmInfo->minClkDelay = data[i]; |
| debug |
| ("Minimum Clock Delay: %d\n", |
| dimmInfo->minClkDelay); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 16: /* Burst Length Supported */ |
| /******-******-******-******* |
| * bit3 | bit2 | bit1 | bit0 * |
| *******-******-******-******* |
| burst length = * 8 | 4 | 2 | 1 * |
| ***************************** |
| |
| If for example bit0 and bit2 are set, the burst |
| length supported are 1 and 4. */ |
| |
| dimmInfo->burstLengthSupported = data[i]; |
| #ifdef DEBUG |
| debug |
| ("Burst Length Supported: "); |
| if (dimmInfo->burstLengthSupported & 0x01) |
| debug("1, "); |
| if (dimmInfo->burstLengthSupported & 0x02) |
| debug("2, "); |
| if (dimmInfo->burstLengthSupported & 0x04) |
| debug("4, "); |
| if (dimmInfo->burstLengthSupported & 0x08) |
| debug("8, "); |
| debug(" Bit \n"); |
| #endif |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 17: /* Number Of Banks On Each Device */ |
| dimmInfo->numOfBanksOnEachDevice = data[i]; |
| debug |
| ("Number Of Banks On Each Chip: %d\n", |
| dimmInfo->numOfBanksOnEachDevice); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 18: /* Suported Cas Latencies */ |
| |
| /* DDR: |
| *******-******-******-******-******-******-******-******* |
| * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| *******-******-******-******-******-******-******-******* |
| CAS = * TBD | TBD | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 * |
| ********************************************************* |
| SDRAM: |
| *******-******-******-******-******-******-******-******* |
| * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * |
| *******-******-******-******-******-******-******-******* |
| CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 * |
| ********************************************************/ |
| dimmInfo->suportedCasLatencies = data[i]; |
| #ifdef DEBUG |
| debug |
| ("Suported Cas Latencies: (CL) "); |
| if (dimmInfo->memoryType == 0) { /* SDRAM */ |
| for (k = 0; k <= 7; k++) { |
| if (dimmInfo-> |
| suportedCasLatencies & (1 << k)) |
| debug |
| ("%d, ", |
| k + 1); |
| } |
| |
| } else { /* DDR-RAM */ |
| |
| if (dimmInfo->suportedCasLatencies & 1) |
| debug("1, "); |
| if (dimmInfo->suportedCasLatencies & 2) |
| debug("1.5, "); |
| if (dimmInfo->suportedCasLatencies & 4) |
| debug("2, "); |
| if (dimmInfo->suportedCasLatencies & 8) |
| debug("2.5, "); |
| if (dimmInfo->suportedCasLatencies & 16) |
| debug("3, "); |
| if (dimmInfo->suportedCasLatencies & 32) |
| debug("3.5, "); |
| |
| } |
| debug("\n"); |
| #endif |
| /* Calculating MAX CAS latency */ |
| for (j = 7; j > 0; j--) { |
| if (((dimmInfo-> |
| suportedCasLatencies >> j) & 0x1) == |
| 1) { |
| switch (dimmInfo->memoryType) { |
| case DDR: |
| /* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */ |
| switch (j) { |
| case 7: |
| debug |
| ("Max. Cas Latencies (DDR): ERROR !!!\n"); |
| dimmInfo-> |
| maxClSupported_DDR |
| = |
| DDR_CL_FAULT; |
| hang (); |
| break; |
| case 6: |
| debug |
| ("Max. Cas Latencies (DDR): ERROR !!!\n"); |
| dimmInfo-> |
| maxClSupported_DDR |
| = |
| DDR_CL_FAULT; |
| hang (); |
| break; |
| case 5: |
| debug |
| ("Max. Cas Latencies (DDR): 3.5 clk's\n"); |
| dimmInfo-> |
| maxClSupported_DDR |
| = DDR_CL_3_5; |
| break; |
| case 4: |
| debug |
| ("Max. Cas Latencies (DDR): 3 clk's \n"); |
| dimmInfo-> |
| maxClSupported_DDR |
| = DDR_CL_3; |
| break; |
| case 3: |
| debug |
| ("Max. Cas Latencies (DDR): 2.5 clk's \n"); |
| dimmInfo-> |
| maxClSupported_DDR |
| = DDR_CL_2_5; |
| break; |
| case 2: |
| debug |
| ("Max. Cas Latencies (DDR): 2 clk's \n"); |
| dimmInfo-> |
| maxClSupported_DDR |
| = DDR_CL_2; |
| break; |
| case 1: |
| debug |
| ("Max. Cas Latencies (DDR): 1.5 clk's \n"); |
| dimmInfo-> |
| maxClSupported_DDR |
| = DDR_CL_1_5; |
| break; |
| } |
| |
| /* ronen - in case we have a DIMM with minimumCycleTimeAtMaxCasLatancy |
| lower then our SDRAM cycle count, we won't be able to support this CAL |
| and we will have to use lower CAL. (minus - means from 3.0 to 2.5) */ |
| if ((dimmInfo-> |
| minimumCycleTimeAtMaxCasLatancy_LoP |
| < |
| CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP) |
| || |
| ((dimmInfo-> |
| minimumCycleTimeAtMaxCasLatancy_LoP |
| == |
| CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP) |
| && (dimmInfo-> |
| minimumCycleTimeAtMaxCasLatancy_RoP |
| < |
| CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP))) |
| { |
| dimmInfo-> |
| maxClSupported_DDR |
| = |
| dimmInfo-> |
| maxClSupported_DDR |
| >> 1; |
| debug |
| ("*** Change actual Cas Latencies cause of minimumCycleTime n"); |
| } |
| /* ronen - checkif the Dimm frequency compared to the Sysclock. */ |
| if ((dimmInfo-> |
| minimumCycleTimeAtMaxCasLatancy_LoP |
| > |
| CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP) |
| || |
| ((dimmInfo-> |
| minimumCycleTimeAtMaxCasLatancy_LoP |
| == |
| CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP) |
| && (dimmInfo-> |
| minimumCycleTimeAtMaxCasLatancy_RoP |
| > |
| CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP))) |
| { |
| printf ("*********************************************************\n"); |
| printf ("*** sysClock is higher than SDRAM's allowed frequency ***\n"); |
| printf ("*********************************************************\n"); |
| hang (); |
| } |
| |
| dimmInfo-> |
| maxCASlatencySupported_LoP |
| = |
| 1 + |
| (int) (5 * j / 10); |
| if (((5 * j) % 10) != 0) |
| dimmInfo-> |
| maxCASlatencySupported_RoP |
| = 5; |
| else |
| dimmInfo-> |
| maxCASlatencySupported_RoP |
| = 0; |
| debug |
| ("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", |
| dimmInfo-> |
| maxCASlatencySupported_LoP, |
| dimmInfo-> |
| maxCASlatencySupported_RoP); |
| break; |
| case SDRAM: |
| /* CAS latency 1, 2, 3, 4, 5, 6, 7 */ |
| dimmInfo->maxClSupported_SD = j; /* Cas Latency DDR-RAM Coded */ |
| debug |
| ("Max. Cas Latencies (SD): %d\n", |
| dimmInfo-> |
| maxClSupported_SD); |
| dimmInfo-> |
| maxCASlatencySupported_LoP |
| = j; |
| dimmInfo-> |
| maxCASlatencySupported_RoP |
| = 0; |
| debug |
| ("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", |
| dimmInfo-> |
| maxCASlatencySupported_LoP, |
| dimmInfo-> |
| maxCASlatencySupported_RoP); |
| break; |
| } |
| break; |
| } |
| } |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 21: /* Buffered Address And Control Inputs */ |
| debug("\nModul Attributes (SPD Byte 21): \n"); |
| dimmInfo->bufferedAddrAndControlInputs = |
| data[i] & BIT0; |
| dimmInfo->registeredAddrAndControlInputs = |
| (data[i] & BIT1) >> 1; |
| dimmInfo->onCardPLL = (data[i] & BIT2) >> 2; |
| dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3; |
| dimmInfo->registeredDQMBinputs = |
| (data[i] & BIT4) >> 4; |
| dimmInfo->differentialClockInput = |
| (data[i] & BIT5) >> 5; |
| dimmInfo->redundantRowAddressing = |
| (data[i] & BIT6) >> 6; |
| #ifdef DEBUG |
| if (dimmInfo->bufferedAddrAndControlInputs == 1) |
| debug |
| (" - Buffered Address/Control Input: Yes \n"); |
| else |
| debug |
| (" - Buffered Address/Control Input: No \n"); |
| |
| if (dimmInfo->registeredAddrAndControlInputs == 1) |
| debug |
| (" - Registered Address/Control Input: Yes \n"); |
| else |
| debug |
| (" - Registered Address/Control Input: No \n"); |
| |
| if (dimmInfo->onCardPLL == 1) |
| debug |
| (" - On-Card PLL (clock): Yes \n"); |
| else |
| debug |
| (" - On-Card PLL (clock): No \n"); |
| |
| if (dimmInfo->bufferedDQMBinputs == 1) |
| debug |
| (" - Bufferd DQMB Inputs: Yes \n"); |
| else |
| debug |
| (" - Bufferd DQMB Inputs: No \n"); |
| |
| if (dimmInfo->registeredDQMBinputs == 1) |
| debug |
| (" - Registered DQMB Inputs: Yes \n"); |
| else |
| debug |
| (" - Registered DQMB Inputs: No \n"); |
| |
| if (dimmInfo->differentialClockInput == 1) |
| debug |
| (" - Differential Clock Input: Yes \n"); |
| else |
| debug |
| (" - Differential Clock Input: No \n"); |
| |
| if (dimmInfo->redundantRowAddressing == 1) |
| debug |
| (" - redundant Row Addressing: Yes \n"); |
| else |
| debug |
| (" - redundant Row Addressing: No \n"); |
| |
| #endif |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 22: /* Suported AutoPreCharge */ |
| debug("\nModul Attributes (SPD Byte 22): \n"); |
| dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0; |
| dimmInfo->suportedAutoPreCharge = |
| (data[i] & BIT1) >> 1; |
| dimmInfo->suportedPreChargeAll = |
| (data[i] & BIT2) >> 2; |
| dimmInfo->suportedWrite1ReadBurst = |
| (data[i] & BIT3) >> 3; |
| dimmInfo->suported5PercentLowVCC = |
| (data[i] & BIT4) >> 4; |
| dimmInfo->suported5PercentUpperVCC = |
| (data[i] & BIT5) >> 5; |
| #ifdef DEBUG |
| if (dimmInfo->suportedEarlyRasPreCharge == 1) |
| debug |
| (" - Early Ras Precharge: Yes \n"); |
| else |
| debug |
| (" - Early Ras Precharge: No \n"); |
| |
| if (dimmInfo->suportedAutoPreCharge == 1) |
| debug |
| (" - AutoPreCharge: Yes \n"); |
| else |
| debug |
| (" - AutoPreCharge: No \n"); |
| |
| if (dimmInfo->suportedPreChargeAll == 1) |
| debug |
| (" - Precharge All: Yes \n"); |
| else |
| debug |
| (" - Precharge All: No \n"); |
| |
| if (dimmInfo->suportedWrite1ReadBurst == 1) |
| debug |
| (" - Write 1/ReadBurst: Yes \n"); |
| else |
| debug |
| (" - Write 1/ReadBurst: No \n"); |
| |
| if (dimmInfo->suported5PercentLowVCC == 1) |
| debug |
| (" - lower VCC tolerance: 5 Percent \n"); |
| else |
| debug |
| (" - lower VCC tolerance: 10 Percent \n"); |
| |
| if (dimmInfo->suported5PercentUpperVCC == 1) |
| debug |
| (" - upper VCC tolerance: 5 Percent \n"); |
| else |
| debug |
| (" - upper VCC tolerance: 10 Percent \n"); |
| |
| #endif |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */ |
| shift = (dimmInfo->memoryType == DDR) ? 4 : 2; |
| mult = (dimmInfo->memoryType == DDR) ? 10 : 25; |
| maskLeftOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; |
| maskRightOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0xf : 0x03; |
| leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; |
| rightOfPoint = (data[i] & maskRightOfPoint) * mult; |
| dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP = |
| leftOfPoint; |
| dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP = |
| rightOfPoint; |
| debug("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */ |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 24: /* Clock To Data Out 2nd highest Cas Latency Value */ |
| div = (dimmInfo->memoryType == DDR) ? 100 : 10; |
| time_tmp = |
| (((data[i] & 0xf0) >> 4) * 10) + |
| ((data[i] & 0x0f)); |
| leftOfPoint = time_tmp / div; |
| rightOfPoint = time_tmp % div; |
| dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint; |
| dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint; |
| debug |
| ("Clock To Data Out (2nd CL value): %d.%2d [ns]\n", |
| leftOfPoint, rightOfPoint); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */ |
| shift = (dimmInfo->memoryType == DDR) ? 4 : 2; |
| mult = (dimmInfo->memoryType == DDR) ? 10 : 25; |
| maskLeftOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; |
| maskRightOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0xf : 0x03; |
| leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; |
| rightOfPoint = (data[i] & maskRightOfPoint) * mult; |
| dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP = |
| leftOfPoint; |
| dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP = |
| rightOfPoint; |
| debug("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */ |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 26: /* Clock To Data Out 3rd highest Cas Latency Value */ |
| div = (dimmInfo->memoryType == DDR) ? 100 : 10; |
| time_tmp = |
| (((data[i] & 0xf0) >> 4) * 10) + |
| ((data[i] & 0x0f)); |
| leftOfPoint = time_tmp / div; |
| rightOfPoint = time_tmp % div; |
| dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint; |
| dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint; |
| debug |
| ("Clock To Data Out (3rd CL value): %d.%2d [ns]\n", |
| leftOfPoint, rightOfPoint); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 27: /* Minimum Row Precharge Time */ |
| shift = (dimmInfo->memoryType == DDR) ? 2 : 0; |
| maskLeftOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; |
| maskRightOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; |
| leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); |
| rightOfPoint = (data[i] & maskRightOfPoint) * 25; |
| |
| dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint); /* measured in n times 10ps Intervals */ |
| trp_clocks = |
| (dimmInfo->minRowPrechargeTime + |
| (tmemclk - 1)) / tmemclk; |
| debug |
| ("*** 1 clock cycle = %ld 10ps intervalls = %ld.%ld ns****\n", |
| tmemclk, tmemclk / 100, tmemclk % 100); |
| debug |
| ("Minimum Row Precharge Time [ns]: %d.%2d = in Clk cycles %d\n", |
| leftOfPoint, rightOfPoint, trp_clocks); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 28: /* Minimum Row Active to Row Active Time */ |
| shift = (dimmInfo->memoryType == DDR) ? 2 : 0; |
| maskLeftOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; |
| maskRightOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; |
| leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); |
| rightOfPoint = (data[i] & maskRightOfPoint) * 25; |
| |
| dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */ |
| debug |
| ("Minimum Row Active -To- Row Active Delay [ns]: %d.%2d = in Clk cycles %d\n", |
| leftOfPoint, rightOfPoint, trp_clocks); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 29: /* Minimum Ras-To-Cas Delay */ |
| shift = (dimmInfo->memoryType == DDR) ? 2 : 0; |
| maskLeftOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; |
| maskRightOfPoint = |
| (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; |
| leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); |
| rightOfPoint = (data[i] & maskRightOfPoint) * 25; |
| |
| dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */ |
| debug |
| ("Minimum Ras-To-Cas Delay [ns]: %d.%2d = in Clk cycles %d\n", |
| leftOfPoint, rightOfPoint, trp_clocks); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 30: /* Minimum Ras Pulse Width */ |
| dimmInfo->minRasPulseWidth = data[i]; |
| tras_clocks = |
| (NSto10PS (data[i]) + |
| (tmemclk - 1)) / tmemclk; |
| debug |
| ("Minimum Ras Pulse Width [ns]: %d = in Clk cycles %d\n", |
| dimmInfo->minRasPulseWidth, tras_clocks); |
| |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 31: /* Module Bank Density */ |
| dimmInfo->moduleBankDensity = data[i]; |
| debug |
| ("Module Bank Density: %d\n", |
| dimmInfo->moduleBankDensity); |
| #ifdef DEBUG |
| debug |
| ("*** Offered Densities (more than 1 = Multisize-Module): "); |
| { |
| if (dimmInfo->moduleBankDensity & 1) |
| debug("4MB, "); |
| if (dimmInfo->moduleBankDensity & 2) |
| debug("8MB, "); |
| if (dimmInfo->moduleBankDensity & 4) |
| debug("16MB, "); |
| if (dimmInfo->moduleBankDensity & 8) |
| debug("32MB, "); |
| if (dimmInfo->moduleBankDensity & 16) |
| debug("64MB, "); |
| if (dimmInfo->moduleBankDensity & 32) |
| debug("128MB, "); |
| if ((dimmInfo->moduleBankDensity & 64) |
| || (dimmInfo->moduleBankDensity & 128)) { |
| debug("ERROR, "); |
| hang (); |
| } |
| } |
| debug("\n"); |
| #endif |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 32: /* Address And Command Setup Time (measured in ns/1000) */ |
| sign = 1; |
| switch (dimmInfo->memoryType) { |
| case DDR: |
| time_tmp = |
| (((data[i] & 0xf0) >> 4) * 10) + |
| ((data[i] & 0x0f)); |
| leftOfPoint = time_tmp / 100; |
| rightOfPoint = time_tmp % 100; |
| break; |
| case SDRAM: |
| leftOfPoint = (data[i] & 0xf0) >> 4; |
| if (leftOfPoint > 7) { |
| leftOfPoint = data[i] & 0x70 >> 4; |
| sign = -1; |
| } |
| rightOfPoint = (data[i] & 0x0f); |
| break; |
| } |
| dimmInfo->addrAndCommandSetupTime = |
| (leftOfPoint * 100 + rightOfPoint) * sign; |
| debug |
| ("Address And Command Setup Time [ns]: %d.%d\n", |
| sign * leftOfPoint, rightOfPoint); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 33: /* Address And Command Hold Time */ |
| sign = 1; |
| switch (dimmInfo->memoryType) { |
| case DDR: |
| time_tmp = |
| (((data[i] & 0xf0) >> 4) * 10) + |
| ((data[i] & 0x0f)); |
| leftOfPoint = time_tmp / 100; |
| rightOfPoint = time_tmp % 100; |
| break; |
| case SDRAM: |
| leftOfPoint = (data[i] & 0xf0) >> 4; |
| if (leftOfPoint > 7) { |
| leftOfPoint = data[i] & 0x70 >> 4; |
| sign = -1; |
| } |
| rightOfPoint = (data[i] & 0x0f); |
| break; |
| } |
| dimmInfo->addrAndCommandHoldTime = |
| (leftOfPoint * 100 + rightOfPoint) * sign; |
| debug |
| ("Address And Command Hold Time [ns]: %d.%d\n", |
| sign * leftOfPoint, rightOfPoint); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 34: /* Data Input Setup Time */ |
| sign = 1; |
| switch (dimmInfo->memoryType) { |
| case DDR: |
| time_tmp = |
| (((data[i] & 0xf0) >> 4) * 10) + |
| ((data[i] & 0x0f)); |
| leftOfPoint = time_tmp / 100; |
| rightOfPoint = time_tmp % 100; |
| break; |
| case SDRAM: |
| leftOfPoint = (data[i] & 0xf0) >> 4; |
| if (leftOfPoint > 7) { |
| leftOfPoint = data[i] & 0x70 >> 4; |
| sign = -1; |
| } |
| rightOfPoint = (data[i] & 0x0f); |
| break; |
| } |
| dimmInfo->dataInputSetupTime = |
| (leftOfPoint * 100 + rightOfPoint) * sign; |
| debug |
| ("Data Input Setup Time [ns]: %d.%d\n", |
| sign * leftOfPoint, rightOfPoint); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| |
| case 35: /* Data Input Hold Time */ |
| sign = 1; |
| switch (dimmInfo->memoryType) { |
| case DDR: |
| time_tmp = |
| (((data[i] & 0xf0) >> 4) * 10) + |
| ((data[i] & 0x0f)); |
| leftOfPoint = time_tmp / 100; |
| rightOfPoint = time_tmp % 100; |
| break; |
| case SDRAM: |
| leftOfPoint = (data[i] & 0xf0) >> 4; |
| if (leftOfPoint > 7) { |
| leftOfPoint = data[i] & 0x70 >> 4; |
| sign = -1; |
| } |
| rightOfPoint = (data[i] & 0x0f); |
| break; |
| } |
| dimmInfo->dataInputHoldTime = |
| (leftOfPoint * 100 + rightOfPoint) * sign; |
| debug |
| ("Data Input Hold Time [ns]: %d.%d\n\n", |
| sign * leftOfPoint, rightOfPoint); |
| break; |
| /*------------------------------------------------------------------------------------------------------------------------------*/ |
| } |
| } |
| /* calculating the sdram density */ |
| for (i = 0; |
| i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses; |
| i++) { |
| density = density * 2; |
| } |
| dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice * |
| dimmInfo->sdramWidth; |
| dimmInfo->numberOfDevices = |
| (dimmInfo->dataWidth / dimmInfo->sdramWidth) * |
| dimmInfo->numOfModuleBanks; |
| if ((dimmInfo->errorCheckType == 0x1) |
| || (dimmInfo->errorCheckType == 0x2) |
| || (dimmInfo->errorCheckType == 0x3)) { |
| dimmInfo->size = |
| (dimmInfo->deviceDensity / 8) * |
| (dimmInfo->numberOfDevices - |
| /* ronen on the 1G dimm we get wrong value. (was devicesForErrCheck) */ |
| dimmInfo->numberOfDevices / 8); |
| } else { |
| dimmInfo->size = |
| (dimmInfo->deviceDensity / 8) * |
| dimmInfo->numberOfDevices; |
| } |
| |
| /* compute the module DRB size */ |
| tmp = (1 << |
| (dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses)); |
| tmp *= dimmInfo->numOfModuleBanks; |
| tmp *= dimmInfo->sdramWidth; |
| tmp = tmp >> 24; /* div by 0x4000000 (64M) */ |
| dimmInfo->drb_size = (uchar) tmp; |
| debug("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size); |
| |
| /* try a CAS latency of 3 first... */ |
| |
| /* bit 1 is CL2, bit 2 is CL3 */ |
| supp_cal = (dimmInfo->suportedCasLatencies & 0x6) >> 1; |
| |
| cal_val = 0; |
| if (supp_cal & 3) { |
| if (NS10to10PS (data[9]) <= tmemclk) |
| cal_val = 3; |
| } |
| |
| /* then 2... */ |
| if (supp_cal & 2) { |
| if (NS10to10PS (data[23]) <= tmemclk) |
| cal_val = 2; |
| } |
| |
| debug("cal_val = %d\n", cal_val); |
| |
| /* bummer, did't work... */ |
| if (cal_val == 0) { |
| debug("Couldn't find a good CAS latency\n"); |
| hang (); |
| return 0; |
| } |
| |
| return true; |
| |
| #endif |
| } |
| |
| /* sets up the GT properly with information passed in */ |
| int setup_sdram (AUX_MEM_DIMM_INFO * info) |
| { |
| ulong tmp, check; |
| ulong tmp_sdram_mode = 0; /* 0x141c */ |
| ulong tmp_dunit_control_low = 0; /* 0x1404 */ |
| int i; |
| |
| /* added 8/21/2003 P. Marchese */ |
| unsigned int sdram_config_reg; |
| |
| /* added 10/10/2003 P. Marchese */ |
| ulong sdram_chip_size; |
| |
| /* sanity checking */ |
| if (!info->numOfModuleBanks) { |
| printf ("setup_sdram called with 0 banks\n"); |
| return 1; |
| } |
| |
| /* delay line */ |
| set_dfcdlInit (); /* may be its not needed */ |
| debug("Delay line set done\n"); |
| |
| /* set SDRAM mode NOP */ /* To_do check it */ |
| GT_REG_WRITE (SDRAM_OPERATION, 0x5); |
| while (GTREGREAD (SDRAM_OPERATION) != 0) { |
| debug |
| ("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n"); |
| } |
| |
| /* SDRAM configuration */ |
| /* added 8/21/2003 P. Marchese */ |
| /* code allows usage of registered DIMMS */ |
| |
| /* figure out the memory refresh internal */ |
| switch (info->RefreshInterval) { |
| case 0x0: |
| case 0x80: /* refresh period is 15.625 usec */ |
| sdram_config_reg = |
| (unsigned int) (((float) 15.625 * (float) CONFIG_SYS_BUS_CLK) |
| / (float) 1000000.0); |
| break; |
| case 0x1: |
| case 0x81: /* refresh period is 3.9 usec */ |
| sdram_config_reg = |
| (unsigned int) (((float) 3.9 * (float) CONFIG_SYS_BUS_CLK) / |
| (float) 1000000.0); |
| break; |
| case 0x2: |
| case 0x82: /* refresh period is 7.8 usec */ |
| sdram_config_reg = |
| (unsigned int) (((float) 7.8 * (float) CONFIG_SYS_BUS_CLK) / |
| (float) 1000000.0); |
| break; |
| case 0x3: |
| case 0x83: /* refresh period is 31.3 usec */ |
| sdram_config_reg = |
| (unsigned int) (((float) 31.3 * (float) CONFIG_SYS_BUS_CLK) / |
| (float) 1000000.0); |
| break; |
| case 0x4: |
| case 0x84: /* refresh period is 62.5 usec */ |
| sdram_config_reg = |
| (unsigned int) (((float) 62.5 * (float) CONFIG_SYS_BUS_CLK) / |
| (float) 1000000.0); |
| break; |
| case 0x5: |
| case 0x85: /* refresh period is 125 usec */ |
| sdram_config_reg = |
| (unsigned int) (((float) 125 * (float) CONFIG_SYS_BUS_CLK) / |
| (float) 1000000.0); |
| break; |
| default: /* refresh period undefined */ |
| printf ("DRAM refresh period is unknown!\n"); |
| printf ("Aborting DRAM setup with an error\n"); |
| hang (); |
| break; |
| } |
| debug("calculated refresh interval %0x\n", sdram_config_reg); |
| |
| /* make sure the refresh value is only 14 bits */ |
| if (sdram_config_reg > 0x1fff) |
| sdram_config_reg = 0x1fff; |
| debug("adjusted refresh interval %0x\n", sdram_config_reg); |
| |
| /* we want physical bank interleaving and */ |
| /* virtual bank interleaving enabled so do nothing */ |
| /* since these bits need to be zero to enable the interleaving */ |
| |
| /* registered DRAM ? */ |
| if (info->registeredAddrAndControlInputs == 1) { |
| /* it's registered DRAM, so set the reg. DRAM bit */ |
| sdram_config_reg = sdram_config_reg | BIT17; |
| debug("Enabling registered DRAM bit\n"); |
| } |
| /* turn on DRAM ECC? */ |
| #ifdef CONFIG_MV64360_ECC |
| if (info->errorCheckType == 0x2) { |
| /* DRAM has ECC, so turn it on */ |
| sdram_config_reg = sdram_config_reg | BIT18; |
| debug("Enabling ECC\n"); |
| } |
| #endif |
| /* set the data DQS pin configuration */ |
| switch (info->sdramWidth) { |
| case 0x4: /* memory is x4 */ |
| sdram_config_reg = sdram_config_reg | BIT20 | BIT21; |
| debug("Data DQS pins set for 16 pins\n"); |
| break; |
| case 0x8: /* memory is x8 or x16 */ |
| case 0x10: |
| sdram_config_reg = sdram_config_reg | BIT21; |
| debug("Data DQS pins set for 8 pins\n"); |
| break; |
| case 0x20: /* memory is x32 */ |
| /* both bits are cleared for x32 so nothing to do */ |
| debug("Data DQS pins set for 2 pins\n"); |
| break; |
| default: /* memory width unsupported */ |
| printf ("DRAM chip width is unknown!\n"); |
| printf ("Aborting DRAM setup with an error\n"); |
| hang (); |
| break; |
| } |
| |
| /* perform read buffer assignments */ |
| /* we are going to use the Power-up defaults */ |
| /* bit 26 = CPU = buffer 1 */ |
| /* bit 27 = PCI bus #0 = buffer 0 */ |
| /* bit 28 = PCI bus #1 = buffer 0 */ |
| /* bit 29 = MPSC = buffer 0 */ |
| /* bit 30 = IDMA = buffer 0 */ |
| /* bit 31 = Gigabit = buffer 0 */ |
| sdram_config_reg = sdram_config_reg | BIT26; |
| /* sdram_config_reg = sdram_config_reg | 0x58000000; */ |
| /* sdram_config_reg = sdram_config_reg & 0xffffff00; */ |
| |
| /* write the value into the SDRAM configuration register */ |
| GT_REG_WRITE (SDRAM_CONFIG, sdram_config_reg); |
| debug |
| ("OOOOOOOOO sdram_conf 0x1400: %08x\n", |
| GTREGREAD (SDRAM_CONFIG)); |
| |
| /* SDRAM open pages control keep open as much as I can */ |
| GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0); |
| debug |
| ("sdram_open_pages_controll 0x1414: %08x\n", |
| GTREGREAD (SDRAM_OPEN_PAGES_CONTROL)); |
| |
| /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */ |
| tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */ |
| if (tmp == 0) |
| debug("Core Signals are sync (by HW-Setting)!!!\n"); |
| else |
| debug |
| ("Core Signals syncs. are bypassed (by HW-Setting)!!!\n"); |
| |
| /* SDRAM set CAS Latency according to SPD information */ |
| switch (info->memoryType) { |
| case SDRAM: |
| printf ("### SD-RAM not supported !!!\n"); |
| printf ("Aborting!!!\n"); |
| hang (); |
| /* ToDo fill SD-RAM if needed !!!!! */ |
| break; |
| /* Calculate the settings for SDRAM mode and Dunit control low registers */ |
| /* Values set according to technical bulletin TB-92 rev. c */ |
| case DDR: |
| debug("### SET-CL for DDR-RAM\n"); |
| switch (info->maxClSupported_DDR) { |
| case DDR_CL_3: |
| tmp_sdram_mode = 0x32; /* CL=3 Burstlength = 4 */ |
| if (tmp == 1) { /* clocks sync */ |
| if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */ |
| tmp_dunit_control_low = 0x05110051; |
| else |
| tmp_dunit_control_low = 0x24110051; |
| debug |
| ("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", |
| tmp_sdram_mode, tmp_dunit_control_low); |
| } else { /* clk sync. bypassed */ |
| |
| if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */ |
| tmp_dunit_control_low = 0x2C1107F2; |
| else |
| tmp_dunit_control_low = 0x3C1107d2; |
| debug |
| ("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", |
| tmp_sdram_mode, tmp_dunit_control_low); |
| } |
| break; |
| case DDR_CL_2_5: |
| tmp_sdram_mode = 0x62; /* CL=2.5 Burstlength = 4 */ |
| if (tmp == 1) { /* clocks sync */ |
| if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */ |
| tmp_dunit_control_low = 0x25110051; |
| else |
| tmp_dunit_control_low = 0x24110051; |
| debug |
| ("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", |
| tmp_sdram_mode, tmp_dunit_control_low); |
| } else { /* clk sync. bypassed */ |
| |
| if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */ |
| printf ("CL = 2.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n"); |
| printf ("Aborting!!!\n"); |
| hang (); |
| } else |
| tmp_dunit_control_low = 0x1B1107d2; |
| debug |
| ("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", |
| tmp_sdram_mode, tmp_dunit_control_low); |
| } |
| break; |
| case DDR_CL_2: |
| tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */ |
| if (tmp == 1) { /* clocks sync */ |
| if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */ |
| tmp_dunit_control_low = 0x04110051; |
| else |
| tmp_dunit_control_low = 0x03110051; |
| debug |
| ("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", |
| tmp_sdram_mode, tmp_dunit_control_low); |
| } else { /* clk sync. bypassed */ |
| |
| if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */ |
| printf ("CL = 2, Clock Unsync'ed, Dunit Control Low register setting undefined\n"); |
| printf ("Aborting!!!\n"); |
| hang (); |
| } else |
| tmp_dunit_control_low = 0x3B1107d2; |
| debug |
| ("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", |
| tmp_sdram_mode, tmp_dunit_control_low); |
| } |
| break; |
| case DDR_CL_1_5: |
| tmp_sdram_mode = 0x52; /* CL=1.5 Burstlength = 4 */ |
| if (tmp == 1) { /* clocks sync */ |
| if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */ |
| tmp_dunit_control_low = 0x24110051; |
| else |
| tmp_dunit_control_low = 0x23110051; |
| debug |
| ("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", |
| tmp_sdram_mode, tmp_dunit_control_low); |
| } else { /* clk sync. bypassed */ |
| |
| if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */ |
| printf ("CL = 1.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n"); |
| printf ("Aborting!!!\n"); |
| hang (); |
| } else |
| tmp_dunit_control_low = 0x1A1107d2; |
| debug |
| ("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", |
| tmp_sdram_mode, tmp_dunit_control_low); |
| } |
| break; |
| |
| default: |
| printf ("Max. CL is out of range %d\n", |
| info->maxClSupported_DDR); |
| hang (); |
| break; |
| } /* end DDR switch */ |
| break; |
| } /* end CL switch */ |
| |
| /* Write results of CL detection procedure */ |
| /* set SDRAM mode reg. 0x141c */ |
| GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode); |
| |
| /* set SDRAM mode SetCommand 0x1418 */ |
| GT_REG_WRITE (SDRAM_OPERATION, 0x3); |
| while (GTREGREAD (SDRAM_OPERATION) != 0) { |
| debug |
| ("\n*** SDRAM_OPERATION 0x1418 after SDRAM_MODE: Module still busy ... please wait... ***\n"); |
| } |
| |
| /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */ |
| GT_REG_WRITE (D_UNIT_CONTROL_LOW, tmp_dunit_control_low); |
| |
| /* set SDRAM mode SetCommand 0x1418 */ |
| GT_REG_WRITE (SDRAM_OPERATION, 0x3); |
| while (GTREGREAD (SDRAM_OPERATION) != 0) { |
| debug |
| ("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n"); |
| } |
| |
| /*------------------------------------------------------------------------------ */ |
| |
| /* bank parameters */ |
| /* SDRAM address decode register 0x1410 */ |
| /* program this with the default value */ |
| tmp = 0x02; /* power-up default address select decoding value */ |
| |
| debug("drb_size (n*64Mbit): %d\n", info->drb_size); |
| /* figure out the DRAM chip size */ |
| sdram_chip_size = |
| (1 << (info->numOfRowAddresses + info->numOfColAddresses)); |
| sdram_chip_size *= info->sdramWidth; |
| sdram_chip_size *= 4; |
| debug("computed sdram chip size is %#lx\n", sdram_chip_size); |
| /* divide sdram chip size by 64 Mbits */ |
| sdram_chip_size = sdram_chip_size / 0x4000000; |
| switch (sdram_chip_size) { |
| case 1: /* 64 Mbit */ |
| case 2: /* 128 Mbit */ |
| debug("RAM-Device_size 64Mbit or 128Mbit)\n"); |
| tmp |= (0x00 << 4); |
| break; |
| case 4: /* 256 Mbit */ |
| case 8: /* 512 Mbit */ |
| debug("RAM-Device_size 256Mbit or 512Mbit)\n"); |
| tmp |= (0x01 << 4); |
| break; |
| case 16: /* 1 Gbit */ |
| case 32: /* 2 Gbit */ |
| debug("RAM-Device_size 1Gbit or 2Gbit)\n"); |
| tmp |= (0x02 << 4); |
| break; |
| default: |
| printf ("Error in dram size calculation\n"); |
| printf ("RAM-Device_size is unsupported\n"); |
| hang (); |
| } |
| |
| /* SDRAM address control */ |
| GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp); |
| debug |
| ("setting up sdram address control (0x1410) with: %08lx \n", |
| tmp); |
| |
| /* ------------------------------------------------------------------------------ */ |
| /* same settings for registerd & non-registerd DDR SDRAM */ |
| debug |
| ("setting up sdram_timing_control_low (0x1408) with: %08x \n", |
| 0x11511220); |
| GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x11511220); |
| |
| |
| /* ------------------------------------------------------------------------------ */ |
| |
| /* SDRAM configuration */ |
| tmp = GTREGREAD (SDRAM_CONFIG); |
| |
| if (info->registeredAddrAndControlInputs |
| || info->registeredDQMBinputs) { |
| tmp |= (1 << 17); |
| debug |
| ("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n", |
| info->registeredAddrAndControlInputs, |
| info->registeredDQMBinputs); |
| } |
| |
| /* Use buffer 1 to return read data to the CPU |
| * Page 426 MV64360 */ |
| tmp |= (1 << 26); |
| debug |
| ("Before Buffer assignment - sdram_conf (0x1400): %08x\n", |
| GTREGREAD (SDRAM_CONFIG)); |
| debug |
| ("After Buffer assignment - sdram_conf (0x1400): %08x\n", |
| GTREGREAD (SDRAM_CONFIG)); |
| |
| /* SDRAM timing To_do: */ |
| /* ------------------------------------------------------------------------------ */ |
| |
| debug |
| ("setting up sdram_timing_control_high (0x140c) with: %08x \n", |
| 0x9); |
| GT_REG_WRITE (SDRAM_TIMING_CONTROL_HIGH, 0x9); |
| |
| debug |
| ("setting up sdram address pads control (0x14c0) with: %08x \n", |
| 0x7d5014a); |
| GT_REG_WRITE (SDRAM_ADDR_CTRL_PADS_CALIBRATION, 0x7d5014a); |
| |
| debug |
| ("setting up sdram data pads control (0x14c4) with: %08x \n", |
| 0x7d5014a); |
| GT_REG_WRITE (SDRAM_DATA_PADS_CALIBRATION, 0x7d5014a); |
| |
| /* ------------------------------------------------------------------------------ */ |
| |
| /* set the SDRAM configuration for each bank */ |
| |
| /* for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */ |
| { |
| i = info->slot; |
| debug |
| ("\n*** Running a MRS cycle for bank %d ***\n", i); |
| |
| /* map the bank */ |
| memory_map_bank (i, 0, GB / 4); |
| |
| /* set SDRAM mode */ /* To_do check it */ |
| GT_REG_WRITE (SDRAM_OPERATION, 0x3); |
| check = GTREGREAD (SDRAM_OPERATION); |
| debug |
| ("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n", |
| check); |
| |
| |
| /* switch back to normal operation mode */ |
| GT_REG_WRITE (SDRAM_OPERATION, 0); |
| check = GTREGREAD (SDRAM_OPERATION); |
| debug |
| ("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n", |
| check); |
| |
| /* unmap the bank */ |
| memory_map_bank (i, 0, 0); |
| } |
| |
| return 0; |
| |
| } |
| |
| /* |
| * Check memory range for valid RAM. A simple memory test determines |
| * the actually available RAM size between addresses `base' and |
| * `base + maxsize'. Some (not all) hardware errors are detected: |
| * - short between address lines |
| * - short between data lines |
| */ |
| long int dram_size (long int *base, long int maxsize) |
| { |
| volatile long int *addr, *b = base; |
| long int cnt, val, save1, save2; |
| |
| #define STARTVAL (1<<20) /* start test at 1M */ |
| for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long); |
| cnt <<= 1) { |
| addr = base + cnt; /* pointer arith! */ |
| |
| save1 = *addr; /* save contents of addr */ |
| save2 = *b; /* save contents of base */ |
| |
| *addr = cnt; /* write cnt to addr */ |
| *b = 0; /* put null at base */ |
| |
| /* check at base address */ |
| if ((*b) != 0) { |
| *addr = save1; /* restore *addr */ |
| *b = save2; /* restore *b */ |
| return (0); |
| } |
| val = *addr; /* read *addr */ |
| val = *addr; /* read *addr */ |
| |
| *addr = save1; |
| *b = save2; |
| |
| if (val != cnt) { |
| debug |
| ("Found %08x at Address %08x (failure)\n", |
| (unsigned int) val, (unsigned int) addr); |
| /* fix boundary condition.. STARTVAL means zero */ |
| if (cnt == STARTVAL / sizeof (long)) |
| cnt = 0; |
| return (cnt * sizeof (long)); |
| } |
| } |
| return maxsize; |
| } |
| |
| /* ------------------------------------------------------------------------- */ |
| |
| /* ppcboot interface function to SDRAM init - this is where all the |
| * controlling logic happens */ |
| phys_size_t initdram (int board_type) |
| { |
| int checkbank[4] = {[0 ... 3] = 0 }; |
| ulong realsize, total; |
| AUX_MEM_DIMM_INFO dimmInfo1; |
| AUX_MEM_DIMM_INFO dimmInfo2; |
| int nhr, bank_no; |
| ulong dest, memSpaceAttr; |
| |
| /* first, use the SPD to get info about the SDRAM/ DDRRAM */ |
| |
| /* check the NHR bit and skip mem init if it's already done */ |
| nhr = get_hid0 () & (1 << 16); |
| |
| if (nhr) { |
| printf ("Skipping SD- DDRRAM setup due to NHR bit being set\n"); |
| } else { |
| /* DIMM0 */ |
| check_dimm (0, &dimmInfo1); |
| |
| /* DIMM1 */ |
| check_dimm (1, &dimmInfo2); |
| |
| memory_map_bank (0, 0, 0); |
| memory_map_bank (1, 0, 0); |
| memory_map_bank (2, 0, 0); |
| memory_map_bank (3, 0, 0); |
| |
| /* ronen check correct set of DIMMS */ |
| if (dimmInfo1.numOfModuleBanks && dimmInfo2.numOfModuleBanks) { |
| if (dimmInfo1.errorCheckType != |
| dimmInfo2.errorCheckType) |
| printf ("***WARNNING***!!!! different ECC support of the DIMMS\n"); |
| if (dimmInfo1.maxClSupported_DDR != |
| dimmInfo2.maxClSupported_DDR) |
| printf ("***WARNNING***!!!! different CAL setting of the DIMMS\n"); |
| if (dimmInfo1.registeredAddrAndControlInputs != |
| dimmInfo2.registeredAddrAndControlInputs) |
| printf ("***WARNNING***!!!! different Registration setting of the DIMMS\n"); |
| } |
| |
| if (dimmInfo1.numOfModuleBanks && setup_sdram (&dimmInfo1)) { |
| printf ("Setup for DIMM1 failed.\n"); |
| } |
| |
| if (dimmInfo2.numOfModuleBanks && setup_sdram (&dimmInfo2)) { |
| printf ("Setup for DIMM2 failed.\n"); |
| } |
| |
| /* set the NHR bit */ |
| set_hid0 (get_hid0 () | (1 << 16)); |
| } |
| /* next, size the SDRAM banks */ |
| |
| realsize = total = 0; |
| if (dimmInfo1.numOfModuleBanks > 0) { |
| checkbank[0] = 1; |
| } |
| if (dimmInfo1.numOfModuleBanks > 1) { |
| checkbank[1] = 1; |
| } |
| if (dimmInfo1.numOfModuleBanks > 2) |
| printf ("Error, SPD claims DIMM1 has >2 banks\n"); |
| |
| printf ("-- DIMM1 has %d banks\n", dimmInfo1.numOfModuleBanks); |
| |
| if (dimmInfo2.numOfModuleBanks > 0) { |
| checkbank[2] = 1; |
| } |
| if (dimmInfo2.numOfModuleBanks > 1) { |
| checkbank[3] = 1; |
| } |
| if (dimmInfo2.numOfModuleBanks > 2) |
| printf ("Error, SPD claims DIMM2 has >2 banks\n"); |
| |
| printf ("-- DIMM2 has %d banks\n", dimmInfo2.numOfModuleBanks); |
| |
| for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) { |
| /* skip over banks that are not populated */ |
| if (!checkbank[bank_no]) |
| continue; |
| |
| /* ronen - realsize = dram_size((long int *)total, check); */ |
| if (bank_no == 0 || bank_no == 1) { |
| if (checkbank[1] == 1) |
| realsize = dimmInfo1.size / 2; |
| else |
| realsize = dimmInfo1.size; |
| } |
| if (bank_no == 2 || bank_no == 3) { |
| if (checkbank[3] == 1) |
| realsize = dimmInfo2.size / 2; |
| else |
| realsize = dimmInfo2.size; |
| } |
| memory_map_bank (bank_no, total, realsize); |
| |
| /* ronen - initialize the DRAM for ECC */ |
| #ifdef CONFIG_MV64360_ECC |
| if ((dimmInfo1.errorCheckType != 0) && |
| ((dimmInfo2.errorCheckType != 0) |
| || (dimmInfo2.numOfModuleBanks == 0))) { |
| printf ("ECC Initialization of Bank %d:", bank_no); |
| memSpaceAttr = ((~(BIT0 << bank_no)) & 0xf) << 8; |
| mvDmaSetMemorySpace (0, 0, memSpaceAttr, total, |
| realsize); |
| for (dest = total; dest < total + realsize; |
| dest += _8M) { |
| mvDmaTransfer (0, total, dest, _8M, |
| BIT8 /*DMA_DTL_128BYTES */ | |
| BIT3 /*DMA_HOLD_SOURCE_ADDR */ |
| | |
| BIT11 |
| /*DMA_BLOCK_TRANSFER_MODE */ ); |
| while (mvDmaIsChannelActive (0)); |
| } |
| printf (" PASS\n"); |
| } |
| #endif |
| |
| total += realsize; |
| } |
| |
| /* ronen- add DRAM conf prints */ |
| switch ((GTREGREAD (0x141c) >> 4) & 0x7) { |
| case 0x2: |
| printf ("CAS Latency = 2"); |
| break; |
| case 0x3: |
| printf ("CAS Latency = 3"); |
| break; |
| case 0x5: |
| printf ("CAS Latency = 1.5"); |
| break; |
| case 0x6: |
| printf ("CAS Latency = 2.5"); |
| break; |
| } |
| printf (" tRP = %d tRAS = %d tRCD=%d\n", |
| ((GTREGREAD (0x1408) >> 8) & 0xf) + 1, |
| ((GTREGREAD (0x1408) >> 20) & 0xf) + 1, |
| ((GTREGREAD (0x1408) >> 4) & 0xf) + 1); |
| |
| /* Setup Ethernet DMA Adress window to DRAM Area */ |
| if (total > _256M) |
| printf ("*** ONLY the first 256MB DRAM memory are used out of the "); |
| else |
| printf ("Total SDRAM memory is "); |
| /* (cause all the 4 BATS are taken) */ |
| return (total); |
| } |
| |
| |
| /* ronen- add Idma functions for usage of the ecc dram init. */ |
| /******************************************************************************* |
| * mvDmaIsChannelActive - Checks if a engine is busy. |
| ********************************************************************************/ |
| int mvDmaIsChannelActive (int engine) |
| { |
| ulong data; |
| |
| data = GTREGREAD (MV64360_DMA_CHANNEL0_CONTROL + 4 * engine); |
| if (data & BIT14 /*activity status */ ) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| /******************************************************************************* |
| * mvDmaSetMemorySpace - Set a DMA memory window for the DMA's address decoding |
| * map. |
| *******************************************************************************/ |
| int mvDmaSetMemorySpace (ulong memSpace, |
| ulong memSpaceTarget, |
| ulong memSpaceAttr, ulong baseAddress, ulong size) |
| { |
| ulong temp; |
| |
| /* The base address must be aligned to the size. */ |
| if (baseAddress % size != 0) { |
| return 0; |
| } |
| if (size >= 0x10000 /*64K */ ) { |
| size &= 0xffff0000; |
| baseAddress = (baseAddress & 0xffff0000); |
| /* Set the new attributes */ |
| GT_REG_WRITE (MV64360_DMA_BASE_ADDR_REG0 + memSpace * 8, |
| (baseAddress | memSpaceTarget | memSpaceAttr)); |
| GT_REG_WRITE ((MV64360_DMA_SIZE_REG0 + memSpace * 8), |
| (size - 1) & 0xffff0000); |
| temp = GTREGREAD (MV64360_DMA_BASE_ADDR_ENABLE_REG); |
| GT_REG_WRITE (DMA_BASE_ADDR_ENABLE_REG, |
| (temp & ~(BIT0 << memSpace))); |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| /******************************************************************************* |
| * mvDmaTransfer - Transfer data from sourceAddr to destAddr on one of the 4 |
| * DMA channels. |
| ********************************************************************************/ |
| int mvDmaTransfer (int engine, ulong sourceAddr, |
| ulong destAddr, ulong numOfBytes, ulong command) |
| { |
| ulong engOffReg = 0; /* Engine Offset Register */ |
| |
| if (numOfBytes > 0xffff) { |
| command = command | BIT31 /*DMA_16M_DESCRIPTOR_MODE */ ; |
| } |
| command = command | ((command >> 6) & 0x7); |
| engOffReg = engine * 4; |
| GT_REG_WRITE (MV64360_DMA_CHANNEL0_BYTE_COUNT + engOffReg, |
| numOfBytes); |
| GT_REG_WRITE (MV64360_DMA_CHANNEL0_SOURCE_ADDR + engOffReg, |
| sourceAddr); |
| GT_REG_WRITE (MV64360_DMA_CHANNEL0_DESTINATION_ADDR + engOffReg, |
| destAddr); |
| command = |
| command | BIT12 /*DMA_CHANNEL_ENABLE */ | BIT9 |
| /*DMA_NON_CHAIN_MODE */ ; |
| /* Activate DMA engine By writting to mvDmaControlRegister */ |
| GT_REG_WRITE (MV64360_DMA_CHANNEL0_CONTROL + engOffReg, command); |
| return 1; |
| } |
| |
| /**************************************************************************************** |
| * SDRAM INIT * |
| * This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb * |
| * This procedure fits only the Atlantis * |
| * * |
| ***************************************************************************************/ |
| |
| |
| /**************************************************************************************** |
| * DFCDL initialize MV643xx Design Considerations * |
| * * |
| ***************************************************************************************/ |
| int set_dfcdlInit (void) |
| { |
| int i; |
| unsigned int dfcdl_word = 0x391; /* 0x14f; ronen new dfcdl */ |
| |
| for (i = 0; i < 64; i++) { |
| GT_REG_WRITE (SRAM_DATA0, dfcdl_word); |
| /* dfcdl_word += 0x41; - ronen new dfcdl */ |
| } |
| GT_REG_WRITE (DFCDL_CONFIG0, 0x00300000); /* enable dynamic delay line updating */ |
| |
| return (0); |
| } |