| U-Boot FIT Signature Verification |
| ================================= |
| |
| Introduction |
| ------------ |
| FIT supports hashing of images so that these hashes can be checked on |
| loading. This protects against corruption of the image. However it does not |
| prevent the substitution of one image for another. |
| |
| The signature feature allows the hash to be signed with a private key such |
| that it can be verified using a public key later. Provided that the private |
| key is kept secret and the public key is stored in a non-volatile place, |
| any image can be verified in this way. |
| |
| See verified-boot.txt for more general information on verified boot. |
| |
| |
| Concepts |
| -------- |
| Some familiarity with public key cryptography is assumed in this section. |
| |
| The procedure for signing is as follows: |
| |
| - hash an image in the FIT |
| - sign the hash with a private key to produce a signature |
| - store the resulting signature in the FIT |
| |
| The procedure for verification is: |
| |
| - read the FIT |
| - obtain the public key |
| - extract the signature from the FIT |
| - hash the image from the FIT |
| - verify (with the public key) that the extracted signature matches the |
| hash |
| |
| The signing is generally performed by mkimage, as part of making a firmware |
| image for the device. The verification is normally done in U-Boot on the |
| device. |
| |
| |
| Algorithms |
| ---------- |
| In principle any suitable algorithm can be used to sign and verify a hash. |
| At present only one class of algorithms is supported: SHA1 hashing with RSA. |
| This works by hashing the image to produce a 20-byte hash. |
| |
| While it is acceptable to bring in large cryptographic libraries such as |
| openssl on the host side (e.g. mkimage), it is not desirable for U-Boot. |
| For the run-time verification side, it is important to keep code and data |
| size as small as possible. |
| |
| For this reason the RSA image verification uses pre-processed public keys |
| which can be used with a very small amount of code - just some extraction |
| of data from the FDT and exponentiation mod n. Code size impact is a little |
| under 5KB on Tegra Seaboard, for example. |
| |
| It is relatively straightforward to add new algorithms if required. If |
| another RSA variant is needed, then it can be added to the table in |
| image-sig.c. If another algorithm is needed (such as DSA) then it can be |
| placed alongside rsa.c, and its functions added to the table in image-sig.c |
| also. |
| |
| |
| Creating an RSA key and certificate |
| ----------------------------------- |
| To create a new public key, size 2048 bits: |
| |
| $ openssl genrsa -F4 -out keys/dev.key 2048 |
| |
| To create a certificate for this: |
| |
| $ openssl req -batch -new -x509 -key keys/dev.key -out keys/dev.crt |
| |
| If you like you can look at the public key also: |
| |
| $ openssl rsa -in keys/dev.key -pubout |
| |
| |
| Device Tree Bindings |
| -------------------- |
| The following properties are required in the FIT's signature node(s) to |
| allow thes signer to operate. These should be added to the .its file. |
| Signature nodes sit at the same level as hash nodes and are called |
| signature@1, signature@2, etc. |
| |
| - algo: Algorithm name (e.g. "sha1,rs2048") |
| |
| - key-name-hint: Name of key to use for signing. The keys will normally be in |
| a single directory (parameter -k to mkimage). For a given key <name>, its |
| private key is stored in <name>.key and the certificate is stored in |
| <name>.crt. |
| |
| When the image is signed, the following properties are added (mandatory): |
| |
| - value: The signature data (e.g. 256 bytes for 2048-bit RSA) |
| |
| When the image is signed, the following properties are optional: |
| |
| - timestamp: Time when image was signed (standard Unix time_t format) |
| |
| - signer-name: Name of the signer (e.g. "mkimage") |
| |
| - signer-version: Version string of the signer (e.g. "2013.01") |
| |
| - comment: Additional information about the signer or image |
| |
| For config bindings (see Signed Configurations below), the following |
| additional properties are optional: |
| |
| - sign-images: A list of images to sign, each being a property of the conf |
| node that contains then. The default is "kernel,fdt" which means that these |
| two images will be looked up in the config and signed if present. |
| |
| For config bindings, these properties are added by the signer: |
| |
| - hashed-nodes: A list of nodes which were hashed by the signer. Each is |
| a string - the full path to node. A typical value might be: |
| |
| hashed-nodes = "/", "/configurations/conf@1", "/images/kernel@1", |
| "/images/kernel@1/hash@1", "/images/fdt@1", |
| "/images/fdt@1/hash@1"; |
| |
| - hashed-strings: The start and size of the string region of the FIT that |
| was hashed |
| |
| Example: See sign-images.its for an example image tree source file and |
| sign-configs.its for config signing. |
| |
| |
| Public Key Storage |
| ------------------ |
| In order to verify an image that has been signed with a public key we need to |
| have a trusted public key. This cannot be stored in the signed image, since |
| it would be easy to alter. For this implementation we choose to store the |
| public key in U-Boot's control FDT (using CONFIG_OF_CONTROL). |
| |
| Public keys should be stored as sub-nodes in a /signature node. Required |
| properties are: |
| |
| - algo: Algorithm name (e.g. "sha1,rs2048") |
| |
| Optional properties are: |
| |
| - key-name-hint: Name of key used for signing. This is only a hint since it |
| is possible for the name to be changed. Verification can proceed by checking |
| all available signing keys until one matches. |
| |
| - required: If present this indicates that the key must be verified for the |
| image / configuration to be considered valid. Only required keys are |
| normally verified by the FIT image booting algorithm. Valid values are |
| "image" to force verification of all images, and "conf" to force verfication |
| of the selected configuration (which then relies on hashes in the images to |
| verify those). |
| |
| Each signing algorithm has its own additional properties. |
| |
| For RSA the following are mandatory: |
| |
| - rsa,num-bits: Number of key bits (e.g. 2048) |
| - rsa,modulus: Modulus (N) as a big-endian multi-word integer |
| - rsa,r-squared: (2^num-bits)^2 as a big-endian multi-word integer |
| - rsa,n0-inverse: -1 / modulus[0] mod 2^32 |
| |
| |
| Signed Configurations |
| --------------------- |
| While signing images is useful, it does not provide complete protection |
| against several types of attack. For example, it it possible to create a |
| FIT with the same signed images, but with the configuration changed such |
| that a different one is selected (mix and match attack). It is also possible |
| to substitute a signed image from an older FIT version into a newer FIT |
| (roll-back attack). |
| |
| As an example, consider this FIT: |
| |
| / { |
| images { |
| kernel@1 { |
| data = <data for kernel1> |
| signature@1 { |
| algo = "sha1,rsa2048"; |
| value = <...kernel signature 1...> |
| }; |
| }; |
| kernel@2 { |
| data = <data for kernel2> |
| signature@1 { |
| algo = "sha1,rsa2048"; |
| value = <...kernel signature 2...> |
| }; |
| }; |
| fdt@1 { |
| data = <data for fdt1>; |
| signature@1 { |
| algo = "sha1,rsa2048"; |
| vaue = <...fdt signature 1...> |
| }; |
| }; |
| fdt@2 { |
| data = <data for fdt2>; |
| signature@1 { |
| algo = "sha1,rsa2048"; |
| vaue = <...fdt signature 2...> |
| }; |
| }; |
| }; |
| configurations { |
| default = "conf@1"; |
| conf@1 { |
| kernel = "kernel@1"; |
| fdt = "fdt@1"; |
| }; |
| conf@1 { |
| kernel = "kernel@2"; |
| fdt = "fdt@2"; |
| }; |
| }; |
| }; |
| |
| Since both kernels are signed it is easy for an attacker to add a new |
| configuration 3 with kernel 1 and fdt 2: |
| |
| configurations { |
| default = "conf@1"; |
| conf@1 { |
| kernel = "kernel@1"; |
| fdt = "fdt@1"; |
| }; |
| conf@1 { |
| kernel = "kernel@2"; |
| fdt = "fdt@2"; |
| }; |
| conf@3 { |
| kernel = "kernel@1"; |
| fdt = "fdt@2"; |
| }; |
| }; |
| |
| With signed images, nothing protects against this. Whether it gains an |
| advantage for the attacker is debatable, but it is not secure. |
| |
| To solved this problem, we support signed configurations. In this case it |
| is the configurations that are signed, not the image. Each image has its |
| own hash, and we include the hash in the configuration signature. |
| |
| So the above example is adjusted to look like this: |
| |
| / { |
| images { |
| kernel@1 { |
| data = <data for kernel1> |
| hash@1 { |
| algo = "sha1"; |
| value = <...kernel hash 1...> |
| }; |
| }; |
| kernel@2 { |
| data = <data for kernel2> |
| hash@1 { |
| algo = "sha1"; |
| value = <...kernel hash 2...> |
| }; |
| }; |
| fdt@1 { |
| data = <data for fdt1>; |
| hash@1 { |
| algo = "sha1"; |
| value = <...fdt hash 1...> |
| }; |
| }; |
| fdt@2 { |
| data = <data for fdt2>; |
| hash@1 { |
| algo = "sha1"; |
| value = <...fdt hash 2...> |
| }; |
| }; |
| }; |
| configurations { |
| default = "conf@1"; |
| conf@1 { |
| kernel = "kernel@1"; |
| fdt = "fdt@1"; |
| signature@1 { |
| algo = "sha1,rsa2048"; |
| value = <...conf 1 signature...>; |
| }; |
| }; |
| conf@2 { |
| kernel = "kernel@2"; |
| fdt = "fdt@2"; |
| signature@1 { |
| algo = "sha1,rsa2048"; |
| value = <...conf 1 signature...>; |
| }; |
| }; |
| }; |
| }; |
| |
| |
| You can see that we have added hashes for all images (since they are no |
| longer signed), and a signature to each configuration. In the above example, |
| mkimage will sign configurations/conf@1, the kernel and fdt that are |
| pointed to by the configuration (/images/kernel@1, /images/kernel@1/hash@1, |
| /images/fdt@1, /images/fdt@1/hash@1) and the root structure of the image |
| (so that it isn't possible to add or remove root nodes). The signature is |
| written into /configurations/conf@1/signature@1/value. It can easily be |
| verified later even if the FIT has been signed with other keys in the |
| meantime. |
| |
| |
| Verification |
| ------------ |
| FITs are verified when loaded. After the configuration is selected a list |
| of required images is produced. If there are 'required' public keys, then |
| each image must be verified against those keys. This means that every image |
| that might be used by the target needs to be signed with 'required' keys. |
| |
| This happens automatically as part of a bootm command when FITs are used. |
| |
| |
| Enabling FIT Verification |
| ------------------------- |
| In addition to the options to enable FIT itself, the following CONFIGs must |
| be enabled: |
| |
| CONFIG_FIT_SIGNATURE - enable signing and verfication in FITs |
| CONFIG_RSA - enable RSA algorithm for signing |
| |
| |
| Testing |
| ------- |
| An easy way to test signing and verfication is to use the test script |
| provided in test/vboot/vboot_test.sh. This uses sandbox (a special version |
| of U-Boot which runs under Linux) to show the operation of a 'bootm' |
| command loading and verifying images. |
| |
| A sample run is show below: |
| |
| $ make O=sandbox sandbox_config |
| $ make O=sandbox |
| $ O=sandbox ./test/vboot/vboot_test.sh |
| Simple Verified Boot Test |
| ========================= |
| |
| Please see doc/uImage.FIT/verified-boot.txt for more information |
| |
| Build keys |
| Build FIT with signed images |
| Test Verified Boot Run: unsigned signatures:: OK |
| Sign images |
| Test Verified Boot Run: signed images: OK |
| Build FIT with signed configuration |
| Test Verified Boot Run: unsigned config: OK |
| Sign images |
| Test Verified Boot Run: signed config: OK |
| |
| Test passed |
| |
| |
| Future Work |
| ----------- |
| - Roll-back protection using a TPM is done using the tpm command. This can |
| be scripted, but we might consider a default way of doing this, built into |
| bootm. |
| |
| |
| Possible Future Work |
| -------------------- |
| - Add support for other RSA/SHA variants, such as rsa4096,sha512. |
| - Other algorithms besides RSA |
| - More sandbox tests for failure modes |
| - Passwords for keys/certificates |
| - Perhaps implement OAEP |
| - Enhance bootm to permit scripted signature verification (so that a script |
| can verify an image but not actually boot it) |
| |
| |
| Simon Glass |
| sjg@chromium.org |
| 1-1-13 |