blob: a2adb791f6c06cc254259f93005452ba24bb7521 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* K3: Common Architecture initialization
*
* Copyright (C) 2018 Texas Instruments Incorporated - http://www.ti.com/
* Lokesh Vutla <lokeshvutla@ti.com>
*/
#include <common.h>
#include <cpu_func.h>
#include <image.h>
#include <init.h>
#include <log.h>
#include <spl.h>
#include <asm/global_data.h>
#include "common.h"
#include <dm.h>
#include <remoteproc.h>
#include <asm/cache.h>
#include <linux/soc/ti/ti_sci_protocol.h>
#include <fdt_support.h>
#include <asm/arch/sys_proto.h>
#include <asm/hardware.h>
#include <asm/io.h>
#include <fs_loader.h>
#include <fs.h>
#include <env.h>
#include <elf.h>
#include <soc.h>
#if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF)
enum {
IMAGE_ID_ATF,
IMAGE_ID_OPTEE,
IMAGE_ID_SPL,
IMAGE_ID_DM_FW,
IMAGE_AMT,
};
#if CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS)
static const char *image_os_match[IMAGE_AMT] = {
"arm-trusted-firmware",
"tee",
"U-Boot",
"DM",
};
#endif
static struct image_info fit_image_info[IMAGE_AMT];
#endif
struct ti_sci_handle *get_ti_sci_handle(void)
{
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_FIRMWARE,
DM_DRIVER_GET(ti_sci), &dev);
if (ret)
panic("Failed to get SYSFW (%d)\n", ret);
return (struct ti_sci_handle *)ti_sci_get_handle_from_sysfw(dev);
}
void k3_sysfw_print_ver(void)
{
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
char fw_desc[sizeof(ti_sci->version.firmware_description) + 1];
/*
* Output System Firmware version info. Note that since the
* 'firmware_description' field is not guaranteed to be zero-
* terminated we manually add a \0 terminator if needed. Further
* note that we intentionally no longer rely on the extended
* printf() formatter '%.*s' to not having to require a more
* full-featured printf() implementation.
*/
strncpy(fw_desc, ti_sci->version.firmware_description,
sizeof(ti_sci->version.firmware_description));
fw_desc[sizeof(fw_desc) - 1] = '\0';
printf("SYSFW ABI: %d.%d (firmware rev 0x%04x '%s')\n",
ti_sci->version.abi_major, ti_sci->version.abi_minor,
ti_sci->version.firmware_revision, fw_desc);
}
void mmr_unlock(phys_addr_t base, u32 partition)
{
/* Translate the base address */
phys_addr_t part_base = base + partition * CTRL_MMR0_PARTITION_SIZE;
/* Unlock the requested partition if locked using two-step sequence */
writel(CTRLMMR_LOCK_KICK0_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK0);
writel(CTRLMMR_LOCK_KICK1_UNLOCK_VAL, part_base + CTRLMMR_LOCK_KICK1);
}
bool is_rom_loaded_sysfw(struct rom_extended_boot_data *data)
{
if (strncmp(data->header, K3_ROM_BOOT_HEADER_MAGIC, 7))
return false;
return data->num_components > 1;
}
DECLARE_GLOBAL_DATA_PTR;
#ifdef CONFIG_K3_EARLY_CONS
int early_console_init(void)
{
struct udevice *dev;
int ret;
gd->baudrate = CONFIG_BAUDRATE;
ret = uclass_get_device_by_seq(UCLASS_SERIAL, CONFIG_K3_EARLY_CONS_IDX,
&dev);
if (ret) {
printf("Error getting serial dev for early console! (%d)\n",
ret);
return ret;
}
gd->cur_serial_dev = dev;
gd->flags |= GD_FLG_SERIAL_READY;
gd->have_console = 1;
return 0;
}
#endif
#if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF)
void init_env(void)
{
#ifdef CONFIG_SPL_ENV_SUPPORT
char *part;
env_init();
env_relocate();
switch (spl_boot_device()) {
case BOOT_DEVICE_MMC2:
part = env_get("bootpart");
env_set("storage_interface", "mmc");
env_set("fw_dev_part", part);
break;
case BOOT_DEVICE_SPI:
env_set("storage_interface", "ubi");
env_set("fw_ubi_mtdpart", "UBI");
env_set("fw_ubi_volume", "UBI0");
break;
default:
printf("%s from device %u not supported!\n",
__func__, spl_boot_device());
return;
}
#endif
}
int load_firmware(char *name_fw, char *name_loadaddr, u32 *loadaddr)
{
struct udevice *fsdev;
char *name = NULL;
int size = 0;
if (!IS_ENABLED(CONFIG_FS_LOADER))
return 0;
*loadaddr = 0;
#ifdef CONFIG_SPL_ENV_SUPPORT
switch (spl_boot_device()) {
case BOOT_DEVICE_MMC2:
name = env_get(name_fw);
*loadaddr = env_get_hex(name_loadaddr, *loadaddr);
break;
default:
printf("Loading rproc fw image from device %u not supported!\n",
spl_boot_device());
return 0;
}
#endif
if (!*loadaddr)
return 0;
if (!get_fs_loader(&fsdev)) {
size = request_firmware_into_buf(fsdev, name, (void *)*loadaddr,
0, 0);
}
return size;
}
__weak void release_resources_for_core_shutdown(void)
{
debug("%s not implemented...\n", __func__);
}
void __noreturn jump_to_image_no_args(struct spl_image_info *spl_image)
{
typedef void __noreturn (*image_entry_noargs_t)(void);
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
u32 loadaddr = 0;
int ret, size = 0, shut_cpu = 0;
/* Release all the exclusive devices held by SPL before starting ATF */
ti_sci->ops.dev_ops.release_exclusive_devices(ti_sci);
ret = rproc_init();
if (ret)
panic("rproc failed to be initialized (%d)\n", ret);
init_env();
if (!fit_image_info[IMAGE_ID_DM_FW].image_start) {
size = load_firmware("name_mcur5f0_0fw", "addr_mcur5f0_0load",
&loadaddr);
}
/*
* It is assumed that remoteproc device 1 is the corresponding
* Cortex-A core which runs ATF. Make sure DT reflects the same.
*/
if (!fit_image_info[IMAGE_ID_ATF].image_start)
fit_image_info[IMAGE_ID_ATF].image_start =
spl_image->entry_point;
ret = rproc_load(1, fit_image_info[IMAGE_ID_ATF].image_start, 0x200);
if (ret)
panic("%s: ATF failed to load on rproc (%d)\n", __func__, ret);
if (!fit_image_info[IMAGE_ID_DM_FW].image_len &&
!(size > 0 && valid_elf_image(loadaddr))) {
shut_cpu = 1;
goto start_arm64;
}
if (!fit_image_info[IMAGE_ID_DM_FW].image_start) {
loadaddr = load_elf_image_phdr(loadaddr);
} else {
loadaddr = fit_image_info[IMAGE_ID_DM_FW].image_start;
if (valid_elf_image(loadaddr))
loadaddr = load_elf_image_phdr(loadaddr);
}
debug("%s: jumping to address %x\n", __func__, loadaddr);
start_arm64:
/* Add an extra newline to differentiate the ATF logs from SPL */
printf("Starting ATF on ARM64 core...\n\n");
ret = rproc_start(1);
if (ret)
panic("%s: ATF failed to start on rproc (%d)\n", __func__, ret);
if (shut_cpu) {
debug("Shutting down...\n");
release_resources_for_core_shutdown();
while (1)
asm volatile("wfe");
}
image_entry_noargs_t image_entry = (image_entry_noargs_t)loadaddr;
image_entry();
}
#endif
#if CONFIG_IS_ENABLED(FIT_IMAGE_POST_PROCESS)
void board_fit_image_post_process(const void *fit, int node, void **p_image,
size_t *p_size)
{
#if IS_ENABLED(CONFIG_SYS_K3_SPL_ATF)
int len;
int i;
const char *os;
u32 addr;
os = fdt_getprop(fit, node, "os", &len);
addr = fdt_getprop_u32_default_node(fit, node, 0, "entry", -1);
debug("%s: processing image: addr=%x, size=%d, os=%s\n", __func__,
addr, *p_size, os);
for (i = 0; i < IMAGE_AMT; i++) {
if (!strcmp(os, image_os_match[i])) {
fit_image_info[i].image_start = addr;
fit_image_info[i].image_len = *p_size;
debug("%s: matched image for ID %d\n", __func__, i);
break;
}
}
#endif
ti_secure_image_post_process(p_image, p_size);
}
#endif
#if defined(CONFIG_OF_LIBFDT)
int fdt_fixup_msmc_ram(void *blob, char *parent_path, char *node_name)
{
u64 msmc_start = 0, msmc_end = 0, msmc_size, reg[2];
struct ti_sci_handle *ti_sci = get_ti_sci_handle();
int ret, node, subnode, len, prev_node;
u32 range[4], addr, size;
const fdt32_t *sub_reg;
ti_sci->ops.core_ops.query_msmc(ti_sci, &msmc_start, &msmc_end);
msmc_size = msmc_end - msmc_start + 1;
debug("%s: msmc_start = 0x%llx, msmc_size = 0x%llx\n", __func__,
msmc_start, msmc_size);
/* find or create "msmc_sram node */
ret = fdt_path_offset(blob, parent_path);
if (ret < 0)
return ret;
node = fdt_find_or_add_subnode(blob, ret, node_name);
if (node < 0)
return node;
ret = fdt_setprop_string(blob, node, "compatible", "mmio-sram");
if (ret < 0)
return ret;
reg[0] = cpu_to_fdt64(msmc_start);
reg[1] = cpu_to_fdt64(msmc_size);
ret = fdt_setprop(blob, node, "reg", reg, sizeof(reg));
if (ret < 0)
return ret;
fdt_setprop_cell(blob, node, "#address-cells", 1);
fdt_setprop_cell(blob, node, "#size-cells", 1);
range[0] = 0;
range[1] = cpu_to_fdt32(msmc_start >> 32);
range[2] = cpu_to_fdt32(msmc_start & 0xffffffff);
range[3] = cpu_to_fdt32(msmc_size);
ret = fdt_setprop(blob, node, "ranges", range, sizeof(range));
if (ret < 0)
return ret;
subnode = fdt_first_subnode(blob, node);
prev_node = 0;
/* Look for invalid subnodes and delete them */
while (subnode >= 0) {
sub_reg = fdt_getprop(blob, subnode, "reg", &len);
addr = fdt_read_number(sub_reg, 1);
sub_reg++;
size = fdt_read_number(sub_reg, 1);
debug("%s: subnode = %d, addr = 0x%x. size = 0x%x\n", __func__,
subnode, addr, size);
if (addr + size > msmc_size ||
!strncmp(fdt_get_name(blob, subnode, &len), "sysfw", 5) ||
!strncmp(fdt_get_name(blob, subnode, &len), "l3cache", 7)) {
fdt_del_node(blob, subnode);
debug("%s: deleting subnode %d\n", __func__, subnode);
if (!prev_node)
subnode = fdt_first_subnode(blob, node);
else
subnode = fdt_next_subnode(blob, prev_node);
} else {
prev_node = subnode;
subnode = fdt_next_subnode(blob, prev_node);
}
}
return 0;
}
int fdt_disable_node(void *blob, char *node_path)
{
int offs;
int ret;
offs = fdt_path_offset(blob, node_path);
if (offs < 0) {
printf("Node %s not found.\n", node_path);
return offs;
}
ret = fdt_setprop_string(blob, offs, "status", "disabled");
if (ret < 0) {
printf("Could not add status property to node %s: %s\n",
node_path, fdt_strerror(ret));
return ret;
}
return 0;
}
#endif
#ifndef CONFIG_SYSRESET
void reset_cpu(void)
{
}
#endif
enum k3_device_type get_device_type(void)
{
u32 sys_status = readl(K3_SEC_MGR_SYS_STATUS);
u32 sys_dev_type = (sys_status & SYS_STATUS_DEV_TYPE_MASK) >>
SYS_STATUS_DEV_TYPE_SHIFT;
u32 sys_sub_type = (sys_status & SYS_STATUS_SUB_TYPE_MASK) >>
SYS_STATUS_SUB_TYPE_SHIFT;
switch (sys_dev_type) {
case SYS_STATUS_DEV_TYPE_GP:
return K3_DEVICE_TYPE_GP;
case SYS_STATUS_DEV_TYPE_TEST:
return K3_DEVICE_TYPE_TEST;
case SYS_STATUS_DEV_TYPE_EMU:
return K3_DEVICE_TYPE_EMU;
case SYS_STATUS_DEV_TYPE_HS:
if (sys_sub_type == SYS_STATUS_SUB_TYPE_VAL_FS)
return K3_DEVICE_TYPE_HS_FS;
else
return K3_DEVICE_TYPE_HS_SE;
default:
return K3_DEVICE_TYPE_BAD;
}
}
#if defined(CONFIG_DISPLAY_CPUINFO)
static const char *get_device_type_name(void)
{
enum k3_device_type type = get_device_type();
switch (type) {
case K3_DEVICE_TYPE_GP:
return "GP";
case K3_DEVICE_TYPE_TEST:
return "TEST";
case K3_DEVICE_TYPE_EMU:
return "EMU";
case K3_DEVICE_TYPE_HS_FS:
return "HS-FS";
case K3_DEVICE_TYPE_HS_SE:
return "HS-SE";
default:
return "BAD";
}
}
int print_cpuinfo(void)
{
struct udevice *soc;
char name[64];
int ret;
printf("SoC: ");
ret = soc_get(&soc);
if (ret) {
printf("UNKNOWN\n");
return 0;
}
ret = soc_get_family(soc, name, 64);
if (!ret) {
printf("%s ", name);
}
ret = soc_get_revision(soc, name, 64);
if (!ret) {
printf("%s ", name);
}
printf("%s\n", get_device_type_name());
return 0;
}
#endif
bool soc_is_j721e(void)
{
u32 soc;
soc = (readl(CTRLMMR_WKUP_JTAG_ID) &
JTAG_ID_PARTNO_MASK) >> JTAG_ID_PARTNO_SHIFT;
return soc == J721E;
}
bool soc_is_j7200(void)
{
u32 soc;
soc = (readl(CTRLMMR_WKUP_JTAG_ID) &
JTAG_ID_PARTNO_MASK) >> JTAG_ID_PARTNO_SHIFT;
return soc == J7200;
}
#ifdef CONFIG_ARM64
void board_prep_linux(struct bootm_headers *images)
{
debug("Linux kernel Image start = 0x%lx end = 0x%lx\n",
images->os.start, images->os.end);
__asm_flush_dcache_range(images->os.start,
ROUND(images->os.end,
CONFIG_SYS_CACHELINE_SIZE));
}
#endif
#ifdef CONFIG_CPU_V7R
void disable_linefill_optimization(void)
{
u32 actlr;
/*
* On K3 devices there are 2 conditions where R5F can deadlock:
* 1.When software is performing series of store operations to
* cacheable write back/write allocate memory region and later
* on software execute barrier operation (DSB or DMB). R5F may
* hang at the barrier instruction.
* 2.When software is performing a mix of load and store operations
* within a tight loop and store operations are all writing to
* cacheable write back/write allocates memory regions, R5F may
* hang at one of the load instruction.
*
* To avoid the above two conditions disable linefill optimization
* inside Cortex R5F.
*/
asm("mrc p15, 0, %0, c1, c0, 1" : "=r" (actlr));
actlr |= (1 << 13); /* Set DLFO bit */
asm("mcr p15, 0, %0, c1, c0, 1" : : "r" (actlr));
}
#endif
void remove_fwl_configs(struct fwl_data *fwl_data, size_t fwl_data_size)
{
struct ti_sci_msg_fwl_region region;
struct ti_sci_fwl_ops *fwl_ops;
struct ti_sci_handle *ti_sci;
size_t i, j;
ti_sci = get_ti_sci_handle();
fwl_ops = &ti_sci->ops.fwl_ops;
for (i = 0; i < fwl_data_size; i++) {
for (j = 0; j < fwl_data[i].regions; j++) {
region.fwl_id = fwl_data[i].fwl_id;
region.region = j;
region.n_permission_regs = 3;
fwl_ops->get_fwl_region(ti_sci, &region);
if (region.control != 0) {
pr_debug("Attempting to disable firewall %5d (%25s)\n",
region.fwl_id, fwl_data[i].name);
region.control = 0;
if (fwl_ops->set_fwl_region(ti_sci, &region))
pr_err("Could not disable firewall %5d (%25s)\n",
region.fwl_id, fwl_data[i].name);
}
}
}
}
void spl_enable_dcache(void)
{
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF))
phys_addr_t ram_top = CFG_SYS_SDRAM_BASE;
dram_init();
/* reserve TLB table */
gd->arch.tlb_size = PGTABLE_SIZE;
ram_top += get_effective_memsize();
/* keep ram_top in the 32-bit address space */
if (ram_top >= 0x100000000)
ram_top = (phys_addr_t) 0x100000000;
gd->arch.tlb_addr = ram_top - gd->arch.tlb_size;
debug("TLB table from %08lx to %08lx\n", gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
dcache_enable();
#endif
}
#if !(defined(CONFIG_SYS_ICACHE_OFF) && defined(CONFIG_SYS_DCACHE_OFF))
void spl_board_prepare_for_boot(void)
{
dcache_disable();
}
void spl_board_prepare_for_linux(void)
{
dcache_disable();
}
#endif
int misc_init_r(void)
{
if (IS_ENABLED(CONFIG_TI_AM65_CPSW_NUSS)) {
struct udevice *dev;
int ret;
ret = uclass_get_device_by_driver(UCLASS_MISC,
DM_DRIVER_GET(am65_cpsw_nuss),
&dev);
if (ret)
printf("Failed to probe am65_cpsw_nuss driver\n");
}
/* Default FIT boot on non-GP devices */
if (get_device_type() != K3_DEVICE_TYPE_GP)
env_set("boot_fit", "1");
return 0;
}