| /* |
| * Copyright (c) 2010-2012, NVIDIA CORPORATION. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include <common.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <asm/arch/gp_padctrl.h> |
| #include <asm/arch/pinmux.h> |
| #include <asm/arch/tegra.h> |
| #include <asm/arch-tegra/clk_rst.h> |
| #include <asm/arch-tegra/pmc.h> |
| #include <asm/arch-tegra/scu.h> |
| #include "cpu.h" |
| |
| int get_num_cpus(void) |
| { |
| struct apb_misc_gp_ctlr *gp; |
| uint rev; |
| |
| gp = (struct apb_misc_gp_ctlr *)NV_PA_APB_MISC_GP_BASE; |
| rev = (readl(&gp->hidrev) & HIDREV_CHIPID_MASK) >> HIDREV_CHIPID_SHIFT; |
| |
| switch (rev) { |
| case CHIPID_TEGRA20: |
| return 2; |
| break; |
| case CHIPID_TEGRA30: |
| case CHIPID_TEGRA114: |
| default: |
| return 4; |
| break; |
| } |
| } |
| |
| /* |
| * Timing tables for each SOC for all four oscillator options. |
| */ |
| struct clk_pll_table tegra_pll_x_table[TEGRA_SOC_CNT][CLOCK_OSC_FREQ_COUNT] = { |
| /* T20: 1 GHz */ |
| /* n, m, p, cpcon */ |
| {{ 1000, 13, 0, 12}, /* OSC 13M */ |
| { 625, 12, 0, 8}, /* OSC 19.2M */ |
| { 1000, 12, 0, 12}, /* OSC 12M */ |
| { 1000, 26, 0, 12}, /* OSC 26M */ |
| }, |
| |
| /* T25: 1.2 GHz */ |
| {{ 923, 10, 0, 12}, |
| { 750, 12, 0, 8}, |
| { 600, 6, 0, 12}, |
| { 600, 13, 0, 12}, |
| }, |
| |
| /* T30: 1.4 GHz */ |
| {{ 862, 8, 0, 8}, |
| { 583, 8, 0, 4}, |
| { 700, 6, 0, 8}, |
| { 700, 13, 0, 8}, |
| }, |
| |
| /* T114: 1.4 GHz */ |
| {{ 862, 8, 0, 8}, |
| { 583, 8, 0, 4}, |
| { 696, 12, 0, 8}, |
| { 700, 13, 0, 8}, |
| }, |
| }; |
| |
| void adjust_pllp_out_freqs(void) |
| { |
| struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| struct clk_pll *pll = &clkrst->crc_pll[CLOCK_ID_PERIPH]; |
| u32 reg; |
| |
| /* Set T30 PLLP_OUT1, 2, 3 & 4 freqs to 9.6, 48, 102 & 204MHz */ |
| reg = readl(&pll->pll_out[0]); /* OUTA, contains OUT2 / OUT1 */ |
| reg |= (IN_408_OUT_48_DIVISOR << PLLP_OUT2_RATIO) | PLLP_OUT2_OVR |
| | (IN_408_OUT_9_6_DIVISOR << PLLP_OUT1_RATIO) | PLLP_OUT1_OVR; |
| writel(reg, &pll->pll_out[0]); |
| |
| reg = readl(&pll->pll_out[1]); /* OUTB, contains OUT4 / OUT3 */ |
| reg |= (IN_408_OUT_204_DIVISOR << PLLP_OUT4_RATIO) | PLLP_OUT4_OVR |
| | (IN_408_OUT_102_DIVISOR << PLLP_OUT3_RATIO) | PLLP_OUT3_OVR; |
| writel(reg, &pll->pll_out[1]); |
| } |
| |
| int pllx_set_rate(struct clk_pll_simple *pll , u32 divn, u32 divm, |
| u32 divp, u32 cpcon) |
| { |
| u32 reg; |
| |
| /* If PLLX is already enabled, just return */ |
| if (readl(&pll->pll_base) & PLL_ENABLE_MASK) { |
| debug("pllx_set_rate: PLLX already enabled, returning\n"); |
| return 0; |
| } |
| |
| debug(" pllx_set_rate entry\n"); |
| |
| /* Set BYPASS, m, n and p to PLLX_BASE */ |
| reg = PLL_BYPASS_MASK | (divm << PLL_DIVM_SHIFT); |
| reg |= ((divn << PLL_DIVN_SHIFT) | (divp << PLL_DIVP_SHIFT)); |
| writel(reg, &pll->pll_base); |
| |
| /* Set cpcon to PLLX_MISC */ |
| reg = (cpcon << PLL_CPCON_SHIFT); |
| |
| /* Set dccon to PLLX_MISC if freq > 600MHz */ |
| if (divn > 600) |
| reg |= (1 << PLL_DCCON_SHIFT); |
| writel(reg, &pll->pll_misc); |
| |
| /* Enable PLLX */ |
| reg = readl(&pll->pll_base); |
| reg |= PLL_ENABLE_MASK; |
| |
| /* Disable BYPASS */ |
| reg &= ~PLL_BYPASS_MASK; |
| writel(reg, &pll->pll_base); |
| |
| /* Set lock_enable to PLLX_MISC */ |
| reg = readl(&pll->pll_misc); |
| reg |= PLL_LOCK_ENABLE_MASK; |
| writel(reg, &pll->pll_misc); |
| |
| return 0; |
| } |
| |
| void init_pllx(void) |
| { |
| struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| struct clk_pll_simple *pll = &clkrst->crc_pll_simple[SIMPLE_PLLX]; |
| int chip_type; |
| enum clock_osc_freq osc; |
| struct clk_pll_table *sel; |
| |
| debug("init_pllx entry\n"); |
| |
| /* get chip type */ |
| chip_type = tegra_get_chip_type(); |
| debug(" init_pllx: chip_type = %d\n", chip_type); |
| |
| /* get osc freq */ |
| osc = clock_get_osc_freq(); |
| debug(" init_pllx: osc = %d\n", osc); |
| |
| /* set pllx */ |
| sel = &tegra_pll_x_table[chip_type][osc]; |
| pllx_set_rate(pll, sel->n, sel->m, sel->p, sel->cpcon); |
| |
| /* adjust PLLP_out1-4 on T30/T114 */ |
| if (chip_type == TEGRA_SOC_T30 || chip_type == TEGRA_SOC_T114) { |
| debug(" init_pllx: adjusting PLLP out freqs\n"); |
| adjust_pllp_out_freqs(); |
| } |
| } |
| |
| void enable_cpu_clock(int enable) |
| { |
| struct clk_rst_ctlr *clkrst = (struct clk_rst_ctlr *)NV_PA_CLK_RST_BASE; |
| u32 clk; |
| |
| /* |
| * NOTE: |
| * Regardless of whether the request is to enable or disable the CPU |
| * clock, every processor in the CPU complex except the master (CPU 0) |
| * will have it's clock stopped because the AVP only talks to the |
| * master. |
| */ |
| |
| if (enable) { |
| /* Initialize PLLX */ |
| init_pllx(); |
| |
| /* Wait until all clocks are stable */ |
| udelay(PLL_STABILIZATION_DELAY); |
| |
| writel(CCLK_BURST_POLICY, &clkrst->crc_cclk_brst_pol); |
| writel(SUPER_CCLK_DIVIDER, &clkrst->crc_super_cclk_div); |
| } |
| |
| /* |
| * Read the register containing the individual CPU clock enables and |
| * always stop the clocks to CPUs > 0. |
| */ |
| clk = readl(&clkrst->crc_clk_cpu_cmplx); |
| clk |= 1 << CPU1_CLK_STP_SHIFT; |
| if (get_num_cpus() == 4) |
| clk |= (1 << CPU2_CLK_STP_SHIFT) + (1 << CPU3_CLK_STP_SHIFT); |
| |
| /* Stop/Unstop the CPU clock */ |
| clk &= ~CPU0_CLK_STP_MASK; |
| clk |= !enable << CPU0_CLK_STP_SHIFT; |
| writel(clk, &clkrst->crc_clk_cpu_cmplx); |
| |
| clock_enable(PERIPH_ID_CPU); |
| } |
| |
| static int is_cpu_powered(void) |
| { |
| struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; |
| |
| return (readl(&pmc->pmc_pwrgate_status) & CPU_PWRED) ? 1 : 0; |
| } |
| |
| static void remove_cpu_io_clamps(void) |
| { |
| struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; |
| u32 reg; |
| |
| /* Remove the clamps on the CPU I/O signals */ |
| reg = readl(&pmc->pmc_remove_clamping); |
| reg |= CPU_CLMP; |
| writel(reg, &pmc->pmc_remove_clamping); |
| |
| /* Give I/O signals time to stabilize */ |
| udelay(IO_STABILIZATION_DELAY); |
| } |
| |
| void powerup_cpu(void) |
| { |
| struct pmc_ctlr *pmc = (struct pmc_ctlr *)NV_PA_PMC_BASE; |
| u32 reg; |
| int timeout = IO_STABILIZATION_DELAY; |
| |
| if (!is_cpu_powered()) { |
| /* Toggle the CPU power state (OFF -> ON) */ |
| reg = readl(&pmc->pmc_pwrgate_toggle); |
| reg &= PARTID_CP; |
| reg |= START_CP; |
| writel(reg, &pmc->pmc_pwrgate_toggle); |
| |
| /* Wait for the power to come up */ |
| while (!is_cpu_powered()) { |
| if (timeout-- == 0) |
| printf("CPU failed to power up!\n"); |
| else |
| udelay(10); |
| } |
| |
| /* |
| * Remove the I/O clamps from CPU power partition. |
| * Recommended only on a Warm boot, if the CPU partition gets |
| * power gated. Shouldn't cause any harm when called after a |
| * cold boot according to HW, probably just redundant. |
| */ |
| remove_cpu_io_clamps(); |
| } |
| } |
| |
| void reset_A9_cpu(int reset) |
| { |
| /* |
| * NOTE: Regardless of whether the request is to hold the CPU in reset |
| * or take it out of reset, every processor in the CPU complex |
| * except the master (CPU 0) will be held in reset because the |
| * AVP only talks to the master. The AVP does not know that there |
| * are multiple processors in the CPU complex. |
| */ |
| int mask = crc_rst_cpu | crc_rst_de | crc_rst_debug; |
| int num_cpus = get_num_cpus(); |
| int cpu; |
| |
| debug("reset_a9_cpu entry\n"); |
| /* Hold CPUs 1 onwards in reset, and CPU 0 if asked */ |
| for (cpu = 1; cpu < num_cpus; cpu++) |
| reset_cmplx_set_enable(cpu, mask, 1); |
| reset_cmplx_set_enable(0, mask, reset); |
| |
| /* Enable/Disable master CPU reset */ |
| reset_set_enable(PERIPH_ID_CPU, reset); |
| } |
| |
| void clock_enable_coresight(int enable) |
| { |
| u32 rst, src = 2; |
| int chip; |
| |
| debug("clock_enable_coresight entry\n"); |
| clock_set_enable(PERIPH_ID_CORESIGHT, enable); |
| reset_set_enable(PERIPH_ID_CORESIGHT, !enable); |
| |
| if (enable) { |
| /* |
| * Put CoreSight on PLLP_OUT0 (216 MHz) and divide it down by |
| * 1.5, giving an effective frequency of 144MHz. |
| * Set PLLP_OUT0 [bits31:30 = 00], and use a 7.1 divisor |
| * (bits 7:0), so 00000001b == 1.5 (n+1 + .5) |
| * |
| * Clock divider request for 204MHz would setup CSITE clock as |
| * 144MHz for PLLP base 216MHz and 204MHz for PLLP base 408MHz |
| */ |
| chip = tegra_get_chip_type(); |
| if (chip == TEGRA_SOC_T30 || chip == TEGRA_SOC_T114) |
| src = CLK_DIVIDER(NVBL_PLLP_KHZ, 204000); |
| else if (chip == TEGRA_SOC_T20 || chip == TEGRA_SOC_T25) |
| src = CLK_DIVIDER(NVBL_PLLP_KHZ, 144000); |
| else |
| printf("%s: Unknown chip type %X!\n", __func__, chip); |
| clock_ll_set_source_divisor(PERIPH_ID_CSI, 0, src); |
| |
| /* Unlock the CPU CoreSight interfaces */ |
| rst = CORESIGHT_UNLOCK; |
| writel(rst, CSITE_CPU_DBG0_LAR); |
| writel(rst, CSITE_CPU_DBG1_LAR); |
| if (get_num_cpus() == 4) { |
| writel(rst, CSITE_CPU_DBG2_LAR); |
| writel(rst, CSITE_CPU_DBG3_LAR); |
| } |
| } |
| } |
| |
| void halt_avp(void) |
| { |
| for (;;) { |
| writel((HALT_COP_EVENT_JTAG | HALT_COP_EVENT_IRQ_1 \ |
| | HALT_COP_EVENT_FIQ_1 | (FLOW_MODE_STOP<<29)), |
| FLOW_CTLR_HALT_COP_EVENTS); |
| } |
| } |