blob: f6cc35336320ce1ec0e5cba4e9f0879e1d34b39d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2016
*
* Michael Kurz, <michi.kurz@gmail.com>
*
* STM32 QSPI driver
*/
#include <common.h>
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <malloc.h>
#include <reset.h>
#include <spi.h>
#include <spi_flash.h>
#include <asm/io.h>
#include <asm/arch/stm32.h>
#include <linux/ioport.h>
struct stm32_qspi_regs {
u32 cr; /* 0x00 */
u32 dcr; /* 0x04 */
u32 sr; /* 0x08 */
u32 fcr; /* 0x0C */
u32 dlr; /* 0x10 */
u32 ccr; /* 0x14 */
u32 ar; /* 0x18 */
u32 abr; /* 0x1C */
u32 dr; /* 0x20 */
u32 psmkr; /* 0x24 */
u32 psmar; /* 0x28 */
u32 pir; /* 0x2C */
u32 lptr; /* 0x30 */
};
/*
* QUADSPI control register
*/
#define STM32_QSPI_CR_EN BIT(0)
#define STM32_QSPI_CR_ABORT BIT(1)
#define STM32_QSPI_CR_DMAEN BIT(2)
#define STM32_QSPI_CR_TCEN BIT(3)
#define STM32_QSPI_CR_SSHIFT BIT(4)
#define STM32_QSPI_CR_DFM BIT(6)
#define STM32_QSPI_CR_FSEL BIT(7)
#define STM32_QSPI_CR_FTHRES_MASK GENMASK(4, 0)
#define STM32_QSPI_CR_FTHRES_SHIFT (8)
#define STM32_QSPI_CR_TEIE BIT(16)
#define STM32_QSPI_CR_TCIE BIT(17)
#define STM32_QSPI_CR_FTIE BIT(18)
#define STM32_QSPI_CR_SMIE BIT(19)
#define STM32_QSPI_CR_TOIE BIT(20)
#define STM32_QSPI_CR_APMS BIT(22)
#define STM32_QSPI_CR_PMM BIT(23)
#define STM32_QSPI_CR_PRESCALER_MASK GENMASK(7, 0)
#define STM32_QSPI_CR_PRESCALER_SHIFT (24)
/*
* QUADSPI device configuration register
*/
#define STM32_QSPI_DCR_CKMODE BIT(0)
#define STM32_QSPI_DCR_CSHT_MASK GENMASK(2, 0)
#define STM32_QSPI_DCR_CSHT_SHIFT (8)
#define STM32_QSPI_DCR_FSIZE_MASK GENMASK(4, 0)
#define STM32_QSPI_DCR_FSIZE_SHIFT (16)
/*
* QUADSPI status register
*/
#define STM32_QSPI_SR_TEF BIT(0)
#define STM32_QSPI_SR_TCF BIT(1)
#define STM32_QSPI_SR_FTF BIT(2)
#define STM32_QSPI_SR_SMF BIT(3)
#define STM32_QSPI_SR_TOF BIT(4)
#define STM32_QSPI_SR_BUSY BIT(5)
#define STM32_QSPI_SR_FLEVEL_MASK GENMASK(5, 0)
#define STM32_QSPI_SR_FLEVEL_SHIFT (8)
/*
* QUADSPI flag clear register
*/
#define STM32_QSPI_FCR_CTEF BIT(0)
#define STM32_QSPI_FCR_CTCF BIT(1)
#define STM32_QSPI_FCR_CSMF BIT(3)
#define STM32_QSPI_FCR_CTOF BIT(4)
/*
* QUADSPI communication configuration register
*/
#define STM32_QSPI_CCR_DDRM BIT(31)
#define STM32_QSPI_CCR_DHHC BIT(30)
#define STM32_QSPI_CCR_SIOO BIT(28)
#define STM32_QSPI_CCR_FMODE_SHIFT (26)
#define STM32_QSPI_CCR_DMODE_SHIFT (24)
#define STM32_QSPI_CCR_DCYC_SHIFT (18)
#define STM32_QSPI_CCR_DCYC_MASK GENMASK(4, 0)
#define STM32_QSPI_CCR_ABSIZE_SHIFT (16)
#define STM32_QSPI_CCR_ABMODE_SHIFT (14)
#define STM32_QSPI_CCR_ADSIZE_SHIFT (12)
#define STM32_QSPI_CCR_ADMODE_SHIFT (10)
#define STM32_QSPI_CCR_IMODE_SHIFT (8)
#define STM32_QSPI_CCR_INSTRUCTION_MASK GENMASK(7, 0)
enum STM32_QSPI_CCR_IMODE {
STM32_QSPI_CCR_IMODE_NONE = 0,
STM32_QSPI_CCR_IMODE_ONE_LINE = 1,
STM32_QSPI_CCR_IMODE_TWO_LINE = 2,
STM32_QSPI_CCR_IMODE_FOUR_LINE = 3,
};
enum STM32_QSPI_CCR_ADMODE {
STM32_QSPI_CCR_ADMODE_NONE = 0,
STM32_QSPI_CCR_ADMODE_ONE_LINE = 1,
STM32_QSPI_CCR_ADMODE_TWO_LINE = 2,
STM32_QSPI_CCR_ADMODE_FOUR_LINE = 3,
};
enum STM32_QSPI_CCR_ADSIZE {
STM32_QSPI_CCR_ADSIZE_8BIT = 0,
STM32_QSPI_CCR_ADSIZE_16BIT = 1,
STM32_QSPI_CCR_ADSIZE_24BIT = 2,
STM32_QSPI_CCR_ADSIZE_32BIT = 3,
};
enum STM32_QSPI_CCR_ABMODE {
STM32_QSPI_CCR_ABMODE_NONE = 0,
STM32_QSPI_CCR_ABMODE_ONE_LINE = 1,
STM32_QSPI_CCR_ABMODE_TWO_LINE = 2,
STM32_QSPI_CCR_ABMODE_FOUR_LINE = 3,
};
enum STM32_QSPI_CCR_ABSIZE {
STM32_QSPI_CCR_ABSIZE_8BIT = 0,
STM32_QSPI_CCR_ABSIZE_16BIT = 1,
STM32_QSPI_CCR_ABSIZE_24BIT = 2,
STM32_QSPI_CCR_ABSIZE_32BIT = 3,
};
enum STM32_QSPI_CCR_DMODE {
STM32_QSPI_CCR_DMODE_NONE = 0,
STM32_QSPI_CCR_DMODE_ONE_LINE = 1,
STM32_QSPI_CCR_DMODE_TWO_LINE = 2,
STM32_QSPI_CCR_DMODE_FOUR_LINE = 3,
};
enum STM32_QSPI_CCR_FMODE {
STM32_QSPI_CCR_IND_WRITE = 0,
STM32_QSPI_CCR_IND_READ = 1,
STM32_QSPI_CCR_AUTO_POLL = 2,
STM32_QSPI_CCR_MEM_MAP = 3,
};
/* default SCK frequency, unit: HZ */
#define STM32_QSPI_DEFAULT_SCK_FREQ 108000000
#define STM32_MAX_NORCHIP 2
struct stm32_qspi_platdata {
u32 base;
u32 memory_map;
u32 max_hz;
};
struct stm32_qspi_priv {
struct stm32_qspi_regs *regs;
ulong clock_rate;
u32 max_hz;
u32 mode;
u32 command;
u32 address;
u32 dummycycles;
#define CMD_HAS_ADR BIT(24)
#define CMD_HAS_DUMMY BIT(25)
#define CMD_HAS_DATA BIT(26)
};
static void _stm32_qspi_disable(struct stm32_qspi_priv *priv)
{
clrbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
}
static void _stm32_qspi_enable(struct stm32_qspi_priv *priv)
{
setbits_le32(&priv->regs->cr, STM32_QSPI_CR_EN);
}
static void _stm32_qspi_wait_for_not_busy(struct stm32_qspi_priv *priv)
{
while (readl(&priv->regs->sr) & STM32_QSPI_SR_BUSY)
;
}
static void _stm32_qspi_wait_for_complete(struct stm32_qspi_priv *priv)
{
while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_TCF))
;
}
static void _stm32_qspi_wait_for_ftf(struct stm32_qspi_priv *priv)
{
while (!(readl(&priv->regs->sr) & STM32_QSPI_SR_FTF))
;
}
static void _stm32_qspi_set_flash_size(struct stm32_qspi_priv *priv, u32 size)
{
u32 fsize = fls(size) - 1;
clrsetbits_le32(&priv->regs->dcr,
STM32_QSPI_DCR_FSIZE_MASK << STM32_QSPI_DCR_FSIZE_SHIFT,
fsize << STM32_QSPI_DCR_FSIZE_SHIFT);
}
static void _stm32_qspi_set_cs(struct stm32_qspi_priv *priv, unsigned int cs)
{
clrsetbits_le32(&priv->regs->cr, STM32_QSPI_CR_FSEL,
cs ? STM32_QSPI_CR_FSEL : 0);
}
static unsigned int _stm32_qspi_gen_ccr(struct stm32_qspi_priv *priv)
{
unsigned int ccr_reg = 0;
u8 imode, admode, dmode;
u32 mode = priv->mode;
u32 cmd = (priv->command & STM32_QSPI_CCR_INSTRUCTION_MASK);
imode = STM32_QSPI_CCR_IMODE_ONE_LINE;
admode = STM32_QSPI_CCR_ADMODE_ONE_LINE;
if (mode & SPI_RX_QUAD) {
dmode = STM32_QSPI_CCR_DMODE_FOUR_LINE;
if (mode & SPI_TX_QUAD) {
imode = STM32_QSPI_CCR_IMODE_FOUR_LINE;
admode = STM32_QSPI_CCR_ADMODE_FOUR_LINE;
}
} else if (mode & SPI_RX_DUAL) {
dmode = STM32_QSPI_CCR_DMODE_TWO_LINE;
if (mode & SPI_TX_DUAL) {
imode = STM32_QSPI_CCR_IMODE_TWO_LINE;
admode = STM32_QSPI_CCR_ADMODE_TWO_LINE;
}
} else {
dmode = STM32_QSPI_CCR_DMODE_ONE_LINE;
}
if (priv->command & CMD_HAS_DATA)
ccr_reg |= (dmode << STM32_QSPI_CCR_DMODE_SHIFT);
if (priv->command & CMD_HAS_DUMMY)
ccr_reg |= ((priv->dummycycles & STM32_QSPI_CCR_DCYC_MASK)
<< STM32_QSPI_CCR_DCYC_SHIFT);
if (priv->command & CMD_HAS_ADR) {
ccr_reg |= (STM32_QSPI_CCR_ADSIZE_24BIT
<< STM32_QSPI_CCR_ADSIZE_SHIFT);
ccr_reg |= (admode << STM32_QSPI_CCR_ADMODE_SHIFT);
}
ccr_reg |= (imode << STM32_QSPI_CCR_IMODE_SHIFT);
ccr_reg |= cmd;
return ccr_reg;
}
static void _stm32_qspi_enable_mmap(struct stm32_qspi_priv *priv,
struct spi_flash *flash)
{
unsigned int ccr_reg;
priv->command = flash->read_cmd | CMD_HAS_ADR | CMD_HAS_DATA
| CMD_HAS_DUMMY;
priv->dummycycles = flash->dummy_byte * 8;
ccr_reg = _stm32_qspi_gen_ccr(priv);
ccr_reg |= (STM32_QSPI_CCR_MEM_MAP << STM32_QSPI_CCR_FMODE_SHIFT);
_stm32_qspi_wait_for_not_busy(priv);
writel(ccr_reg, &priv->regs->ccr);
priv->dummycycles = 0;
}
static void _stm32_qspi_disable_mmap(struct stm32_qspi_priv *priv)
{
setbits_le32(&priv->regs->cr, STM32_QSPI_CR_ABORT);
}
static void _stm32_qspi_set_xfer_length(struct stm32_qspi_priv *priv,
u32 length)
{
writel(length - 1, &priv->regs->dlr);
}
static void _stm32_qspi_start_xfer(struct stm32_qspi_priv *priv, u32 cr_reg)
{
writel(cr_reg, &priv->regs->ccr);
if (priv->command & CMD_HAS_ADR)
writel(priv->address, &priv->regs->ar);
}
static int _stm32_qspi_xfer(struct stm32_qspi_priv *priv,
struct spi_flash *flash, unsigned int bitlen,
const u8 *dout, u8 *din, unsigned long flags)
{
unsigned int words = bitlen / 8;
u32 ccr_reg;
int i;
if (flags & SPI_XFER_MMAP) {
_stm32_qspi_enable_mmap(priv, flash);
return 0;
} else if (flags & SPI_XFER_MMAP_END) {
_stm32_qspi_disable_mmap(priv);
return 0;
}
if (bitlen == 0)
return -1;
if (bitlen % 8) {
debug("spi_xfer: Non byte aligned SPI transfer\n");
return -1;
}
if (dout && din) {
debug("spi_xfer: QSPI cannot have data in and data out set\n");
return -1;
}
if (!dout && (flags & SPI_XFER_BEGIN)) {
debug("spi_xfer: QSPI transfer must begin with command\n");
return -1;
}
if (dout) {
if (flags & SPI_XFER_BEGIN) {
/* data is command */
priv->command = dout[0] | CMD_HAS_DATA;
if (words >= 4) {
/* address is here too */
priv->address = (dout[1] << 16) |
(dout[2] << 8) | dout[3];
priv->command |= CMD_HAS_ADR;
}
if (words > 4) {
/* rest is dummy bytes */
priv->dummycycles = (words - 4) * 8;
priv->command |= CMD_HAS_DUMMY;
}
if (flags & SPI_XFER_END) {
/* command without data */
priv->command &= ~(CMD_HAS_DATA);
}
}
if (flags & SPI_XFER_END) {
ccr_reg = _stm32_qspi_gen_ccr(priv);
ccr_reg |= STM32_QSPI_CCR_IND_WRITE
<< STM32_QSPI_CCR_FMODE_SHIFT;
_stm32_qspi_wait_for_not_busy(priv);
if (priv->command & CMD_HAS_DATA)
_stm32_qspi_set_xfer_length(priv, words);
_stm32_qspi_start_xfer(priv, ccr_reg);
debug("%s: write: ccr:0x%08x adr:0x%08x\n",
__func__, priv->regs->ccr, priv->regs->ar);
if (priv->command & CMD_HAS_DATA) {
_stm32_qspi_wait_for_ftf(priv);
debug("%s: words:%d data:", __func__, words);
i = 0;
while (words > i) {
writeb(dout[i], &priv->regs->dr);
debug("%02x ", dout[i]);
i++;
}
debug("\n");
_stm32_qspi_wait_for_complete(priv);
} else {
_stm32_qspi_wait_for_not_busy(priv);
}
}
} else if (din) {
ccr_reg = _stm32_qspi_gen_ccr(priv);
ccr_reg |= STM32_QSPI_CCR_IND_READ
<< STM32_QSPI_CCR_FMODE_SHIFT;
_stm32_qspi_wait_for_not_busy(priv);
_stm32_qspi_set_xfer_length(priv, words);
_stm32_qspi_start_xfer(priv, ccr_reg);
debug("%s: read: ccr:0x%08x adr:0x%08x len:%d\n", __func__,
priv->regs->ccr, priv->regs->ar, priv->regs->dlr);
debug("%s: data:", __func__);
i = 0;
while (words > i) {
din[i] = readb(&priv->regs->dr);
debug("%02x ", din[i]);
i++;
}
debug("\n");
}
return 0;
}
static int stm32_qspi_ofdata_to_platdata(struct udevice *bus)
{
struct resource res_regs, res_mem;
struct stm32_qspi_platdata *plat = bus->platdata;
int ret;
ret = dev_read_resource_byname(bus, "qspi", &res_regs);
if (ret) {
debug("Error: can't get regs base addresses(ret = %d)!\n", ret);
return -ENOMEM;
}
ret = dev_read_resource_byname(bus, "qspi_mm", &res_mem);
if (ret) {
debug("Error: can't get mmap base address(ret = %d)!\n", ret);
return -ENOMEM;
}
plat->max_hz = dev_read_u32_default(bus, "spi-max-frequency",
STM32_QSPI_DEFAULT_SCK_FREQ);
plat->base = res_regs.start;
plat->memory_map = res_mem.start;
debug("%s: regs=<0x%x> mapped=<0x%x>, max-frequency=%d\n",
__func__,
plat->base,
plat->memory_map,
plat->max_hz
);
return 0;
}
static int stm32_qspi_probe(struct udevice *bus)
{
struct stm32_qspi_platdata *plat = dev_get_platdata(bus);
struct stm32_qspi_priv *priv = dev_get_priv(bus);
struct dm_spi_bus *dm_spi_bus;
struct clk clk;
struct reset_ctl reset_ctl;
int ret;
dm_spi_bus = bus->uclass_priv;
dm_spi_bus->max_hz = plat->max_hz;
priv->regs = (struct stm32_qspi_regs *)(uintptr_t)plat->base;
priv->max_hz = plat->max_hz;
ret = clk_get_by_index(bus, 0, &clk);
if (ret < 0)
return ret;
ret = clk_enable(&clk);
if (ret) {
dev_err(bus, "failed to enable clock\n");
return ret;
}
priv->clock_rate = clk_get_rate(&clk);
if (priv->clock_rate < 0) {
clk_disable(&clk);
return priv->clock_rate;
}
ret = reset_get_by_index(bus, 0, &reset_ctl);
if (ret) {
if (ret != -ENOENT) {
dev_err(bus, "failed to get reset\n");
clk_disable(&clk);
return ret;
}
} else {
/* Reset QSPI controller */
reset_assert(&reset_ctl);
udelay(2);
reset_deassert(&reset_ctl);
}
setbits_le32(&priv->regs->cr, STM32_QSPI_CR_SSHIFT);
return 0;
}
static int stm32_qspi_remove(struct udevice *bus)
{
return 0;
}
static int stm32_qspi_claim_bus(struct udevice *dev)
{
struct stm32_qspi_priv *priv;
struct udevice *bus;
struct spi_flash *flash;
struct dm_spi_slave_platdata *slave_plat;
bus = dev->parent;
priv = dev_get_priv(bus);
flash = dev_get_uclass_priv(dev);
slave_plat = dev_get_parent_platdata(dev);
if (slave_plat->cs >= STM32_MAX_NORCHIP)
return -ENODEV;
_stm32_qspi_set_cs(priv, slave_plat->cs);
_stm32_qspi_set_flash_size(priv, flash->size);
_stm32_qspi_enable(priv);
return 0;
}
static int stm32_qspi_release_bus(struct udevice *dev)
{
struct stm32_qspi_priv *priv;
struct udevice *bus;
bus = dev->parent;
priv = dev_get_priv(bus);
_stm32_qspi_disable(priv);
return 0;
}
static int stm32_qspi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct stm32_qspi_priv *priv;
struct udevice *bus;
struct spi_flash *flash;
bus = dev->parent;
priv = dev_get_priv(bus);
flash = dev_get_uclass_priv(dev);
return _stm32_qspi_xfer(priv, flash, bitlen, (const u8 *)dout,
(u8 *)din, flags);
}
static int stm32_qspi_set_speed(struct udevice *bus, uint speed)
{
struct stm32_qspi_platdata *plat = bus->platdata;
struct stm32_qspi_priv *priv = dev_get_priv(bus);
u32 qspi_clk = priv->clock_rate;
u32 prescaler = 255;
u32 csht;
if (speed > plat->max_hz)
speed = plat->max_hz;
if (speed > 0) {
prescaler = DIV_ROUND_UP(qspi_clk, speed) - 1;
if (prescaler > 255)
prescaler = 255;
else if (prescaler < 0)
prescaler = 0;
}
csht = DIV_ROUND_UP((5 * qspi_clk) / (prescaler + 1), 100000000);
csht = (csht - 1) & STM32_QSPI_DCR_CSHT_MASK;
_stm32_qspi_wait_for_not_busy(priv);
clrsetbits_le32(&priv->regs->cr,
STM32_QSPI_CR_PRESCALER_MASK <<
STM32_QSPI_CR_PRESCALER_SHIFT,
prescaler << STM32_QSPI_CR_PRESCALER_SHIFT);
clrsetbits_le32(&priv->regs->dcr,
STM32_QSPI_DCR_CSHT_MASK << STM32_QSPI_DCR_CSHT_SHIFT,
csht << STM32_QSPI_DCR_CSHT_SHIFT);
debug("%s: regs=%p, speed=%d\n", __func__, priv->regs,
(qspi_clk / (prescaler + 1)));
return 0;
}
static int stm32_qspi_set_mode(struct udevice *bus, uint mode)
{
struct stm32_qspi_priv *priv = dev_get_priv(bus);
_stm32_qspi_wait_for_not_busy(priv);
if ((mode & SPI_CPHA) && (mode & SPI_CPOL))
setbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
else if (!(mode & SPI_CPHA) && !(mode & SPI_CPOL))
clrbits_le32(&priv->regs->dcr, STM32_QSPI_DCR_CKMODE);
else
return -ENODEV;
if (mode & SPI_CS_HIGH)
return -ENODEV;
if (mode & SPI_RX_QUAD)
priv->mode |= SPI_RX_QUAD;
else if (mode & SPI_RX_DUAL)
priv->mode |= SPI_RX_DUAL;
else
priv->mode &= ~(SPI_RX_QUAD | SPI_RX_DUAL);
if (mode & SPI_TX_QUAD)
priv->mode |= SPI_TX_QUAD;
else if (mode & SPI_TX_DUAL)
priv->mode |= SPI_TX_DUAL;
else
priv->mode &= ~(SPI_TX_QUAD | SPI_TX_DUAL);
debug("%s: regs=%p, mode=%d rx: ", __func__, priv->regs, mode);
if (mode & SPI_RX_QUAD)
debug("quad, tx: ");
else if (mode & SPI_RX_DUAL)
debug("dual, tx: ");
else
debug("single, tx: ");
if (mode & SPI_TX_QUAD)
debug("quad\n");
else if (mode & SPI_TX_DUAL)
debug("dual\n");
else
debug("single\n");
return 0;
}
static const struct dm_spi_ops stm32_qspi_ops = {
.claim_bus = stm32_qspi_claim_bus,
.release_bus = stm32_qspi_release_bus,
.xfer = stm32_qspi_xfer,
.set_speed = stm32_qspi_set_speed,
.set_mode = stm32_qspi_set_mode,
};
static const struct udevice_id stm32_qspi_ids[] = {
{ .compatible = "st,stm32-qspi" },
{ .compatible = "st,stm32f469-qspi" },
{ }
};
U_BOOT_DRIVER(stm32_qspi) = {
.name = "stm32_qspi",
.id = UCLASS_SPI,
.of_match = stm32_qspi_ids,
.ops = &stm32_qspi_ops,
.ofdata_to_platdata = stm32_qspi_ofdata_to_platdata,
.platdata_auto_alloc_size = sizeof(struct stm32_qspi_platdata),
.priv_auto_alloc_size = sizeof(struct stm32_qspi_priv),
.probe = stm32_qspi_probe,
.remove = stm32_qspi_remove,
};