| /* |
| * (C) Copyright 2000 |
| * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it |
| * |
| * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com> |
| * Marius Groeger <mgroeger@sysgo.de> |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| * |
| * Back ported to the 8xx platform (from the 8260 platform) by |
| * Murray.Jensen@cmst.csiro.au, 27-Jan-01. |
| */ |
| |
| #include <common.h> |
| |
| #ifdef CONFIG_HARD_I2C |
| |
| #include <commproc.h> |
| #include <i2c.h> |
| #ifdef CONFIG_LWMON |
| #include <watchdog.h> |
| #endif |
| |
| DECLARE_GLOBAL_DATA_PTR; |
| |
| /* tx/rx timeout (we need the i2c early, so we don't use get_timer()) */ |
| #define TOUT_LOOP 1000000 |
| |
| #define NUM_RX_BDS 4 |
| #define NUM_TX_BDS 4 |
| #define MAX_TX_SPACE 256 |
| #define I2C_RXTX_LEN 128 /* maximum tx/rx buffer length */ |
| |
| typedef struct I2C_BD { |
| unsigned short status; |
| unsigned short length; |
| unsigned char *addr; |
| } I2C_BD; |
| |
| #define BD_I2C_TX_START 0x0400 /* special status for i2c: Start condition */ |
| |
| #define BD_I2C_TX_CL 0x0001 /* collision error */ |
| #define BD_I2C_TX_UN 0x0002 /* underflow error */ |
| #define BD_I2C_TX_NAK 0x0004 /* no acknowledge error */ |
| #define BD_I2C_TX_ERR (BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL) |
| |
| #define BD_I2C_RX_ERR BD_SC_OV |
| |
| typedef void (*i2c_ecb_t) (int, int); /* error callback function */ |
| |
| /* This structure keeps track of the bd and buffer space usage. */ |
| typedef struct i2c_state { |
| int rx_idx; /* index to next free Rx BD */ |
| int tx_idx; /* index to next free Tx BD */ |
| void *rxbd; /* pointer to next free Rx BD */ |
| void *txbd; /* pointer to next free Tx BD */ |
| int tx_space; /* number of Tx bytes left */ |
| unsigned char *tx_buf; /* pointer to free Tx area */ |
| i2c_ecb_t err_cb; /* error callback function */ |
| } i2c_state_t; |
| |
| |
| /* flags for i2c_send() and i2c_receive() */ |
| #define I2CF_ENABLE_SECONDARY 0x01 /* secondary_address is valid */ |
| #define I2CF_START_COND 0x02 /* tx: generate start condition */ |
| #define I2CF_STOP_COND 0x04 /* tx: generate stop condition */ |
| |
| /* return codes */ |
| #define I2CERR_NO_BUFFERS 0x01 /* no more BDs or buffer space */ |
| #define I2CERR_MSG_TOO_LONG 0x02 /* tried to send/receive to much data */ |
| #define I2CERR_TIMEOUT 0x03 /* timeout in i2c_doio() */ |
| #define I2CERR_QUEUE_EMPTY 0x04 /* i2c_doio called without send/receive */ |
| |
| /* error callback flags */ |
| #define I2CECB_RX_ERR 0x10 /* this is a receive error */ |
| #define I2CECB_RX_ERR_OV 0x02 /* receive overrun error */ |
| #define I2CECB_RX_MASK 0x0f /* mask for error bits */ |
| #define I2CECB_TX_ERR 0x20 /* this is a transmit error */ |
| #define I2CECB_TX_CL 0x01 /* transmit collision error */ |
| #define I2CECB_TX_UN 0x02 /* transmit underflow error */ |
| #define I2CECB_TX_NAK 0x04 /* transmit no ack error */ |
| #define I2CECB_TX_MASK 0x0f /* mask for error bits */ |
| #define I2CECB_TIMEOUT 0x40 /* this is a timeout error */ |
| |
| /* |
| * Returns the best value of I2BRG to meet desired clock speed of I2C with |
| * input parameters (clock speed, filter, and predivider value). |
| * It returns computer speed value and the difference between it and desired |
| * speed. |
| */ |
| static inline int |
| i2c_roundrate(int hz, int speed, int filter, int modval, |
| int *brgval, int *totspeed) |
| { |
| int moddiv = 1 << (5 - (modval & 3)), brgdiv, div; |
| |
| debug("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n", |
| hz, speed, filter, modval); |
| |
| div = moddiv * speed; |
| brgdiv = (hz + div - 1) / div; |
| |
| debug("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv); |
| |
| *brgval = ((brgdiv + 1) / 2) - 3 - (2 * filter); |
| |
| if ((*brgval < 0) || (*brgval > 255)) { |
| debug("\t\trejected brgval=%d\n", *brgval); |
| return -1; |
| } |
| |
| brgdiv = 2 * (*brgval + 3 + (2 * filter)); |
| div = moddiv * brgdiv; |
| *totspeed = hz / div; |
| |
| debug("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed); |
| |
| return 0; |
| } |
| |
| /* |
| * Sets the I2C clock predivider and divider to meet required clock speed. |
| */ |
| static int i2c_setrate(int hz, int speed) |
| { |
| immap_t *immap = (immap_t *) CONFIG_SYS_IMMR; |
| volatile i2c8xx_t *i2c = (i2c8xx_t *) & immap->im_i2c; |
| int brgval, |
| modval, /* 0-3 */ |
| bestspeed_diff = speed, |
| bestspeed_brgval = 0, |
| bestspeed_modval = 0, |
| bestspeed_filter = 0, |
| totspeed, |
| filter = 0; /* Use this fixed value */ |
| |
| for (modval = 0; modval < 4; modval++) { |
| if (i2c_roundrate |
| (hz, speed, filter, modval, &brgval, &totspeed) == 0) { |
| int diff = speed - totspeed; |
| |
| if ((diff >= 0) && (diff < bestspeed_diff)) { |
| bestspeed_diff = diff; |
| bestspeed_modval = modval; |
| bestspeed_brgval = brgval; |
| bestspeed_filter = filter; |
| } |
| } |
| } |
| |
| debug("[I2C] Best is:\n"); |
| debug("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n", |
| hz, |
| speed, |
| bestspeed_filter, |
| bestspeed_modval, |
| bestspeed_brgval, |
| bestspeed_diff); |
| |
| i2c->i2c_i2mod |= |
| ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3); |
| i2c->i2c_i2brg = bestspeed_brgval & 0xff; |
| |
| debug("[I2C] i2mod=%08x i2brg=%08x\n", |
| i2c->i2c_i2mod, |
| i2c->i2c_i2brg); |
| |
| return 1; |
| } |
| |
| void i2c_init(int speed, int slaveaddr) |
| { |
| volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR; |
| volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm; |
| volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c; |
| volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC]; |
| ulong rbase, tbase; |
| volatile I2C_BD *rxbd, *txbd; |
| uint dpaddr; |
| |
| #ifdef CONFIG_SYS_I2C_INIT_BOARD |
| /* call board specific i2c bus reset routine before accessing the */ |
| /* environment, which might be in a chip on that bus. For details */ |
| /* about this problem see doc/I2C_Edge_Conditions. */ |
| i2c_init_board(); |
| #endif |
| |
| #ifdef CONFIG_SYS_I2C_UCODE_PATCH |
| iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase]; |
| #else |
| /* Disable relocation */ |
| iip->iic_rpbase = 0; |
| #endif |
| |
| #ifdef CONFIG_SYS_ALLOC_DPRAM |
| dpaddr = iip->iic_rbase; |
| if (dpaddr == 0) { |
| /* need to allocate dual port ram */ |
| dpaddr = dpram_alloc_align((NUM_RX_BDS * sizeof(I2C_BD)) + |
| (NUM_TX_BDS * sizeof(I2C_BD)) + |
| MAX_TX_SPACE, 8); |
| } |
| #else |
| dpaddr = CPM_I2C_BASE; |
| #endif |
| |
| /* |
| * initialise data in dual port ram: |
| * |
| * dpaddr->rbase -> rx BD (NUM_RX_BDS * sizeof(I2C_BD) bytes) |
| * tbase -> tx BD (NUM_TX_BDS * sizeof(I2C_BD) bytes) |
| * tx buffer (MAX_TX_SPACE bytes) |
| */ |
| |
| rbase = dpaddr; |
| tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD); |
| |
| /* Initialize Port B I2C pins. */ |
| cp->cp_pbpar |= 0x00000030; |
| cp->cp_pbdir |= 0x00000030; |
| cp->cp_pbodr |= 0x00000030; |
| |
| /* Disable interrupts */ |
| i2c->i2c_i2mod = 0x00; |
| i2c->i2c_i2cmr = 0x00; |
| i2c->i2c_i2cer = 0xff; |
| i2c->i2c_i2add = slaveaddr; |
| |
| /* |
| * Set the I2C BRG Clock division factor from desired i2c rate |
| * and current CPU rate (we assume sccr dfbgr field is 0; |
| * divide BRGCLK by 1) |
| */ |
| debug("[I2C] Setting rate...\n"); |
| i2c_setrate(gd->cpu_clk, CONFIG_SYS_I2C_SPEED); |
| |
| /* Set I2C controller in master mode */ |
| i2c->i2c_i2com = 0x01; |
| |
| /* Set SDMA bus arbitration level to 5 (SDCR) */ |
| immap->im_siu_conf.sc_sdcr = 0x0001; |
| |
| /* Initialize Tx/Rx parameters */ |
| iip->iic_rbase = rbase; |
| iip->iic_tbase = tbase; |
| rxbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_rbase]); |
| txbd = (I2C_BD *) ((unsigned char *) &cp->cp_dpmem[iip->iic_tbase]); |
| |
| debug("[I2C] rbase = %04x\n", iip->iic_rbase); |
| debug("[I2C] tbase = %04x\n", iip->iic_tbase); |
| debug("[I2C] rxbd = %08x\n", (int)rxbd); |
| debug("[I2C] txbd = %08x\n", (int)txbd); |
| |
| /* Set big endian byte order */ |
| iip->iic_tfcr = 0x10; |
| iip->iic_rfcr = 0x10; |
| |
| /* Set maximum receive size. */ |
| iip->iic_mrblr = I2C_RXTX_LEN; |
| |
| #ifdef CONFIG_SYS_I2C_UCODE_PATCH |
| /* |
| * Initialize required parameters if using microcode patch. |
| */ |
| iip->iic_rbptr = iip->iic_rbase; |
| iip->iic_tbptr = iip->iic_tbase; |
| iip->iic_rstate = 0; |
| iip->iic_tstate = 0; |
| #else |
| cp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_I2C, CPM_CR_INIT_TRX) | CPM_CR_FLG; |
| do { |
| __asm__ __volatile__("eieio"); |
| } while (cp->cp_cpcr & CPM_CR_FLG); |
| #endif |
| |
| /* Clear events and interrupts */ |
| i2c->i2c_i2cer = 0xff; |
| i2c->i2c_i2cmr = 0x00; |
| } |
| |
| static void i2c_newio(i2c_state_t *state) |
| { |
| volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; |
| volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm; |
| volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC]; |
| |
| debug("[I2C] i2c_newio\n"); |
| |
| #ifdef CONFIG_SYS_I2C_UCODE_PATCH |
| iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase]; |
| #endif |
| state->rx_idx = 0; |
| state->tx_idx = 0; |
| state->rxbd = (void *)&cp->cp_dpmem[iip->iic_rbase]; |
| state->txbd = (void *)&cp->cp_dpmem[iip->iic_tbase]; |
| state->tx_space = MAX_TX_SPACE; |
| state->tx_buf = (uchar *)state->txbd + NUM_TX_BDS * sizeof(I2C_BD); |
| state->err_cb = NULL; |
| |
| debug("[I2C] rxbd = %08x\n", (int)state->rxbd); |
| debug("[I2C] txbd = %08x\n", (int)state->txbd); |
| debug("[I2C] tx_buf = %08x\n", (int)state->tx_buf); |
| |
| /* clear the buffer memory */ |
| memset((char *)state->tx_buf, 0, MAX_TX_SPACE); |
| } |
| |
| static int |
| i2c_send(i2c_state_t *state, |
| unsigned char address, |
| unsigned char secondary_address, |
| unsigned int flags, unsigned short size, unsigned char *dataout) |
| { |
| volatile I2C_BD *txbd; |
| int i, j; |
| |
| debug("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n", |
| address, secondary_address, flags, size); |
| |
| /* trying to send message larger than BD */ |
| if (size > I2C_RXTX_LEN) |
| return I2CERR_MSG_TOO_LONG; |
| |
| /* no more free bds */ |
| if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size)) |
| return I2CERR_NO_BUFFERS; |
| |
| txbd = (I2C_BD *) state->txbd; |
| txbd->addr = state->tx_buf; |
| |
| debug("[I2C] txbd = %08x\n", (int)txbd); |
| |
| if (flags & I2CF_START_COND) { |
| debug("[I2C] Formatting addresses...\n"); |
| if (flags & I2CF_ENABLE_SECONDARY) { |
| /* Length of msg + dest addr */ |
| txbd->length = size + 2; |
| |
| txbd->addr[0] = address << 1; |
| txbd->addr[1] = secondary_address; |
| i = 2; |
| } else { |
| /* Length of msg + dest addr */ |
| txbd->length = size + 1; |
| /* Write dest addr to BD */ |
| txbd->addr[0] = address << 1; |
| i = 1; |
| } |
| } else { |
| txbd->length = size; /* Length of message */ |
| i = 0; |
| } |
| |
| /* set up txbd */ |
| txbd->status = BD_SC_READY; |
| if (flags & I2CF_START_COND) |
| txbd->status |= BD_I2C_TX_START; |
| if (flags & I2CF_STOP_COND) |
| txbd->status |= BD_SC_LAST | BD_SC_WRAP; |
| |
| /* Copy data to send into buffer */ |
| debug("[I2C] copy data...\n"); |
| for(j = 0; j < size; i++, j++) |
| txbd->addr[i] = dataout[j]; |
| |
| debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", |
| txbd->length, |
| txbd->status, |
| txbd->addr[0], |
| txbd->addr[1]); |
| |
| /* advance state */ |
| state->tx_buf += txbd->length; |
| state->tx_space -= txbd->length; |
| state->tx_idx++; |
| state->txbd = (void *) (txbd + 1); |
| |
| return 0; |
| } |
| |
| static int |
| i2c_receive(i2c_state_t *state, |
| unsigned char address, |
| unsigned char secondary_address, |
| unsigned int flags, |
| unsigned short size_to_expect, unsigned char *datain) |
| { |
| volatile I2C_BD *rxbd, *txbd; |
| |
| debug("[I2C] i2c_receive %02d %02d %02d\n", |
| address, secondary_address, flags); |
| |
| /* Expected to receive too much */ |
| if (size_to_expect > I2C_RXTX_LEN) |
| return I2CERR_MSG_TOO_LONG; |
| |
| /* no more free bds */ |
| if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS |
| || state->tx_space < 2) |
| return I2CERR_NO_BUFFERS; |
| |
| rxbd = (I2C_BD *) state->rxbd; |
| txbd = (I2C_BD *) state->txbd; |
| |
| debug("[I2C] rxbd = %08x\n", (int)rxbd); |
| debug("[I2C] txbd = %08x\n", (int)txbd); |
| |
| txbd->addr = state->tx_buf; |
| |
| /* set up TXBD for destination address */ |
| if (flags & I2CF_ENABLE_SECONDARY) { |
| txbd->length = 2; |
| txbd->addr[0] = address << 1; /* Write data */ |
| txbd->addr[1] = secondary_address; /* Internal address */ |
| txbd->status = BD_SC_READY; |
| } else { |
| txbd->length = 1 + size_to_expect; |
| txbd->addr[0] = (address << 1) | 0x01; |
| txbd->status = BD_SC_READY; |
| memset(&txbd->addr[1], 0, txbd->length); |
| } |
| |
| /* set up rxbd for reception */ |
| rxbd->status = BD_SC_EMPTY; |
| rxbd->length = size_to_expect; |
| rxbd->addr = datain; |
| |
| txbd->status |= BD_I2C_TX_START; |
| if (flags & I2CF_STOP_COND) { |
| txbd->status |= BD_SC_LAST | BD_SC_WRAP; |
| rxbd->status |= BD_SC_WRAP; |
| } |
| |
| debug("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", |
| txbd->length, |
| txbd->status, |
| txbd->addr[0], |
| txbd->addr[1]); |
| debug("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", |
| rxbd->length, |
| rxbd->status, |
| rxbd->addr[0], |
| rxbd->addr[1]); |
| |
| /* advance state */ |
| state->tx_buf += txbd->length; |
| state->tx_space -= txbd->length; |
| state->tx_idx++; |
| state->txbd = (void *) (txbd + 1); |
| state->rx_idx++; |
| state->rxbd = (void *) (rxbd + 1); |
| |
| return 0; |
| } |
| |
| |
| static int i2c_doio(i2c_state_t *state) |
| { |
| volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; |
| volatile cpm8xx_t *cp = (cpm8xx_t *)&immap->im_cpm; |
| volatile i2c8xx_t *i2c = (i2c8xx_t *)&immap->im_i2c; |
| volatile iic_t *iip = (iic_t *)&cp->cp_dparam[PROFF_IIC]; |
| volatile I2C_BD *txbd, *rxbd; |
| volatile int j = 0; |
| |
| debug("[I2C] i2c_doio\n"); |
| |
| #ifdef CONFIG_SYS_I2C_UCODE_PATCH |
| iip = (iic_t *)&cp->cp_dpmem[iip->iic_rpbase]; |
| #endif |
| |
| if (state->tx_idx <= 0 && state->rx_idx <= 0) { |
| debug("[I2C] No I/O is queued\n"); |
| return I2CERR_QUEUE_EMPTY; |
| } |
| |
| iip->iic_rbptr = iip->iic_rbase; |
| iip->iic_tbptr = iip->iic_tbase; |
| |
| /* Enable I2C */ |
| debug("[I2C] Enabling I2C...\n"); |
| i2c->i2c_i2mod |= 0x01; |
| |
| /* Begin transmission */ |
| i2c->i2c_i2com |= 0x80; |
| |
| /* Loop until transmit & receive completed */ |
| |
| if (state->tx_idx > 0) { |
| txbd = ((I2C_BD*)state->txbd) - 1; |
| |
| debug("[I2C] Transmitting...(txbd=0x%08lx)\n", |
| (ulong)txbd); |
| |
| while ((txbd->status & BD_SC_READY) && (j++ < TOUT_LOOP)) { |
| if (ctrlc()) |
| return (-1); |
| |
| __asm__ __volatile__("eieio"); |
| } |
| } |
| |
| if ((state->rx_idx > 0) && (j < TOUT_LOOP)) { |
| rxbd = ((I2C_BD*)state->rxbd) - 1; |
| |
| debug("[I2C] Receiving...(rxbd=0x%08lx)\n", |
| (ulong)rxbd); |
| |
| while ((rxbd->status & BD_SC_EMPTY) && (j++ < TOUT_LOOP)) { |
| if (ctrlc()) |
| return (-1); |
| |
| __asm__ __volatile__("eieio"); |
| } |
| } |
| |
| /* Turn off I2C */ |
| i2c->i2c_i2mod &= ~0x01; |
| |
| if (state->err_cb != NULL) { |
| int n, i, b; |
| |
| /* |
| * if we have an error callback function, look at the |
| * error bits in the bd status and pass them back |
| */ |
| |
| if ((n = state->tx_idx) > 0) { |
| for (i = 0; i < n; i++) { |
| txbd = ((I2C_BD *) state->txbd) - (n - i); |
| if ((b = txbd->status & BD_I2C_TX_ERR) != 0) |
| (*state->err_cb) (I2CECB_TX_ERR | b, |
| i); |
| } |
| } |
| |
| if ((n = state->rx_idx) > 0) { |
| for (i = 0; i < n; i++) { |
| rxbd = ((I2C_BD *) state->rxbd) - (n - i); |
| if ((b = rxbd->status & BD_I2C_RX_ERR) != 0) |
| (*state->err_cb) (I2CECB_RX_ERR | b, |
| i); |
| } |
| } |
| |
| if (j >= TOUT_LOOP) |
| (*state->err_cb) (I2CECB_TIMEOUT, 0); |
| } |
| |
| return (j >= TOUT_LOOP) ? I2CERR_TIMEOUT : 0; |
| } |
| |
| static int had_tx_nak; |
| |
| static void i2c_test_callback(int flags, int xnum) |
| { |
| if ((flags & I2CECB_TX_ERR) && (flags & I2CECB_TX_NAK)) |
| had_tx_nak = 1; |
| } |
| |
| int i2c_probe(uchar chip) |
| { |
| i2c_state_t state; |
| int rc; |
| uchar buf[1]; |
| |
| i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); |
| |
| i2c_newio(&state); |
| |
| state.err_cb = i2c_test_callback; |
| had_tx_nak = 0; |
| |
| rc = i2c_receive(&state, chip, 0, I2CF_START_COND | I2CF_STOP_COND, 1, |
| buf); |
| |
| if (rc != 0) |
| return (rc); |
| |
| rc = i2c_doio(&state); |
| |
| if ((rc != 0) && (rc != I2CERR_TIMEOUT)) |
| return (rc); |
| |
| return (had_tx_nak); |
| } |
| |
| int i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len) |
| { |
| i2c_state_t state; |
| uchar xaddr[4]; |
| int rc; |
| |
| #ifdef CONFIG_LWMON |
| WATCHDOG_RESET(); |
| #endif |
| |
| xaddr[0] = (addr >> 24) & 0xFF; |
| xaddr[1] = (addr >> 16) & 0xFF; |
| xaddr[2] = (addr >> 8) & 0xFF; |
| xaddr[3] = addr & 0xFF; |
| |
| #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW |
| /* |
| * EEPROM chips that implement "address overflow" are ones like |
| * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the |
| * extra bits end up in the "chip address" bit slots. This makes |
| * a 24WC08 (1Kbyte) chip look like four 256 byte chips. |
| * |
| * Note that we consider the length of the address field to still |
| * be one byte because the extra address bits are hidden in the |
| * chip address. |
| */ |
| chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW); |
| #endif |
| |
| i2c_newio(&state); |
| |
| rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, |
| &xaddr[4 - alen]); |
| if (rc != 0) { |
| printf("i2c_read: i2c_send failed (%d)\n", rc); |
| return 1; |
| } |
| |
| rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer); |
| if (rc != 0) { |
| printf("i2c_read: i2c_receive failed (%d)\n", rc); |
| return 1; |
| } |
| |
| rc = i2c_doio(&state); |
| if (rc != 0) { |
| printf("i2c_read: i2c_doio failed (%d)\n", rc); |
| return 1; |
| } |
| return 0; |
| } |
| |
| int i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len) |
| { |
| i2c_state_t state; |
| uchar xaddr[4]; |
| int rc; |
| |
| xaddr[0] = (addr >> 24) & 0xFF; |
| xaddr[1] = (addr >> 16) & 0xFF; |
| xaddr[2] = (addr >> 8) & 0xFF; |
| xaddr[3] = addr & 0xFF; |
| |
| #ifdef CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW |
| /* |
| * EEPROM chips that implement "address overflow" are ones like |
| * Catalyst 24WC04/08/16 which has 9/10/11 bits of address and the |
| * extra bits end up in the "chip address" bit slots. This makes |
| * a 24WC08 (1Kbyte) chip look like four 256 byte chips. |
| * |
| * Note that we consider the length of the address field to still |
| * be one byte because the extra address bits are hidden in the |
| * chip address. |
| */ |
| chip |= ((addr >> (alen * 8)) & CONFIG_SYS_I2C_EEPROM_ADDR_OVERFLOW); |
| #endif |
| |
| i2c_newio(&state); |
| |
| rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, |
| &xaddr[4 - alen]); |
| if (rc != 0) { |
| printf("i2c_write: first i2c_send failed (%d)\n", rc); |
| return 1; |
| } |
| |
| rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer); |
| if (rc != 0) { |
| printf("i2c_write: second i2c_send failed (%d)\n", rc); |
| return 1; |
| } |
| |
| rc = i2c_doio(&state); |
| if (rc != 0) { |
| printf("i2c_write: i2c_doio failed (%d)\n", rc); |
| return 1; |
| } |
| return 0; |
| } |
| |
| #endif /* CONFIG_HARD_I2C */ |