| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * Copyright (C) 2015 Google, Inc |
| * |
| * Based on code from the coreboot file of the same name |
| */ |
| |
| #include <cpu.h> |
| #include <dm.h> |
| #include <errno.h> |
| #include <log.h> |
| #include <malloc.h> |
| #include <qfw.h> |
| #include <time.h> |
| #include <asm/atomic.h> |
| #include <asm/cpu.h> |
| #include <asm/global_data.h> |
| #include <asm/interrupt.h> |
| #include <asm/io.h> |
| #include <asm/lapic.h> |
| #include <asm/microcode.h> |
| #include <asm/mp.h> |
| #include <asm/msr.h> |
| #include <asm/mtrr.h> |
| #include <asm/processor.h> |
| #include <asm/sipi.h> |
| #include <dm/device-internal.h> |
| #include <dm/uclass-internal.h> |
| #include <dm/lists.h> |
| #include <dm/root.h> |
| #include <linux/delay.h> |
| #include <linux/linkage.h> |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* |
| * Setting up multiprocessing |
| * |
| * See https://www.intel.com/content/www/us/en/intelligent-systems/intel-boot-loader-development-kit/minimal-intel-architecture-boot-loader-paper.html |
| * |
| * Note that this file refers to the boot CPU (the one U-Boot is running on) as |
| * the BSP (BootStrap Processor) and the others as APs (Application Processors). |
| * |
| * This module works by loading some setup code into RAM at AP_DEFAULT_BASE and |
| * telling each AP to execute it. The code that each AP runs is in |
| * sipi_vector.S (see ap_start16) which includes a struct sipi_params at the |
| * end of it. Those parameters are set up by the C code. |
| |
| * Setting up is handled by load_sipi_vector(). It inits the common block of |
| * parameters (sipi_params) which tell the APs what to do. This block includes |
| * microcode and the MTTRs (Memory-Type-Range Registers) from the main CPU. |
| * There is also an ap_count which each AP increments as it starts up, so the |
| * BSP can tell how many checked in. |
| * |
| * The APs are started with a SIPI (Startup Inter-Processor Interrupt) which |
| * tells an AP to start executing at a particular address, in this case |
| * AP_DEFAULT_BASE which contains the code copied from ap_start16. This protocol |
| * is handled by start_aps(). |
| * |
| * After being started, each AP runs the code in ap_start16, switches to 32-bit |
| * mode, runs the code at ap_start, then jumps to c_handler which is ap_init(). |
| * This runs a very simple 'flight plan' described in mp_steps(). This sets up |
| * the CPU and waits for further instructions by looking at its entry in |
| * ap_callbacks[]. Note that the flight plan is only actually run for each CPU |
| * in bsp_do_flight_plan(): once the BSP completes each flight record, it sets |
| * mp_flight_record->barrier to 1 to allow the APs to executed the record one |
| * by one. |
| * |
| * CPUS are numbered sequentially from 0 using the device tree: |
| * |
| * cpus { |
| * bootph-all; |
| * #address-cells = <1>; |
| * #size-cells = <0>; |
| * |
| * cpu@0 { |
| * bootph-all; |
| * device_type = "cpu"; |
| * compatible = "intel,apl-cpu"; |
| * reg = <0>; |
| * intel,apic-id = <0>; |
| * }; |
| * |
| * cpu@1 { |
| * device_type = "cpu"; |
| * compatible = "intel,apl-cpu"; |
| * reg = <1>; |
| * intel,apic-id = <2>; |
| * }; |
| * |
| * Here the 'reg' property is the CPU number and then is placed in dev_seq(cpu) |
| * so that we can index into ap_callbacks[] using that. The APIC ID is different |
| * and may not be sequential (it typically is if hyperthreading is supported). |
| * |
| * Once APs are inited they wait in ap_wait_for_instruction() for instructions. |
| * Instructions come in the form of a function to run. This logic is in |
| * mp_run_on_cpus() which supports running on any one AP, all APs, just the BSP |
| * or all CPUs. The BSP logic is handled directly in mp_run_on_cpus(), by |
| * calling the function. For the APs, callback information is stored in a |
| * single, common struct mp_callback and a pointer to this is written to each |
| * AP's slot in ap_callbacks[] by run_ap_work(). All APs get the message even |
| * if it is only for one of them. When an AP notices a message it checks whether |
| * it should call the function (see check in ap_wait_for_instruction()) and then |
| * does so if needed. After that it sets its slot to NULL to indicate it is |
| * done. |
| * |
| * While U-Boot is running it can use mp_run_on_cpus() to run code on the APs. |
| * An example of this is the 'mtrr' command which allows reading and changing |
| * the MTRRs on all CPUs. |
| * |
| * Before U-Boot exits it calls mp_park_aps() which tells all CPUs to halt by |
| * executing a 'hlt' instruction. That allows them to be used by Linux when it |
| * starts up. |
| */ |
| |
| /* This also needs to match the sipi.S assembly code for saved MSR encoding */ |
| struct __packed saved_msr { |
| uint32_t index; |
| uint32_t lo; |
| uint32_t hi; |
| }; |
| |
| /** |
| * struct mp_flight_plan - Holds the flight plan |
| * |
| * @num_records: Number of flight records |
| * @records: Pointer to each record |
| */ |
| struct mp_flight_plan { |
| int num_records; |
| struct mp_flight_record *records; |
| }; |
| |
| /** |
| * struct mp_callback - Callback information for APs |
| * |
| * @func: Function to run |
| * @arg: Argument to pass to the function |
| * @logical_cpu_number: Either a CPU number (i.e. dev_seq(cpu) or a special |
| * value like MP_SELECT_BSP. It tells the AP whether it should process this |
| * callback |
| */ |
| struct mp_callback { |
| mp_run_func func; |
| void *arg; |
| int logical_cpu_number; |
| }; |
| |
| /* Stores the flight plan so that APs can find it */ |
| static struct mp_flight_plan mp_info; |
| |
| /* |
| * ap_callbacks - Callback mailbox array |
| * |
| * Array of callback, one entry for each available CPU, indexed by the CPU |
| * number, which is dev_seq(cpu). The entry for the main CPU is never used. |
| * When this is NULL, there is no pending work for the CPU to run. When |
| * non-NULL it points to the mp_callback structure. This is shared between all |
| * CPUs, so should only be written by the main CPU. |
| */ |
| static struct mp_callback **ap_callbacks; |
| |
| static inline void barrier_wait(atomic_t *b) |
| { |
| while (atomic_read(b) == 0) |
| asm("pause"); |
| mfence(); |
| } |
| |
| static inline void release_barrier(atomic_t *b) |
| { |
| mfence(); |
| atomic_set(b, 1); |
| } |
| |
| static inline void stop_this_cpu(void) |
| { |
| /* Called by an AP when it is ready to halt and wait for a new task */ |
| for (;;) |
| cpu_hlt(); |
| } |
| |
| /* Returns 1 if timeout waiting for APs. 0 if target APs found */ |
| static int wait_for_aps(atomic_t *val, int target, int total_delay, |
| int delay_step) |
| { |
| int timeout = 0; |
| int delayed = 0; |
| |
| while (atomic_read(val) != target) { |
| udelay(delay_step); |
| delayed += delay_step; |
| if (delayed >= total_delay) { |
| timeout = 1; |
| break; |
| } |
| } |
| |
| return timeout; |
| } |
| |
| static void ap_do_flight_plan(struct udevice *cpu) |
| { |
| int i; |
| |
| for (i = 0; i < mp_info.num_records; i++) { |
| struct mp_flight_record *rec = &mp_info.records[i]; |
| |
| atomic_inc(&rec->cpus_entered); |
| barrier_wait(&rec->barrier); |
| |
| if (rec->ap_call != NULL) |
| rec->ap_call(cpu, rec->ap_arg); |
| } |
| } |
| |
| static int find_cpu_by_apic_id(int apic_id, struct udevice **devp) |
| { |
| struct udevice *dev; |
| |
| *devp = NULL; |
| for (uclass_find_first_device(UCLASS_CPU, &dev); |
| dev; |
| uclass_find_next_device(&dev)) { |
| struct cpu_plat *plat = dev_get_parent_plat(dev); |
| |
| if (plat->cpu_id == apic_id) { |
| *devp = dev; |
| return 0; |
| } |
| } |
| |
| return -ENOENT; |
| } |
| |
| /* |
| * By the time APs call ap_init() caching has been setup, and microcode has |
| * been loaded |
| */ |
| static void ap_init(unsigned int cpu_index) |
| { |
| struct udevice *dev; |
| int apic_id; |
| int ret; |
| |
| /* Ensure the local apic is enabled */ |
| enable_lapic(); |
| |
| apic_id = lapicid(); |
| ret = find_cpu_by_apic_id(apic_id, &dev); |
| if (ret) { |
| debug("Unknown CPU apic_id %x\n", apic_id); |
| goto done; |
| } |
| |
| debug("AP: slot %d apic_id %x, dev %s\n", cpu_index, apic_id, |
| dev ? dev->name : "(apic_id not found)"); |
| |
| /* |
| * Walk the flight plan, which only returns if CONFIG_SMP_AP_WORK is not |
| * enabled |
| */ |
| ap_do_flight_plan(dev); |
| |
| done: |
| stop_this_cpu(); |
| } |
| |
| static const unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = { |
| MTRR_FIX_64K_00000_MSR, MTRR_FIX_16K_80000_MSR, MTRR_FIX_16K_A0000_MSR, |
| MTRR_FIX_4K_C0000_MSR, MTRR_FIX_4K_C8000_MSR, MTRR_FIX_4K_D0000_MSR, |
| MTRR_FIX_4K_D8000_MSR, MTRR_FIX_4K_E0000_MSR, MTRR_FIX_4K_E8000_MSR, |
| MTRR_FIX_4K_F0000_MSR, MTRR_FIX_4K_F8000_MSR, |
| }; |
| |
| static inline struct saved_msr *save_msr(int index, struct saved_msr *entry) |
| { |
| msr_t msr; |
| |
| msr = msr_read(index); |
| entry->index = index; |
| entry->lo = msr.lo; |
| entry->hi = msr.hi; |
| |
| /* Return the next entry */ |
| entry++; |
| return entry; |
| } |
| |
| static int save_bsp_msrs(char *start, int size) |
| { |
| int msr_count; |
| int num_var_mtrrs; |
| struct saved_msr *msr_entry; |
| int i; |
| msr_t msr; |
| |
| /* Determine number of MTRRs need to be saved */ |
| msr = msr_read(MTRR_CAP_MSR); |
| num_var_mtrrs = msr.lo & 0xff; |
| |
| /* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE */ |
| msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1; |
| |
| if ((msr_count * sizeof(struct saved_msr)) > size) { |
| printf("Cannot mirror all %d msrs\n", msr_count); |
| return -ENOSPC; |
| } |
| |
| msr_entry = (void *)start; |
| for (i = 0; i < NUM_FIXED_MTRRS; i++) |
| msr_entry = save_msr(fixed_mtrrs[i], msr_entry); |
| |
| for (i = 0; i < num_var_mtrrs; i++) { |
| msr_entry = save_msr(MTRR_PHYS_BASE_MSR(i), msr_entry); |
| msr_entry = save_msr(MTRR_PHYS_MASK_MSR(i), msr_entry); |
| } |
| |
| msr_entry = save_msr(MTRR_DEF_TYPE_MSR, msr_entry); |
| |
| return msr_count; |
| } |
| |
| static int load_sipi_vector(atomic_t **ap_countp, int num_cpus) |
| { |
| struct sipi_params_16bit *params16; |
| struct sipi_params *params; |
| static char msr_save[512]; |
| char *stack; |
| ulong addr; |
| int code_len; |
| int size; |
| int ret; |
| |
| /* Copy in the code */ |
| code_len = ap_start16_code_end - ap_start16; |
| debug("Copying SIPI code to %x: %d bytes\n", AP_DEFAULT_BASE, |
| code_len); |
| memcpy((void *)AP_DEFAULT_BASE, ap_start16, code_len); |
| |
| addr = AP_DEFAULT_BASE + (ulong)sipi_params_16bit - (ulong)ap_start16; |
| params16 = (struct sipi_params_16bit *)addr; |
| params16->ap_start = (uint32_t)ap_start; |
| params16->gdt = (uint32_t)gd->arch.gdt; |
| params16->gdt_limit = X86_GDT_SIZE - 1; |
| debug("gdt = %x, gdt_limit = %x\n", params16->gdt, params16->gdt_limit); |
| |
| params = (struct sipi_params *)sipi_params; |
| debug("SIPI 32-bit params at %p\n", params); |
| params->idt_ptr = (uint32_t)x86_get_idt(); |
| |
| params->stack_size = CONFIG_AP_STACK_SIZE; |
| size = params->stack_size * num_cpus; |
| stack = memalign(4096, size); |
| if (!stack) |
| return -ENOMEM; |
| params->stack_top = (u32)(stack + size); |
| #if !defined(CONFIG_QEMU) && !defined(CONFIG_HAVE_FSP) && \ |
| !defined(CONFIG_INTEL_MID) |
| params->microcode_ptr = ucode_base; |
| debug("Microcode at %x\n", params->microcode_ptr); |
| #endif |
| params->msr_table_ptr = (u32)msr_save; |
| ret = save_bsp_msrs(msr_save, sizeof(msr_save)); |
| if (ret < 0) |
| return ret; |
| params->msr_count = ret; |
| |
| params->c_handler = (uint32_t)&ap_init; |
| |
| *ap_countp = ¶ms->ap_count; |
| atomic_set(*ap_countp, 0); |
| debug("SIPI vector is ready\n"); |
| |
| return 0; |
| } |
| |
| static int check_cpu_devices(int expected_cpus) |
| { |
| int i; |
| |
| for (i = 0; i < expected_cpus; i++) { |
| struct udevice *dev; |
| int ret; |
| |
| ret = uclass_find_device(UCLASS_CPU, i, &dev); |
| if (ret) { |
| debug("Cannot find CPU %d in device tree\n", i); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /* Returns 1 for timeout. 0 on success */ |
| static int apic_wait_timeout(int total_delay, const char *msg) |
| { |
| int total = 0; |
| |
| if (!(lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) |
| return 0; |
| |
| debug("Waiting for %s...", msg); |
| while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) { |
| udelay(50); |
| total += 50; |
| if (total >= total_delay) { |
| debug("timed out: aborting\n"); |
| return -ETIMEDOUT; |
| } |
| } |
| debug("done\n"); |
| |
| return 0; |
| } |
| |
| /** |
| * start_aps() - Start up the APs and count how many we find |
| * |
| * This is called on the boot processor to start up all the other processors |
| * (here called APs). |
| * |
| * @num_aps: Number of APs we expect to find |
| * @ap_count: Initially zero. Incremented by this function for each AP found |
| * Return: 0 if all APs were set up correctly or there are none to set up, |
| * -ENOSPC if the SIPI vector is too high in memory, |
| * -ETIMEDOUT if the ICR is busy or the second SIPI fails to complete |
| * -EIO if not all APs check in correctly |
| */ |
| static int start_aps(int num_aps, atomic_t *ap_count) |
| { |
| int sipi_vector; |
| /* Max location is 4KiB below 1MiB */ |
| const int max_vector_loc = ((1 << 20) - (1 << 12)) >> 12; |
| |
| if (num_aps == 0) |
| return 0; |
| |
| /* The vector is sent as a 4k aligned address in one byte */ |
| sipi_vector = AP_DEFAULT_BASE >> 12; |
| |
| if (sipi_vector > max_vector_loc) { |
| printf("SIPI vector too large! 0x%08x\n", |
| sipi_vector); |
| return -ENOSPC; |
| } |
| |
| debug("Attempting to start %d APs\n", num_aps); |
| |
| if (apic_wait_timeout(1000, "ICR not to be busy")) |
| return -ETIMEDOUT; |
| |
| /* Send INIT IPI to all but self */ |
| lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); |
| lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | |
| LAPIC_DM_INIT); |
| debug("Waiting for 10ms after sending INIT\n"); |
| mdelay(10); |
| |
| /* Send 1st SIPI */ |
| if (apic_wait_timeout(1000, "ICR not to be busy")) |
| return -ETIMEDOUT; |
| |
| lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); |
| lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | |
| LAPIC_DM_STARTUP | sipi_vector); |
| if (apic_wait_timeout(10000, "first SIPI to complete")) |
| return -ETIMEDOUT; |
| |
| /* Wait for CPUs to check in up to 200 us */ |
| wait_for_aps(ap_count, num_aps, 200, 15); |
| |
| /* Send 2nd SIPI */ |
| if (apic_wait_timeout(1000, "ICR not to be busy")) |
| return -ETIMEDOUT; |
| |
| lapic_write(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); |
| lapic_write(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | |
| LAPIC_DM_STARTUP | sipi_vector); |
| if (apic_wait_timeout(10000, "second SIPI to complete")) |
| return -ETIMEDOUT; |
| |
| /* Wait for CPUs to check in */ |
| if (wait_for_aps(ap_count, num_aps, 10000, 50)) { |
| debug("Not all APs checked in: %d/%d\n", |
| atomic_read(ap_count), num_aps); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * bsp_do_flight_plan() - Do the flight plan on the BSP |
| * |
| * This runs the flight plan on the main CPU used to boot U-Boot |
| * |
| * @cpu: Device for the main CPU |
| * @plan: Flight plan to run |
| * @num_aps: Number of APs (CPUs other than the BSP) |
| * @returns 0 on success, -ETIMEDOUT if an AP failed to come up |
| */ |
| static int bsp_do_flight_plan(struct udevice *cpu, struct mp_flight_plan *plan, |
| int num_aps) |
| { |
| int i; |
| int ret = 0; |
| const int timeout_us = 100000; |
| const int step_us = 100; |
| |
| for (i = 0; i < plan->num_records; i++) { |
| struct mp_flight_record *rec = &plan->records[i]; |
| |
| /* Wait for APs if the record is not released */ |
| if (atomic_read(&rec->barrier) == 0) { |
| /* Wait for the APs to check in */ |
| if (wait_for_aps(&rec->cpus_entered, num_aps, |
| timeout_us, step_us)) { |
| debug("MP record %d timeout\n", i); |
| ret = -ETIMEDOUT; |
| } |
| } |
| |
| if (rec->bsp_call != NULL) |
| rec->bsp_call(cpu, rec->bsp_arg); |
| |
| release_barrier(&rec->barrier); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * get_bsp() - Get information about the bootstrap processor |
| * |
| * @devp: If non-NULL, returns CPU device corresponding to the BSP |
| * @cpu_countp: If non-NULL, returns the total number of CPUs |
| * Return: CPU number of the BSP, or -ve on error. If multiprocessing is not |
| * enabled, returns 0 |
| */ |
| static int get_bsp(struct udevice **devp, int *cpu_countp) |
| { |
| char processor_name[CPU_MAX_NAME_LEN]; |
| struct udevice *dev; |
| int apic_id; |
| int ret; |
| |
| cpu_get_name(processor_name); |
| debug("CPU: %s\n", processor_name); |
| |
| apic_id = lapicid(); |
| ret = find_cpu_by_apic_id(apic_id, &dev); |
| if (ret < 0) { |
| printf("Cannot find boot CPU, APIC ID %d\n", apic_id); |
| return ret; |
| } |
| ret = cpu_get_count(dev); |
| if (ret < 0) |
| return log_msg_ret("count", ret); |
| if (devp) |
| *devp = dev; |
| if (cpu_countp) |
| *cpu_countp = ret; |
| |
| return dev_seq(dev) >= 0 ? dev_seq(dev) : 0; |
| } |
| |
| /** |
| * read_callback() - Read the pointer in a callback slot |
| * |
| * This is called by APs to read their callback slot to see if there is a |
| * pointer to new instructions |
| * |
| * @slot: Pointer to the AP's callback slot |
| * Return: value of that pointer |
| */ |
| static struct mp_callback *read_callback(struct mp_callback **slot) |
| { |
| dmb(); |
| |
| return *slot; |
| } |
| |
| /** |
| * store_callback() - Store a pointer to the callback slot |
| * |
| * This is called by APs to write NULL into the callback slot when they have |
| * finished the work requested by the BSP. |
| * |
| * @slot: Pointer to the AP's callback slot |
| * @val: Value to write (e.g. NULL) |
| */ |
| static void store_callback(struct mp_callback **slot, struct mp_callback *val) |
| { |
| *slot = val; |
| dmb(); |
| } |
| |
| /** |
| * run_ap_work() - Run a callback on selected APs |
| * |
| * This writes @callback to all APs and waits for them all to acknowledge it, |
| * Note that whether each AP actually calls the callback depends on the value |
| * of logical_cpu_number (see struct mp_callback). The logical CPU number is |
| * the CPU device's req->seq value. |
| * |
| * @callback: Callback information to pass to all APs |
| * @bsp: CPU device for the BSP |
| * @num_cpus: The number of CPUs in the system (= number of APs + 1) |
| * @expire_ms: Timeout to wait for all APs to finish, in milliseconds, or 0 for |
| * no timeout |
| * Return: 0 if OK, -ETIMEDOUT if one or more APs failed to respond in time |
| */ |
| static int run_ap_work(struct mp_callback *callback, struct udevice *bsp, |
| int num_cpus, uint expire_ms) |
| { |
| int cur_cpu = dev_seq(bsp); |
| int num_aps = num_cpus - 1; /* number of non-BSPs to get this message */ |
| int cpus_accepted; |
| ulong start; |
| int i; |
| |
| if (!IS_ENABLED(CONFIG_SMP_AP_WORK)) { |
| printf("APs already parked. CONFIG_SMP_AP_WORK not enabled\n"); |
| return -ENOTSUPP; |
| } |
| |
| /* Signal to all the APs to run the func. */ |
| for (i = 0; i < num_cpus; i++) { |
| if (cur_cpu != i) |
| store_callback(&ap_callbacks[i], callback); |
| } |
| mfence(); |
| |
| /* Wait for all the APs to signal back that call has been accepted. */ |
| start = get_timer(0); |
| |
| do { |
| mdelay(1); |
| cpus_accepted = 0; |
| |
| for (i = 0; i < num_cpus; i++) { |
| if (cur_cpu == i) |
| continue; |
| if (!read_callback(&ap_callbacks[i])) |
| cpus_accepted++; |
| } |
| |
| if (expire_ms && get_timer(start) >= expire_ms) { |
| log(UCLASS_CPU, LOGL_CRIT, |
| "AP call expired; %d/%d CPUs accepted\n", |
| cpus_accepted, num_aps); |
| return -ETIMEDOUT; |
| } |
| } while (cpus_accepted != num_aps); |
| |
| /* Make sure we can see any data written by the APs */ |
| mfence(); |
| |
| return 0; |
| } |
| |
| /** |
| * ap_wait_for_instruction() - Wait for and process requests from the main CPU |
| * |
| * This is called by APs (here, everything other than the main boot CPU) to |
| * await instructions. They arrive in the form of a function call and argument, |
| * which is then called. This uses a simple mailbox with atomic read/set |
| * |
| * @cpu: CPU that is waiting |
| * @unused: Optional argument provided by struct mp_flight_record, not used here |
| * Return: Does not return |
| */ |
| static int ap_wait_for_instruction(struct udevice *cpu, void *unused) |
| { |
| struct mp_callback lcb; |
| struct mp_callback **per_cpu_slot; |
| |
| if (!IS_ENABLED(CONFIG_SMP_AP_WORK)) |
| return 0; |
| |
| per_cpu_slot = &ap_callbacks[dev_seq(cpu)]; |
| |
| while (1) { |
| struct mp_callback *cb = read_callback(per_cpu_slot); |
| |
| if (!cb) { |
| asm ("pause"); |
| continue; |
| } |
| |
| /* Copy to local variable before using the value */ |
| memcpy(&lcb, cb, sizeof(lcb)); |
| mfence(); |
| if (lcb.logical_cpu_number == MP_SELECT_ALL || |
| lcb.logical_cpu_number == MP_SELECT_APS || |
| dev_seq(cpu) == lcb.logical_cpu_number) |
| lcb.func(lcb.arg); |
| |
| /* Indicate we are finished */ |
| store_callback(per_cpu_slot, NULL); |
| } |
| |
| return 0; |
| } |
| |
| static int mp_init_cpu(struct udevice *cpu, void *unused) |
| { |
| struct cpu_plat *plat = dev_get_parent_plat(cpu); |
| |
| plat->ucode_version = microcode_read_rev(); |
| plat->device_id = gd->arch.x86_device; |
| |
| return device_probe(cpu); |
| } |
| |
| static struct mp_flight_record mp_steps[] = { |
| MP_FR_BLOCK_APS(mp_init_cpu, NULL, mp_init_cpu, NULL), |
| MP_FR_BLOCK_APS(ap_wait_for_instruction, NULL, NULL, NULL), |
| }; |
| |
| int mp_run_on_cpus(int cpu_select, mp_run_func func, void *arg) |
| { |
| struct mp_callback lcb = { |
| .func = func, |
| .arg = arg, |
| .logical_cpu_number = cpu_select, |
| }; |
| struct udevice *dev; |
| int num_cpus; |
| int ret; |
| |
| ret = get_bsp(&dev, &num_cpus); |
| if (ret < 0) |
| return log_msg_ret("bsp", ret); |
| if (cpu_select == MP_SELECT_ALL || cpu_select == MP_SELECT_BSP || |
| cpu_select == ret) { |
| /* Run on BSP first */ |
| func(arg); |
| } |
| |
| if (!IS_ENABLED(CONFIG_SMP_AP_WORK) || |
| !(gd->flags & GD_FLG_SMP_READY)) { |
| /* Allow use of this function on the BSP only */ |
| if (cpu_select == MP_SELECT_BSP || !cpu_select) |
| return 0; |
| return -ENOTSUPP; |
| } |
| |
| /* Allow up to 1 second for all APs to finish */ |
| ret = run_ap_work(&lcb, dev, num_cpus, 1000 /* ms */); |
| if (ret) |
| return log_msg_ret("aps", ret); |
| |
| return 0; |
| } |
| |
| static void park_this_cpu(void *unused) |
| { |
| stop_this_cpu(); |
| } |
| |
| int mp_park_aps(void) |
| { |
| int ret; |
| |
| ret = mp_run_on_cpus(MP_SELECT_APS, park_this_cpu, NULL); |
| if (ret) |
| return log_ret(ret); |
| |
| return 0; |
| } |
| |
| int mp_first_cpu(int cpu_select) |
| { |
| struct udevice *dev; |
| int num_cpus; |
| int ret; |
| |
| /* |
| * This assumes that CPUs are numbered from 0. This function tries to |
| * avoid assuming the CPU 0 is the boot CPU |
| */ |
| if (cpu_select == MP_SELECT_ALL) |
| return 0; /* start with the first one */ |
| |
| ret = get_bsp(&dev, &num_cpus); |
| if (ret < 0) |
| return log_msg_ret("bsp", ret); |
| |
| /* Return boot CPU if requested */ |
| if (cpu_select == MP_SELECT_BSP) |
| return ret; |
| |
| /* Return something other than the boot CPU, if APs requested */ |
| if (cpu_select == MP_SELECT_APS && num_cpus > 1) |
| return ret == 0 ? 1 : 0; |
| |
| /* Try to check for an invalid value */ |
| if (cpu_select < 0 || cpu_select >= num_cpus) |
| return -EINVAL; |
| |
| return cpu_select; /* return the only selected one */ |
| } |
| |
| int mp_next_cpu(int cpu_select, int prev_cpu) |
| { |
| struct udevice *dev; |
| int num_cpus; |
| int ret; |
| int bsp; |
| |
| /* If we selected the BSP or a particular single CPU, we are done */ |
| if (!IS_ENABLED(CONFIG_SMP_AP_WORK) || cpu_select == MP_SELECT_BSP || |
| cpu_select >= 0) |
| return -EFBIG; |
| |
| /* Must be doing MP_SELECT_ALL or MP_SELECT_APS; return the next CPU */ |
| ret = get_bsp(&dev, &num_cpus); |
| if (ret < 0) |
| return log_msg_ret("bsp", ret); |
| bsp = ret; |
| |
| /* Move to the next CPU */ |
| assert(prev_cpu >= 0); |
| ret = prev_cpu + 1; |
| |
| /* Skip the BSP if needed */ |
| if (cpu_select == MP_SELECT_APS && ret == bsp) |
| ret++; |
| if (ret >= num_cpus) |
| return -EFBIG; |
| |
| return ret; |
| } |
| |
| int mp_init(void) |
| { |
| int num_aps, num_cpus; |
| atomic_t *ap_count; |
| struct udevice *cpu; |
| int ret; |
| |
| if (IS_ENABLED(CONFIG_QFW)) { |
| ret = qemu_cpu_fixup(); |
| if (ret) |
| return ret; |
| } |
| |
| ret = get_bsp(&cpu, &num_cpus); |
| if (ret < 0) { |
| debug("Cannot init boot CPU: err=%d\n", ret); |
| return ret; |
| } |
| |
| if (num_cpus < 2) |
| debug("Warning: Only 1 CPU is detected\n"); |
| |
| ret = check_cpu_devices(num_cpus); |
| if (ret) |
| log_warning("Warning: Device tree does not describe all CPUs. Extra ones will not be started correctly\n"); |
| |
| ap_callbacks = calloc(num_cpus, sizeof(struct mp_callback *)); |
| if (!ap_callbacks) |
| return -ENOMEM; |
| |
| /* Copy needed parameters so that APs have a reference to the plan */ |
| mp_info.num_records = ARRAY_SIZE(mp_steps); |
| mp_info.records = mp_steps; |
| |
| /* Load the SIPI vector */ |
| ret = load_sipi_vector(&ap_count, num_cpus); |
| if (ap_count == NULL) |
| return -ENOENT; |
| |
| /* |
| * Make sure SIPI data hits RAM so the APs that come up will see |
| * the startup code even if the caches are disabled |
| */ |
| wbinvd(); |
| |
| /* Start the APs providing number of APs and the cpus_entered field */ |
| num_aps = num_cpus - 1; |
| ret = start_aps(num_aps, ap_count); |
| if (ret) { |
| mdelay(1000); |
| debug("%d/%d eventually checked in?\n", atomic_read(ap_count), |
| num_aps); |
| return ret; |
| } |
| |
| /* Walk the flight plan for the BSP */ |
| ret = bsp_do_flight_plan(cpu, &mp_info, num_aps); |
| if (ret) { |
| debug("CPU init failed: err=%d\n", ret); |
| return ret; |
| } |
| gd->flags |= GD_FLG_SMP_READY; |
| |
| return 0; |
| } |