blob: 5954b4cea2448e573d98e957581aa88afa309bd7 [file] [log] [blame]
/*
* (C) Copyright 2001
* Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
/*************************************************************************
* adaption for the Marvell DB64360 Board
* Ingo Assmus (ingo.assmus@keymile.com)
************************************************************************/
/* sdram_init.c - automatic memory sizing */
#include <common.h>
#include <74xx_7xx.h>
#include "../include/memory.h"
#include "../include/pci.h"
#include "../include/mv_gen_reg.h"
#include <net.h>
#include "eth.h"
#include "mpsc.h"
#include "../common/i2c.h"
#include "64360.h"
#include "mv_regs.h"
DECLARE_GLOBAL_DATA_PTR;
#define MAP_PCI
int set_dfcdlInit (void); /* setup delay line of Mv64360 */
int mvDmaIsChannelActive (int);
int mvDmaSetMemorySpace (ulong, ulong, ulong, ulong, ulong);
int mvDmaTransfer (int, ulong, ulong, ulong, ulong);
/* ------------------------------------------------------------------------- */
int
memory_map_bank (unsigned int bankNo,
unsigned int bankBase, unsigned int bankLength)
{
#ifdef MAP_PCI
PCI_HOST host;
#endif
#ifdef DEBUG
if (bankLength > 0) {
printf ("mapping bank %d at %08x - %08x\n",
bankNo, bankBase, bankBase + bankLength - 1);
} else {
printf ("unmapping bank %d\n", bankNo);
}
#endif
memoryMapBank (bankNo, bankBase, bankLength);
#ifdef MAP_PCI
for (host = PCI_HOST0; host <= PCI_HOST1; host++) {
const int features =
PREFETCH_ENABLE |
DELAYED_READ_ENABLE |
AGGRESSIVE_PREFETCH |
READ_LINE_AGGRESSIVE_PREFETCH |
READ_MULTI_AGGRESSIVE_PREFETCH |
MAX_BURST_4 | PCI_NO_SWAP;
pciMapMemoryBank (host, bankNo, bankBase, bankLength);
pciSetRegionSnoopMode (host, bankNo, PCI_SNOOP_WB, bankBase,
bankLength);
pciSetRegionFeatures (host, bankNo, features, bankBase,
bankLength);
}
#endif
return 0;
}
#define GB (1 << 30)
/* much of this code is based on (or is) the code in the pip405 port */
/* thanks go to the authors of said port - Josh */
/* structure to store the relevant information about an sdram bank */
typedef struct sdram_info {
uchar drb_size;
uchar registered, ecc;
uchar tpar;
uchar tras_clocks;
uchar burst_len;
uchar banks, slot;
} sdram_info_t;
/* Typedefs for 'gtAuxilGetDIMMinfo' function */
typedef enum _memoryType { SDRAM, DDR } MEMORY_TYPE;
typedef enum _voltageInterface { TTL_5V_TOLERANT, LVTTL, HSTL_1_5V,
SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN,
} VOLTAGE_INTERFACE;
typedef enum _max_CL_supported_DDR { DDR_CL_1 = 1, DDR_CL_1_5 = 2, DDR_CL_2 =
4, DDR_CL_2_5 = 8, DDR_CL_3 = 16, DDR_CL_3_5 =
32, DDR_CL_FAULT } MAX_CL_SUPPORTED_DDR;
typedef enum _max_CL_supported_SD { SD_CL_1 =
1, SD_CL_2, SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7,
SD_FAULT } MAX_CL_SUPPORTED_SD;
/* SDRAM/DDR information struct */
typedef struct _gtMemoryDimmInfo {
MEMORY_TYPE memoryType;
unsigned int numOfRowAddresses;
unsigned int numOfColAddresses;
unsigned int numOfModuleBanks;
unsigned int dataWidth;
VOLTAGE_INTERFACE voltageInterface;
unsigned int errorCheckType; /* ECC , PARITY.. */
unsigned int sdramWidth; /* 4,8,16 or 32 */ ;
unsigned int errorCheckDataWidth; /* 0 - no, 1 - Yes */
unsigned int minClkDelay;
unsigned int burstLengthSupported;
unsigned int numOfBanksOnEachDevice;
unsigned int suportedCasLatencies;
unsigned int RefreshInterval;
unsigned int maxCASlatencySupported_LoP; /* LoP left of point (measured in ns) */
unsigned int maxCASlatencySupported_RoP; /* RoP right of point (measured in ns) */
MAX_CL_SUPPORTED_DDR maxClSupported_DDR;
MAX_CL_SUPPORTED_SD maxClSupported_SD;
unsigned int moduleBankDensity;
/* module attributes (true for yes) */
bool bufferedAddrAndControlInputs;
bool registeredAddrAndControlInputs;
bool onCardPLL;
bool bufferedDQMBinputs;
bool registeredDQMBinputs;
bool differentialClockInput;
bool redundantRowAddressing;
/* module general attributes */
bool suportedAutoPreCharge;
bool suportedPreChargeAll;
bool suportedEarlyRasPreCharge;
bool suportedWrite1ReadBurst;
bool suported5PercentLowVCC;
bool suported5PercentUpperVCC;
/* module timing parameters */
unsigned int minRasToCasDelay;
unsigned int minRowActiveRowActiveDelay;
unsigned int minRasPulseWidth;
unsigned int minRowPrechargeTime; /* measured in ns */
int addrAndCommandHoldTime; /* LoP left of point (measured in ns) */
int addrAndCommandSetupTime; /* (measured in ns/100) */
int dataInputSetupTime; /* LoP left of point (measured in ns) */
int dataInputHoldTime; /* LoP left of point (measured in ns) */
/* tAC times for highest 2nd and 3rd highest CAS Latency values */
unsigned int clockToDataOut_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOut_RoP; /* RoP right of point (measured in ns) */
unsigned int clockToDataOutMinus1_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOutMinus1_RoP; /* RoP right of point (measured in ns) */
unsigned int clockToDataOutMinus2_LoP; /* LoP left of point (measured in ns) */
unsigned int clockToDataOutMinus2_RoP; /* RoP right of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancy_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancy_RoP; /* RoP right of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP; /* RoP right of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP; /* LoP left of point (measured in ns) */
unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP; /* RoP right of point (measured in ns) */
/* Parameters calculated from
the extracted DIMM information */
unsigned int size;
unsigned int deviceDensity; /* 16,64,128,256 or 512 Mbit */
unsigned int numberOfDevices;
uchar drb_size; /* DRAM size in n*64Mbit */
uchar slot; /* Slot Number this module is inserted in */
uchar spd_raw_data[128]; /* Content of SPD-EEPROM copied 1:1 */
#ifdef DEBUG
uchar manufactura[8]; /* Content of SPD-EEPROM Byte 64-71 */
uchar modul_id[18]; /* Content of SPD-EEPROM Byte 73-90 */
uchar vendor_data[27]; /* Content of SPD-EEPROM Byte 99-125 */
unsigned long modul_serial_no; /* Content of SPD-EEPROM Byte 95-98 */
unsigned int manufac_date; /* Content of SPD-EEPROM Byte 93-94 */
unsigned int modul_revision; /* Content of SPD-EEPROM Byte 91-92 */
uchar manufac_place; /* Content of SPD-EEPROM Byte 72 */
#endif
} AUX_MEM_DIMM_INFO;
/*
* translate ns.ns/10 coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short NS10to10PS (unsigned char spd_byte)
{
unsigned short ns, ns10;
/* isolate upper nibble */
ns = (spd_byte >> 4) & 0x0F;
/* isolate lower nibble */
ns10 = (spd_byte & 0x0F);
return (ns * 100 + ns10 * 10);
}
/*
* translate ns coding of SPD timing values
* into 10 ps unit values
*/
static inline unsigned short NSto10PS (unsigned char spd_byte)
{
return (spd_byte * 100);
}
/* This code reads the SPD chip on the sdram and populates
* the array which is passed in with the relevant information */
/* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */
static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo)
{
unsigned long spd_checksum;
#ifdef ZUMA_NTL
/* zero all the values */
memset (info, 0, sizeof (*info));
/*
if (!slot) {
info->slot = 0;
info->banks = 1;
info->registered = 0;
info->drb_size = 16;*/ /* 16 - 256MBit, 32 - 512MBit */
/* info->tpar = 3;
info->tras_clocks = 5;
info->burst_len = 4;
*/
#ifdef CONFIG_MV64360_ECC
/* check for ECC/parity [0 = none, 1 = parity, 2 = ecc] */
dimmInfo->errorCheckType = 2;
/* info->ecc = 2;*/
#endif
}
return 0;
#else
uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR;
int ret;
unsigned int i, j, density = 1;
#ifdef DEBUG
unsigned int k;
#endif
unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp;
int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint;
uchar supp_cal, cal_val;
ulong memclk, tmemclk;
ulong tmp;
uchar trp_clocks = 0, tras_clocks;
uchar data[128];
memclk = gd->bus_clk;
tmemclk = 1000000000 / (memclk / 100); /* in 10 ps units */
debug("before i2c read\n");
ret = i2c_read (addr, 0, 1, data, 128);
debug("after i2c read\n");
/* zero all the values */
memset (dimmInfo, 0, sizeof (*dimmInfo));
/* copy the SPD content 1:1 into the dimmInfo structure */
for (i = 0; i <= 127; i++) {
dimmInfo->spd_raw_data[i] = data[i];
}
if (ret) {
debug("No DIMM in slot %d [err = %x]\n", slot, ret);
return 0;
} else
dimmInfo->slot = slot; /* start to fill up dimminfo for this "slot" */
#ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT
for (i = 0; i <= 127; i++) {
printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i],
data[i]);
}
#endif
#ifdef DEBUG
/* find Manufactura of Dimm Module */
for (i = 0; i < sizeof (dimmInfo->manufactura); i++) {
dimmInfo->manufactura[i] = data[64 + i];
}
printf ("\nThis RAM-Module is produced by: %s\n",
dimmInfo->manufactura);
/* find Manul-ID of Dimm Module */
for (i = 0; i < sizeof (dimmInfo->modul_id); i++) {
dimmInfo->modul_id[i] = data[73 + i];
}
printf ("The Module-ID of this RAM-Module is: %s\n",
dimmInfo->modul_id);
/* find Vendor-Data of Dimm Module */
for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) {
dimmInfo->vendor_data[i] = data[99 + i];
}
printf ("Vendor Data of this RAM-Module is: %s\n",
dimmInfo->vendor_data);
/* find modul_serial_no of Dimm Module */
dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95])));
printf ("Serial No. of this RAM-Module is: %ld (%lx)\n",
dimmInfo->modul_serial_no, dimmInfo->modul_serial_no);
/* find Manufac-Data of Dimm Module */
dimmInfo->manufac_date = (*((unsigned int *) (&data[93])));
printf ("Manufactoring Date of this RAM-Module is: %d.%d\n", data[93], data[94]); /*dimmInfo->manufac_date */
/* find modul_revision of Dimm Module */
dimmInfo->modul_revision = (*((unsigned int *) (&data[91])));
printf ("Module Revision of this RAM-Module is: %d.%d\n", data[91], data[92]); /* dimmInfo->modul_revision */
/* find manufac_place of Dimm Module */
dimmInfo->manufac_place = (*((unsigned char *) (&data[72])));
printf ("manufac_place of this RAM-Module is: %d\n",
dimmInfo->manufac_place);
#endif
/*------------------------------------------------------------------------------------------------------------------------------*/
/* calculate SPD checksum */
/*------------------------------------------------------------------------------------------------------------------------------*/
spd_checksum = 0;
for (i = 0; i <= 62; i++) {
spd_checksum += data[i];
}
if ((spd_checksum & 0xff) != data[63]) {
printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]);
hang ();
}
else
printf ("SPD Checksum ok!\n");
/*------------------------------------------------------------------------------------------------------------------------------*/
for (i = 2; i <= 35; i++) {
switch (i) {
case 2: /* Memory type (DDR / SDRAM) */
dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM;
if (dimmInfo->memoryType == 0)
debug
("Dram_type in slot %d is: SDRAM\n",
dimmInfo->slot);
if (dimmInfo->memoryType == 1)
debug
("Dram_type in slot %d is: DDRAM\n",
dimmInfo->slot);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 3: /* Number Of Row Addresses */
dimmInfo->numOfRowAddresses = data[i];
debug
("Module Number of row addresses: %d\n",
dimmInfo->numOfRowAddresses);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 4: /* Number Of Column Addresses */
dimmInfo->numOfColAddresses = data[i];
debug
("Module Number of col addresses: %d\n",
dimmInfo->numOfColAddresses);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 5: /* Number Of Module Banks */
dimmInfo->numOfModuleBanks = data[i];
debug
("Number of Banks on Mod. : %d\n",
dimmInfo->numOfModuleBanks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 6: /* Data Width */
dimmInfo->dataWidth = data[i];
debug
("Module Data Width: %d\n",
dimmInfo->dataWidth);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 8: /* Voltage Interface */
switch (data[i]) {
case 0x0:
dimmInfo->voltageInterface = TTL_5V_TOLERANT;
debug
("Module is TTL_5V_TOLERANT\n");
break;
case 0x1:
dimmInfo->voltageInterface = LVTTL;
debug
("Module is LVTTL\n");
break;
case 0x2:
dimmInfo->voltageInterface = HSTL_1_5V;
debug
("Module is TTL_5V_TOLERANT\n");
break;
case 0x3:
dimmInfo->voltageInterface = SSTL_3_3V;
debug
("Module is HSTL_1_5V\n");
break;
case 0x4:
dimmInfo->voltageInterface = SSTL_2_5V;
debug
("Module is SSTL_2_5V\n");
break;
default:
dimmInfo->voltageInterface = VOLTAGE_UNKNOWN;
debug
("Module is VOLTAGE_UNKNOWN\n");
break;
}
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 9: /* Minimum Cycle Time At Max CasLatancy */
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP =
leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP =
rightOfPoint;
debug
("Minimum Cycle Time At Max CasLatancy: %d.%d [ns]\n",
leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 10: /* Clock To Data Out */
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOut_LoP = leftOfPoint;
dimmInfo->clockToDataOut_RoP = rightOfPoint;
debug("Clock To Data Out: %d.%2d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->clockToDataOut */
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
/*#ifdef CONFIG_ECC */
case 11: /* Error Check Type */
dimmInfo->errorCheckType = data[i];
debug
("Error Check Type (0=NONE): %d\n",
dimmInfo->errorCheckType);
break;
/* #endif */
/*------------------------------------------------------------------------------------------------------------------------------*/
case 12: /* Refresh Interval */
dimmInfo->RefreshInterval = data[i];
debug
("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n",
dimmInfo->RefreshInterval);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 13: /* Sdram Width */
dimmInfo->sdramWidth = data[i];
debug
("Sdram Width: %d\n",
dimmInfo->sdramWidth);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 14: /* Error Check Data Width */
dimmInfo->errorCheckDataWidth = data[i];
debug
("Error Check Data Width: %d\n",
dimmInfo->errorCheckDataWidth);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 15: /* Minimum Clock Delay */
dimmInfo->minClkDelay = data[i];
debug
("Minimum Clock Delay: %d\n",
dimmInfo->minClkDelay);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 16: /* Burst Length Supported */
/******-******-******-*******
* bit3 | bit2 | bit1 | bit0 *
*******-******-******-*******
burst length = * 8 | 4 | 2 | 1 *
*****************************
If for example bit0 and bit2 are set, the burst
length supported are 1 and 4. */
dimmInfo->burstLengthSupported = data[i];
#ifdef DEBUG
debug
("Burst Length Supported: ");
if (dimmInfo->burstLengthSupported & 0x01)
debug("1, ");
if (dimmInfo->burstLengthSupported & 0x02)
debug("2, ");
if (dimmInfo->burstLengthSupported & 0x04)
debug("4, ");
if (dimmInfo->burstLengthSupported & 0x08)
debug("8, ");
debug(" Bit \n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 17: /* Number Of Banks On Each Device */
dimmInfo->numOfBanksOnEachDevice = data[i];
debug
("Number Of Banks On Each Chip: %d\n",
dimmInfo->numOfBanksOnEachDevice);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 18: /* Suported Cas Latencies */
/* DDR:
*******-******-******-******-******-******-******-*******
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
*******-******-******-******-******-******-******-*******
CAS = * TBD | TBD | 3.5 | 3 | 2.5 | 2 | 1.5 | 1 *
*********************************************************
SDRAM:
*******-******-******-******-******-******-******-*******
* bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 *
*******-******-******-******-******-******-******-*******
CAS = * TBD | 7 | 6 | 5 | 4 | 3 | 2 | 1 *
********************************************************/
dimmInfo->suportedCasLatencies = data[i];
#ifdef DEBUG
debug
("Suported Cas Latencies: (CL) ");
if (dimmInfo->memoryType == 0) { /* SDRAM */
for (k = 0; k <= 7; k++) {
if (dimmInfo->
suportedCasLatencies & (1 << k))
debug
("%d, ",
k + 1);
}
} else { /* DDR-RAM */
if (dimmInfo->suportedCasLatencies & 1)
debug("1, ");
if (dimmInfo->suportedCasLatencies & 2)
debug("1.5, ");
if (dimmInfo->suportedCasLatencies & 4)
debug("2, ");
if (dimmInfo->suportedCasLatencies & 8)
debug("2.5, ");
if (dimmInfo->suportedCasLatencies & 16)
debug("3, ");
if (dimmInfo->suportedCasLatencies & 32)
debug("3.5, ");
}
debug("\n");
#endif
/* Calculating MAX CAS latency */
for (j = 7; j > 0; j--) {
if (((dimmInfo->
suportedCasLatencies >> j) & 0x1) ==
1) {
switch (dimmInfo->memoryType) {
case DDR:
/* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */
switch (j) {
case 7:
debug
("Max. Cas Latencies (DDR): ERROR !!!\n");
dimmInfo->
maxClSupported_DDR
=
DDR_CL_FAULT;
hang ();
break;
case 6:
debug
("Max. Cas Latencies (DDR): ERROR !!!\n");
dimmInfo->
maxClSupported_DDR
=
DDR_CL_FAULT;
hang ();
break;
case 5:
debug
("Max. Cas Latencies (DDR): 3.5 clk's\n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_3_5;
break;
case 4:
debug
("Max. Cas Latencies (DDR): 3 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_3;
break;
case 3:
debug
("Max. Cas Latencies (DDR): 2.5 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_2_5;
break;
case 2:
debug
("Max. Cas Latencies (DDR): 2 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_2;
break;
case 1:
debug
("Max. Cas Latencies (DDR): 1.5 clk's \n");
dimmInfo->
maxClSupported_DDR
= DDR_CL_1_5;
break;
}
/* ronen - in case we have a DIMM with minimumCycleTimeAtMaxCasLatancy
lower then our SDRAM cycle count, we won't be able to support this CAL
and we will have to use lower CAL. (minus - means from 3.0 to 2.5) */
if ((dimmInfo->
minimumCycleTimeAtMaxCasLatancy_LoP
<
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
||
((dimmInfo->
minimumCycleTimeAtMaxCasLatancy_LoP
==
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
&& (dimmInfo->
minimumCycleTimeAtMaxCasLatancy_RoP
<
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP)))
{
dimmInfo->
maxClSupported_DDR
=
dimmInfo->
maxClSupported_DDR
>> 1;
debug
("*** Change actual Cas Latencies cause of minimumCycleTime n");
}
/* ronen - checkif the Dimm frequency compared to the Sysclock. */
if ((dimmInfo->
minimumCycleTimeAtMaxCasLatancy_LoP
>
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
||
((dimmInfo->
minimumCycleTimeAtMaxCasLatancy_LoP
==
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_LOP)
&& (dimmInfo->
minimumCycleTimeAtMaxCasLatancy_RoP
>
CONFIG_SYS_DDR_SDRAM_CYCLE_COUNT_ROP)))
{
printf ("*********************************************************\n");
printf ("*** sysClock is higher than SDRAM's allowed frequency ***\n");
printf ("*********************************************************\n");
hang ();
}
dimmInfo->
maxCASlatencySupported_LoP
=
1 +
(int) (5 * j / 10);
if (((5 * j) % 10) != 0)
dimmInfo->
maxCASlatencySupported_RoP
= 5;
else
dimmInfo->
maxCASlatencySupported_RoP
= 0;
debug
("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
dimmInfo->
maxCASlatencySupported_LoP,
dimmInfo->
maxCASlatencySupported_RoP);
break;
case SDRAM:
/* CAS latency 1, 2, 3, 4, 5, 6, 7 */
dimmInfo->maxClSupported_SD = j; /* Cas Latency DDR-RAM Coded */
debug
("Max. Cas Latencies (SD): %d\n",
dimmInfo->
maxClSupported_SD);
dimmInfo->
maxCASlatencySupported_LoP
= j;
dimmInfo->
maxCASlatencySupported_RoP
= 0;
debug
("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n",
dimmInfo->
maxCASlatencySupported_LoP,
dimmInfo->
maxCASlatencySupported_RoP);
break;
}
break;
}
}
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 21: /* Buffered Address And Control Inputs */
debug("\nModul Attributes (SPD Byte 21): \n");
dimmInfo->bufferedAddrAndControlInputs =
data[i] & BIT0;
dimmInfo->registeredAddrAndControlInputs =
(data[i] & BIT1) >> 1;
dimmInfo->onCardPLL = (data[i] & BIT2) >> 2;
dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3;
dimmInfo->registeredDQMBinputs =
(data[i] & BIT4) >> 4;
dimmInfo->differentialClockInput =
(data[i] & BIT5) >> 5;
dimmInfo->redundantRowAddressing =
(data[i] & BIT6) >> 6;
#ifdef DEBUG
if (dimmInfo->bufferedAddrAndControlInputs == 1)
debug
(" - Buffered Address/Control Input: Yes \n");
else
debug
(" - Buffered Address/Control Input: No \n");
if (dimmInfo->registeredAddrAndControlInputs == 1)
debug
(" - Registered Address/Control Input: Yes \n");
else
debug
(" - Registered Address/Control Input: No \n");
if (dimmInfo->onCardPLL == 1)
debug
(" - On-Card PLL (clock): Yes \n");
else
debug
(" - On-Card PLL (clock): No \n");
if (dimmInfo->bufferedDQMBinputs == 1)
debug
(" - Bufferd DQMB Inputs: Yes \n");
else
debug
(" - Bufferd DQMB Inputs: No \n");
if (dimmInfo->registeredDQMBinputs == 1)
debug
(" - Registered DQMB Inputs: Yes \n");
else
debug
(" - Registered DQMB Inputs: No \n");
if (dimmInfo->differentialClockInput == 1)
debug
(" - Differential Clock Input: Yes \n");
else
debug
(" - Differential Clock Input: No \n");
if (dimmInfo->redundantRowAddressing == 1)
debug
(" - redundant Row Addressing: Yes \n");
else
debug
(" - redundant Row Addressing: No \n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 22: /* Suported AutoPreCharge */
debug("\nModul Attributes (SPD Byte 22): \n");
dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0;
dimmInfo->suportedAutoPreCharge =
(data[i] & BIT1) >> 1;
dimmInfo->suportedPreChargeAll =
(data[i] & BIT2) >> 2;
dimmInfo->suportedWrite1ReadBurst =
(data[i] & BIT3) >> 3;
dimmInfo->suported5PercentLowVCC =
(data[i] & BIT4) >> 4;
dimmInfo->suported5PercentUpperVCC =
(data[i] & BIT5) >> 5;
#ifdef DEBUG
if (dimmInfo->suportedEarlyRasPreCharge == 1)
debug
(" - Early Ras Precharge: Yes \n");
else
debug
(" - Early Ras Precharge: No \n");
if (dimmInfo->suportedAutoPreCharge == 1)
debug
(" - AutoPreCharge: Yes \n");
else
debug
(" - AutoPreCharge: No \n");
if (dimmInfo->suportedPreChargeAll == 1)
debug
(" - Precharge All: Yes \n");
else
debug
(" - Precharge All: No \n");
if (dimmInfo->suportedWrite1ReadBurst == 1)
debug
(" - Write 1/ReadBurst: Yes \n");
else
debug
(" - Write 1/ReadBurst: No \n");
if (dimmInfo->suported5PercentLowVCC == 1)
debug
(" - lower VCC tolerance: 5 Percent \n");
else
debug
(" - lower VCC tolerance: 10 Percent \n");
if (dimmInfo->suported5PercentUpperVCC == 1)
debug
(" - upper VCC tolerance: 5 Percent \n");
else
debug
(" - upper VCC tolerance: 10 Percent \n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 23: /* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP =
leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP =
rightOfPoint;
debug("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 24: /* Clock To Data Out 2nd highest Cas Latency Value */
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint;
dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint;
debug
("Clock To Data Out (2nd CL value): %d.%2d [ns]\n",
leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 25: /* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */
shift = (dimmInfo->memoryType == DDR) ? 4 : 2;
mult = (dimmInfo->memoryType == DDR) ? 10 : 25;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0xf : 0x03;
leftOfPoint = (data[i] & maskLeftOfPoint) >> shift;
rightOfPoint = (data[i] & maskRightOfPoint) * mult;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP =
leftOfPoint;
dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP =
rightOfPoint;
debug("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", leftOfPoint, rightOfPoint); /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 26: /* Clock To Data Out 3rd highest Cas Latency Value */
div = (dimmInfo->memoryType == DDR) ? 100 : 10;
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / div;
rightOfPoint = time_tmp % div;
dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint;
dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint;
debug
("Clock To Data Out (3rd CL value): %d.%2d [ns]\n",
leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 27: /* Minimum Row Precharge Time */
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint); /* measured in n times 10ps Intervals */
trp_clocks =
(dimmInfo->minRowPrechargeTime +
(tmemclk - 1)) / tmemclk;
debug
("*** 1 clock cycle = %ld 10ps intervalls = %ld.%ld ns****\n",
tmemclk, tmemclk / 100, tmemclk % 100);
debug
("Minimum Row Precharge Time [ns]: %d.%2d = in Clk cycles %d\n",
leftOfPoint, rightOfPoint, trp_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 28: /* Minimum Row Active to Row Active Time */
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
debug
("Minimum Row Active -To- Row Active Delay [ns]: %d.%2d = in Clk cycles %d\n",
leftOfPoint, rightOfPoint, trp_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 29: /* Minimum Ras-To-Cas Delay */
shift = (dimmInfo->memoryType == DDR) ? 2 : 0;
maskLeftOfPoint =
(dimmInfo->memoryType == DDR) ? 0xfc : 0xff;
maskRightOfPoint =
(dimmInfo->memoryType == DDR) ? 0x03 : 0x00;
leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift);
rightOfPoint = (data[i] & maskRightOfPoint) * 25;
dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint); /* measured in 100ns Intervals */
debug
("Minimum Ras-To-Cas Delay [ns]: %d.%2d = in Clk cycles %d\n",
leftOfPoint, rightOfPoint, trp_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 30: /* Minimum Ras Pulse Width */
dimmInfo->minRasPulseWidth = data[i];
tras_clocks =
(NSto10PS (data[i]) +
(tmemclk - 1)) / tmemclk;
debug
("Minimum Ras Pulse Width [ns]: %d = in Clk cycles %d\n",
dimmInfo->minRasPulseWidth, tras_clocks);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 31: /* Module Bank Density */
dimmInfo->moduleBankDensity = data[i];
debug
("Module Bank Density: %d\n",
dimmInfo->moduleBankDensity);
#ifdef DEBUG
debug
("*** Offered Densities (more than 1 = Multisize-Module): ");
{
if (dimmInfo->moduleBankDensity & 1)
debug("4MB, ");
if (dimmInfo->moduleBankDensity & 2)
debug("8MB, ");
if (dimmInfo->moduleBankDensity & 4)
debug("16MB, ");
if (dimmInfo->moduleBankDensity & 8)
debug("32MB, ");
if (dimmInfo->moduleBankDensity & 16)
debug("64MB, ");
if (dimmInfo->moduleBankDensity & 32)
debug("128MB, ");
if ((dimmInfo->moduleBankDensity & 64)
|| (dimmInfo->moduleBankDensity & 128)) {
debug("ERROR, ");
hang ();
}
}
debug("\n");
#endif
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 32: /* Address And Command Setup Time (measured in ns/1000) */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->addrAndCommandSetupTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug
("Address And Command Setup Time [ns]: %d.%d\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 33: /* Address And Command Hold Time */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->addrAndCommandHoldTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug
("Address And Command Hold Time [ns]: %d.%d\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 34: /* Data Input Setup Time */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->dataInputSetupTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug
("Data Input Setup Time [ns]: %d.%d\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
case 35: /* Data Input Hold Time */
sign = 1;
switch (dimmInfo->memoryType) {
case DDR:
time_tmp =
(((data[i] & 0xf0) >> 4) * 10) +
((data[i] & 0x0f));
leftOfPoint = time_tmp / 100;
rightOfPoint = time_tmp % 100;
break;
case SDRAM:
leftOfPoint = (data[i] & 0xf0) >> 4;
if (leftOfPoint > 7) {
leftOfPoint = data[i] & 0x70 >> 4;
sign = -1;
}
rightOfPoint = (data[i] & 0x0f);
break;
}
dimmInfo->dataInputHoldTime =
(leftOfPoint * 100 + rightOfPoint) * sign;
debug
("Data Input Hold Time [ns]: %d.%d\n\n",
sign * leftOfPoint, rightOfPoint);
break;
/*------------------------------------------------------------------------------------------------------------------------------*/
}
}
/* calculating the sdram density */
for (i = 0;
i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses;
i++) {
density = density * 2;
}
dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice *
dimmInfo->sdramWidth;
dimmInfo->numberOfDevices =
(dimmInfo->dataWidth / dimmInfo->sdramWidth) *
dimmInfo->numOfModuleBanks;
if ((dimmInfo->errorCheckType == 0x1)
|| (dimmInfo->errorCheckType == 0x2)
|| (dimmInfo->errorCheckType == 0x3)) {
dimmInfo->size =
(dimmInfo->deviceDensity / 8) *
(dimmInfo->numberOfDevices -
/* ronen on the 1G dimm we get wrong value. (was devicesForErrCheck) */
dimmInfo->numberOfDevices / 8);
} else {
dimmInfo->size =
(dimmInfo->deviceDensity / 8) *
dimmInfo->numberOfDevices;
}
/* compute the module DRB size */
tmp = (1 <<
(dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses));
tmp *= dimmInfo->numOfModuleBanks;
tmp *= dimmInfo->sdramWidth;
tmp = tmp >> 24; /* div by 0x4000000 (64M) */
dimmInfo->drb_size = (uchar) tmp;
debug("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size);
/* try a CAS latency of 3 first... */
/* bit 1 is CL2, bit 2 is CL3 */
supp_cal = (dimmInfo->suportedCasLatencies & 0x6) >> 1;
cal_val = 0;
if (supp_cal & 3) {
if (NS10to10PS (data[9]) <= tmemclk)
cal_val = 3;
}
/* then 2... */
if (supp_cal & 2) {
if (NS10to10PS (data[23]) <= tmemclk)
cal_val = 2;
}
debug("cal_val = %d\n", cal_val);
/* bummer, did't work... */
if (cal_val == 0) {
debug("Couldn't find a good CAS latency\n");
hang ();
return 0;
}
return true;
#endif
}
/* sets up the GT properly with information passed in */
int setup_sdram (AUX_MEM_DIMM_INFO * info)
{
ulong tmp, check;
ulong tmp_sdram_mode = 0; /* 0x141c */
ulong tmp_dunit_control_low = 0; /* 0x1404 */
int i;
/* added 8/21/2003 P. Marchese */
unsigned int sdram_config_reg;
/* added 10/10/2003 P. Marchese */
ulong sdram_chip_size;
/* sanity checking */
if (!info->numOfModuleBanks) {
printf ("setup_sdram called with 0 banks\n");
return 1;
}
/* delay line */
set_dfcdlInit (); /* may be its not needed */
debug("Delay line set done\n");
/* set SDRAM mode NOP */ /* To_do check it */
GT_REG_WRITE (SDRAM_OPERATION, 0x5);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug
("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n");
}
/* SDRAM configuration */
/* added 8/21/2003 P. Marchese */
/* code allows usage of registered DIMMS */
/* figure out the memory refresh internal */
switch (info->RefreshInterval) {
case 0x0:
case 0x80: /* refresh period is 15.625 usec */
sdram_config_reg =
(unsigned int) (((float) 15.625 * (float) CONFIG_SYS_BUS_CLK)
/ (float) 1000000.0);
break;
case 0x1:
case 0x81: /* refresh period is 3.9 usec */
sdram_config_reg =
(unsigned int) (((float) 3.9 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
case 0x2:
case 0x82: /* refresh period is 7.8 usec */
sdram_config_reg =
(unsigned int) (((float) 7.8 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
case 0x3:
case 0x83: /* refresh period is 31.3 usec */
sdram_config_reg =
(unsigned int) (((float) 31.3 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
case 0x4:
case 0x84: /* refresh period is 62.5 usec */
sdram_config_reg =
(unsigned int) (((float) 62.5 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
case 0x5:
case 0x85: /* refresh period is 125 usec */
sdram_config_reg =
(unsigned int) (((float) 125 * (float) CONFIG_SYS_BUS_CLK) /
(float) 1000000.0);
break;
default: /* refresh period undefined */
printf ("DRAM refresh period is unknown!\n");
printf ("Aborting DRAM setup with an error\n");
hang ();
break;
}
debug("calculated refresh interval %0x\n", sdram_config_reg);
/* make sure the refresh value is only 14 bits */
if (sdram_config_reg > 0x1fff)
sdram_config_reg = 0x1fff;
debug("adjusted refresh interval %0x\n", sdram_config_reg);
/* we want physical bank interleaving and */
/* virtual bank interleaving enabled so do nothing */
/* since these bits need to be zero to enable the interleaving */
/* registered DRAM ? */
if (info->registeredAddrAndControlInputs == 1) {
/* it's registered DRAM, so set the reg. DRAM bit */
sdram_config_reg = sdram_config_reg | BIT17;
debug("Enabling registered DRAM bit\n");
}
/* turn on DRAM ECC? */
#ifdef CONFIG_MV64360_ECC
if (info->errorCheckType == 0x2) {
/* DRAM has ECC, so turn it on */
sdram_config_reg = sdram_config_reg | BIT18;
debug("Enabling ECC\n");
}
#endif
/* set the data DQS pin configuration */
switch (info->sdramWidth) {
case 0x4: /* memory is x4 */
sdram_config_reg = sdram_config_reg | BIT20 | BIT21;
debug("Data DQS pins set for 16 pins\n");
break;
case 0x8: /* memory is x8 or x16 */
case 0x10:
sdram_config_reg = sdram_config_reg | BIT21;
debug("Data DQS pins set for 8 pins\n");
break;
case 0x20: /* memory is x32 */
/* both bits are cleared for x32 so nothing to do */
debug("Data DQS pins set for 2 pins\n");
break;
default: /* memory width unsupported */
printf ("DRAM chip width is unknown!\n");
printf ("Aborting DRAM setup with an error\n");
hang ();
break;
}
/* perform read buffer assignments */
/* we are going to use the Power-up defaults */
/* bit 26 = CPU = buffer 1 */
/* bit 27 = PCI bus #0 = buffer 0 */
/* bit 28 = PCI bus #1 = buffer 0 */
/* bit 29 = MPSC = buffer 0 */
/* bit 30 = IDMA = buffer 0 */
/* bit 31 = Gigabit = buffer 0 */
sdram_config_reg = sdram_config_reg | BIT26;
/* sdram_config_reg = sdram_config_reg | 0x58000000; */
/* sdram_config_reg = sdram_config_reg & 0xffffff00; */
/* write the value into the SDRAM configuration register */
GT_REG_WRITE (SDRAM_CONFIG, sdram_config_reg);
debug
("OOOOOOOOO sdram_conf 0x1400: %08x\n",
GTREGREAD (SDRAM_CONFIG));
/* SDRAM open pages control keep open as much as I can */
GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0);
debug
("sdram_open_pages_controll 0x1414: %08x\n",
GTREGREAD (SDRAM_OPEN_PAGES_CONTROL));
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01); /* Clock Domain Sync from power on reset */
if (tmp == 0)
debug("Core Signals are sync (by HW-Setting)!!!\n");
else
debug
("Core Signals syncs. are bypassed (by HW-Setting)!!!\n");
/* SDRAM set CAS Latency according to SPD information */
switch (info->memoryType) {
case SDRAM:
printf ("### SD-RAM not supported !!!\n");
printf ("Aborting!!!\n");
hang ();
/* ToDo fill SD-RAM if needed !!!!! */
break;
/* Calculate the settings for SDRAM mode and Dunit control low registers */
/* Values set according to technical bulletin TB-92 rev. c */
case DDR:
debug("### SET-CL for DDR-RAM\n");
switch (info->maxClSupported_DDR) {
case DDR_CL_3:
tmp_sdram_mode = 0x32; /* CL=3 Burstlength = 4 */
if (tmp == 1) { /* clocks sync */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x05110051;
else
tmp_dunit_control_low = 0x24110051;
debug
("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* clk sync. bypassed */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x2C1107F2;
else
tmp_dunit_control_low = 0x3C1107d2;
debug
("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
case DDR_CL_2_5:
tmp_sdram_mode = 0x62; /* CL=2.5 Burstlength = 4 */
if (tmp == 1) { /* clocks sync */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x25110051;
else
tmp_dunit_control_low = 0x24110051;
debug
("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* clk sync. bypassed */
if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */
printf ("CL = 2.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n");
printf ("Aborting!!!\n");
hang ();
} else
tmp_dunit_control_low = 0x1B1107d2;
debug
("Max. CL is 2.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
case DDR_CL_2:
tmp_sdram_mode = 0x22; /* CL=2 Burstlength = 4 */
if (tmp == 1) { /* clocks sync */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x04110051;
else
tmp_dunit_control_low = 0x03110051;
debug
("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* clk sync. bypassed */
if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */
printf ("CL = 2, Clock Unsync'ed, Dunit Control Low register setting undefined\n");
printf ("Aborting!!!\n");
hang ();
} else
tmp_dunit_control_low = 0x3B1107d2;
debug
("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
case DDR_CL_1_5:
tmp_sdram_mode = 0x52; /* CL=1.5 Burstlength = 4 */
if (tmp == 1) { /* clocks sync */
if (info->registeredAddrAndControlInputs == 1) /* registerd DDR SDRAM? */
tmp_dunit_control_low = 0x24110051;
else
tmp_dunit_control_low = 0x23110051;
debug
("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
} else { /* clk sync. bypassed */
if (info->registeredAddrAndControlInputs == 1) { /* registerd DDR SDRAM? */
printf ("CL = 1.5, Clock Unsync'ed, Dunit Control Low register setting undefined\n");
printf ("Aborting!!!\n");
hang ();
} else
tmp_dunit_control_low = 0x1A1107d2;
debug
("Max. CL is 1.5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n",
tmp_sdram_mode, tmp_dunit_control_low);
}
break;
default:
printf ("Max. CL is out of range %d\n",
info->maxClSupported_DDR);
hang ();
break;
} /* end DDR switch */
break;
} /* end CL switch */
/* Write results of CL detection procedure */
/* set SDRAM mode reg. 0x141c */
GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode);
/* set SDRAM mode SetCommand 0x1418 */
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug
("\n*** SDRAM_OPERATION 0x1418 after SDRAM_MODE: Module still busy ... please wait... ***\n");
}
/* SDRAM D_UNIT_CONTROL_LOW 0x1404 */
GT_REG_WRITE (D_UNIT_CONTROL_LOW, tmp_dunit_control_low);
/* set SDRAM mode SetCommand 0x1418 */
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
while (GTREGREAD (SDRAM_OPERATION) != 0) {
debug
("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n");
}
/*------------------------------------------------------------------------------ */
/* bank parameters */
/* SDRAM address decode register 0x1410 */
/* program this with the default value */
tmp = 0x02; /* power-up default address select decoding value */
debug("drb_size (n*64Mbit): %d\n", info->drb_size);
/* figure out the DRAM chip size */
sdram_chip_size =
(1 << (info->numOfRowAddresses + info->numOfColAddresses));
sdram_chip_size *= info->sdramWidth;
sdram_chip_size *= 4;
debug("computed sdram chip size is %#lx\n", sdram_chip_size);
/* divide sdram chip size by 64 Mbits */
sdram_chip_size = sdram_chip_size / 0x4000000;
switch (sdram_chip_size) {
case 1: /* 64 Mbit */
case 2: /* 128 Mbit */
debug("RAM-Device_size 64Mbit or 128Mbit)\n");
tmp |= (0x00 << 4);
break;
case 4: /* 256 Mbit */
case 8: /* 512 Mbit */
debug("RAM-Device_size 256Mbit or 512Mbit)\n");
tmp |= (0x01 << 4);
break;
case 16: /* 1 Gbit */
case 32: /* 2 Gbit */
debug("RAM-Device_size 1Gbit or 2Gbit)\n");
tmp |= (0x02 << 4);
break;
default:
printf ("Error in dram size calculation\n");
printf ("RAM-Device_size is unsupported\n");
hang ();
}
/* SDRAM address control */
GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp);
debug
("setting up sdram address control (0x1410) with: %08lx \n",
tmp);
/* ------------------------------------------------------------------------------ */
/* same settings for registerd & non-registerd DDR SDRAM */
debug
("setting up sdram_timing_control_low (0x1408) with: %08x \n",
0x11511220);
GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x11511220);
/* ------------------------------------------------------------------------------ */
/* SDRAM configuration */
tmp = GTREGREAD (SDRAM_CONFIG);
if (info->registeredAddrAndControlInputs
|| info->registeredDQMBinputs) {
tmp |= (1 << 17);
debug
("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n",
info->registeredAddrAndControlInputs,
info->registeredDQMBinputs);
}
/* Use buffer 1 to return read data to the CPU
* Page 426 MV64360 */
tmp |= (1 << 26);
debug
("Before Buffer assignment - sdram_conf (0x1400): %08x\n",
GTREGREAD (SDRAM_CONFIG));
debug
("After Buffer assignment - sdram_conf (0x1400): %08x\n",
GTREGREAD (SDRAM_CONFIG));
/* SDRAM timing To_do: */
/* ------------------------------------------------------------------------------ */
debug
("setting up sdram_timing_control_high (0x140c) with: %08x \n",
0x9);
GT_REG_WRITE (SDRAM_TIMING_CONTROL_HIGH, 0x9);
debug
("setting up sdram address pads control (0x14c0) with: %08x \n",
0x7d5014a);
GT_REG_WRITE (SDRAM_ADDR_CTRL_PADS_CALIBRATION, 0x7d5014a);
debug
("setting up sdram data pads control (0x14c4) with: %08x \n",
0x7d5014a);
GT_REG_WRITE (SDRAM_DATA_PADS_CALIBRATION, 0x7d5014a);
/* ------------------------------------------------------------------------------ */
/* set the SDRAM configuration for each bank */
/* for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */
{
i = info->slot;
debug
("\n*** Running a MRS cycle for bank %d ***\n", i);
/* map the bank */
memory_map_bank (i, 0, GB / 4);
/* set SDRAM mode */ /* To_do check it */
GT_REG_WRITE (SDRAM_OPERATION, 0x3);
check = GTREGREAD (SDRAM_OPERATION);
debug
("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n",
check);
/* switch back to normal operation mode */
GT_REG_WRITE (SDRAM_OPERATION, 0);
check = GTREGREAD (SDRAM_OPERATION);
debug
("\n*** SDRAM_OPERATION 1418 (0 = Normal Operation) = %08lx ***\n",
check);
/* unmap the bank */
memory_map_bank (i, 0, 0);
}
return 0;
}
/*
* Check memory range for valid RAM. A simple memory test determines
* the actually available RAM size between addresses `base' and
* `base + maxsize'. Some (not all) hardware errors are detected:
* - short between address lines
* - short between data lines
*/
long int dram_size (long int *base, long int maxsize)
{
volatile long int *addr, *b = base;
long int cnt, val, save1, save2;
#define STARTVAL (1<<20) /* start test at 1M */
for (cnt = STARTVAL / sizeof (long); cnt < maxsize / sizeof (long);
cnt <<= 1) {
addr = base + cnt; /* pointer arith! */
save1 = *addr; /* save contents of addr */
save2 = *b; /* save contents of base */
*addr = cnt; /* write cnt to addr */
*b = 0; /* put null at base */
/* check at base address */
if ((*b) != 0) {
*addr = save1; /* restore *addr */
*b = save2; /* restore *b */
return (0);
}
val = *addr; /* read *addr */
val = *addr; /* read *addr */
*addr = save1;
*b = save2;
if (val != cnt) {
debug
("Found %08x at Address %08x (failure)\n",
(unsigned int) val, (unsigned int) addr);
/* fix boundary condition.. STARTVAL means zero */
if (cnt == STARTVAL / sizeof (long))
cnt = 0;
return (cnt * sizeof (long));
}
}
return maxsize;
}
/* ------------------------------------------------------------------------- */
/* ppcboot interface function to SDRAM init - this is where all the
* controlling logic happens */
phys_size_t initdram (int board_type)
{
int checkbank[4] = {[0 ... 3] = 0 };
ulong realsize, total;
AUX_MEM_DIMM_INFO dimmInfo1;
AUX_MEM_DIMM_INFO dimmInfo2;
int nhr, bank_no;
ulong dest, memSpaceAttr;
/* first, use the SPD to get info about the SDRAM/ DDRRAM */
/* check the NHR bit and skip mem init if it's already done */
nhr = get_hid0 () & (1 << 16);
if (nhr) {
printf ("Skipping SD- DDRRAM setup due to NHR bit being set\n");
} else {
/* DIMM0 */
check_dimm (0, &dimmInfo1);
/* DIMM1 */
check_dimm (1, &dimmInfo2);
memory_map_bank (0, 0, 0);
memory_map_bank (1, 0, 0);
memory_map_bank (2, 0, 0);
memory_map_bank (3, 0, 0);
/* ronen check correct set of DIMMS */
if (dimmInfo1.numOfModuleBanks && dimmInfo2.numOfModuleBanks) {
if (dimmInfo1.errorCheckType !=
dimmInfo2.errorCheckType)
printf ("***WARNNING***!!!! different ECC support of the DIMMS\n");
if (dimmInfo1.maxClSupported_DDR !=
dimmInfo2.maxClSupported_DDR)
printf ("***WARNNING***!!!! different CAL setting of the DIMMS\n");
if (dimmInfo1.registeredAddrAndControlInputs !=
dimmInfo2.registeredAddrAndControlInputs)
printf ("***WARNNING***!!!! different Registration setting of the DIMMS\n");
}
if (dimmInfo1.numOfModuleBanks && setup_sdram (&dimmInfo1)) {
printf ("Setup for DIMM1 failed.\n");
}
if (dimmInfo2.numOfModuleBanks && setup_sdram (&dimmInfo2)) {
printf ("Setup for DIMM2 failed.\n");
}
/* set the NHR bit */
set_hid0 (get_hid0 () | (1 << 16));
}
/* next, size the SDRAM banks */
realsize = total = 0;
if (dimmInfo1.numOfModuleBanks > 0) {
checkbank[0] = 1;
}
if (dimmInfo1.numOfModuleBanks > 1) {
checkbank[1] = 1;
}
if (dimmInfo1.numOfModuleBanks > 2)
printf ("Error, SPD claims DIMM1 has >2 banks\n");
printf ("-- DIMM1 has %d banks\n", dimmInfo1.numOfModuleBanks);
if (dimmInfo2.numOfModuleBanks > 0) {
checkbank[2] = 1;
}
if (dimmInfo2.numOfModuleBanks > 1) {
checkbank[3] = 1;
}
if (dimmInfo2.numOfModuleBanks > 2)
printf ("Error, SPD claims DIMM2 has >2 banks\n");
printf ("-- DIMM2 has %d banks\n", dimmInfo2.numOfModuleBanks);
for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) {
/* skip over banks that are not populated */
if (!checkbank[bank_no])
continue;
/* ronen - realsize = dram_size((long int *)total, check); */
if (bank_no == 0 || bank_no == 1) {
if (checkbank[1] == 1)
realsize = dimmInfo1.size / 2;
else
realsize = dimmInfo1.size;
}
if (bank_no == 2 || bank_no == 3) {
if (checkbank[3] == 1)
realsize = dimmInfo2.size / 2;
else
realsize = dimmInfo2.size;
}
memory_map_bank (bank_no, total, realsize);
/* ronen - initialize the DRAM for ECC */
#ifdef CONFIG_MV64360_ECC
if ((dimmInfo1.errorCheckType != 0) &&
((dimmInfo2.errorCheckType != 0)
|| (dimmInfo2.numOfModuleBanks == 0))) {
printf ("ECC Initialization of Bank %d:", bank_no);
memSpaceAttr = ((~(BIT0 << bank_no)) & 0xf) << 8;
mvDmaSetMemorySpace (0, 0, memSpaceAttr, total,
realsize);
for (dest = total; dest < total + realsize;
dest += _8M) {
mvDmaTransfer (0, total, dest, _8M,
BIT8 /*DMA_DTL_128BYTES */ |
BIT3 /*DMA_HOLD_SOURCE_ADDR */
|
BIT11
/*DMA_BLOCK_TRANSFER_MODE */ );
while (mvDmaIsChannelActive (0));
}
printf (" PASS\n");
}
#endif
total += realsize;
}
/* ronen- add DRAM conf prints */
switch ((GTREGREAD (0x141c) >> 4) & 0x7) {
case 0x2:
printf ("CAS Latency = 2");
break;
case 0x3:
printf ("CAS Latency = 3");
break;
case 0x5:
printf ("CAS Latency = 1.5");
break;
case 0x6:
printf ("CAS Latency = 2.5");
break;
}
printf (" tRP = %d tRAS = %d tRCD=%d\n",
((GTREGREAD (0x1408) >> 8) & 0xf) + 1,
((GTREGREAD (0x1408) >> 20) & 0xf) + 1,
((GTREGREAD (0x1408) >> 4) & 0xf) + 1);
/* Setup Ethernet DMA Adress window to DRAM Area */
if (total > _256M)
printf ("*** ONLY the first 256MB DRAM memory are used out of the ");
else
printf ("Total SDRAM memory is ");
/* (cause all the 4 BATS are taken) */
return (total);
}
/* ronen- add Idma functions for usage of the ecc dram init. */
/*******************************************************************************
* mvDmaIsChannelActive - Checks if a engine is busy.
********************************************************************************/
int mvDmaIsChannelActive (int engine)
{
ulong data;
data = GTREGREAD (MV64360_DMA_CHANNEL0_CONTROL + 4 * engine);
if (data & BIT14 /*activity status */ ) {
return 1;
}
return 0;
}
/*******************************************************************************
* mvDmaSetMemorySpace - Set a DMA memory window for the DMA's address decoding
* map.
*******************************************************************************/
int mvDmaSetMemorySpace (ulong memSpace,
ulong memSpaceTarget,
ulong memSpaceAttr, ulong baseAddress, ulong size)
{
ulong temp;
/* The base address must be aligned to the size. */
if (baseAddress % size != 0) {
return 0;
}
if (size >= 0x10000 /*64K */ ) {
size &= 0xffff0000;
baseAddress = (baseAddress & 0xffff0000);
/* Set the new attributes */
GT_REG_WRITE (MV64360_DMA_BASE_ADDR_REG0 + memSpace * 8,
(baseAddress | memSpaceTarget | memSpaceAttr));
GT_REG_WRITE ((MV64360_DMA_SIZE_REG0 + memSpace * 8),
(size - 1) & 0xffff0000);
temp = GTREGREAD (MV64360_DMA_BASE_ADDR_ENABLE_REG);
GT_REG_WRITE (DMA_BASE_ADDR_ENABLE_REG,
(temp & ~(BIT0 << memSpace)));
return 1;
}
return 0;
}
/*******************************************************************************
* mvDmaTransfer - Transfer data from sourceAddr to destAddr on one of the 4
* DMA channels.
********************************************************************************/
int mvDmaTransfer (int engine, ulong sourceAddr,
ulong destAddr, ulong numOfBytes, ulong command)
{
ulong engOffReg = 0; /* Engine Offset Register */
if (numOfBytes > 0xffff) {
command = command | BIT31 /*DMA_16M_DESCRIPTOR_MODE */ ;
}
command = command | ((command >> 6) & 0x7);
engOffReg = engine * 4;
GT_REG_WRITE (MV64360_DMA_CHANNEL0_BYTE_COUNT + engOffReg,
numOfBytes);
GT_REG_WRITE (MV64360_DMA_CHANNEL0_SOURCE_ADDR + engOffReg,
sourceAddr);
GT_REG_WRITE (MV64360_DMA_CHANNEL0_DESTINATION_ADDR + engOffReg,
destAddr);
command =
command | BIT12 /*DMA_CHANNEL_ENABLE */ | BIT9
/*DMA_NON_CHAIN_MODE */ ;
/* Activate DMA engine By writting to mvDmaControlRegister */
GT_REG_WRITE (MV64360_DMA_CHANNEL0_CONTROL + engOffReg, command);
return 1;
}
/****************************************************************************************
* SDRAM INIT *
* This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb *
* This procedure fits only the Atlantis *
* *
***************************************************************************************/
/****************************************************************************************
* DFCDL initialize MV643xx Design Considerations *
* *
***************************************************************************************/
int set_dfcdlInit (void)
{
int i;
unsigned int dfcdl_word = 0x391; /* 0x14f; ronen new dfcdl */
for (i = 0; i < 64; i++) {
GT_REG_WRITE (SRAM_DATA0, dfcdl_word);
/* dfcdl_word += 0x41; - ronen new dfcdl */
}
GT_REG_WRITE (DFCDL_CONFIG0, 0x00300000); /* enable dynamic delay line updating */
return (0);
}