blob: 1007fa037230b45f476c01c0cdb6ff897808abf1 [file] [log] [blame]
/*
* Copyright (c) 2011 The Chromium OS Authors.
* SPDX-License-Identifier: GPL-2.0+
*/
#ifndef USE_HOSTCC
#include <common.h>
#include <errno.h>
#include <serial.h>
#include <libfdt.h>
#include <fdtdec.h>
#include <asm/sections.h>
#include <linux/ctype.h>
DECLARE_GLOBAL_DATA_PTR;
/*
* Here are the type we know about. One day we might allow drivers to
* register. For now we just put them here. The COMPAT macro allows us to
* turn this into a sparse list later, and keeps the ID with the name.
*/
#define COMPAT(id, name) name
static const char * const compat_names[COMPAT_COUNT] = {
COMPAT(UNKNOWN, "<none>"),
COMPAT(NVIDIA_TEGRA20_USB, "nvidia,tegra20-ehci"),
COMPAT(NVIDIA_TEGRA30_USB, "nvidia,tegra30-ehci"),
COMPAT(NVIDIA_TEGRA114_USB, "nvidia,tegra114-ehci"),
COMPAT(NVIDIA_TEGRA20_EMC, "nvidia,tegra20-emc"),
COMPAT(NVIDIA_TEGRA20_EMC_TABLE, "nvidia,tegra20-emc-table"),
COMPAT(NVIDIA_TEGRA20_KBC, "nvidia,tegra20-kbc"),
COMPAT(NVIDIA_TEGRA20_NAND, "nvidia,tegra20-nand"),
COMPAT(NVIDIA_TEGRA20_PWM, "nvidia,tegra20-pwm"),
COMPAT(NVIDIA_TEGRA20_DC, "nvidia,tegra20-dc"),
COMPAT(NVIDIA_TEGRA124_SDMMC, "nvidia,tegra124-sdhci"),
COMPAT(NVIDIA_TEGRA30_SDMMC, "nvidia,tegra30-sdhci"),
COMPAT(NVIDIA_TEGRA20_SDMMC, "nvidia,tegra20-sdhci"),
COMPAT(NVIDIA_TEGRA124_PCIE, "nvidia,tegra124-pcie"),
COMPAT(NVIDIA_TEGRA30_PCIE, "nvidia,tegra30-pcie"),
COMPAT(NVIDIA_TEGRA20_PCIE, "nvidia,tegra20-pcie"),
COMPAT(NVIDIA_TEGRA124_XUSB_PADCTL, "nvidia,tegra124-xusb-padctl"),
COMPAT(SMSC_LAN9215, "smsc,lan9215"),
COMPAT(SAMSUNG_EXYNOS5_SROMC, "samsung,exynos-sromc"),
COMPAT(SAMSUNG_S3C2440_I2C, "samsung,s3c2440-i2c"),
COMPAT(SAMSUNG_EXYNOS5_SOUND, "samsung,exynos-sound"),
COMPAT(WOLFSON_WM8994_CODEC, "wolfson,wm8994-codec"),
COMPAT(GOOGLE_CROS_EC_KEYB, "google,cros-ec-keyb"),
COMPAT(SAMSUNG_EXYNOS_USB_PHY, "samsung,exynos-usb-phy"),
COMPAT(SAMSUNG_EXYNOS5_USB3_PHY, "samsung,exynos5250-usb3-phy"),
COMPAT(SAMSUNG_EXYNOS_TMU, "samsung,exynos-tmu"),
COMPAT(SAMSUNG_EXYNOS_FIMD, "samsung,exynos-fimd"),
COMPAT(SAMSUNG_EXYNOS_MIPI_DSI, "samsung,exynos-mipi-dsi"),
COMPAT(SAMSUNG_EXYNOS5_DP, "samsung,exynos5-dp"),
COMPAT(SAMSUNG_EXYNOS_DWMMC, "samsung,exynos-dwmmc"),
COMPAT(SAMSUNG_EXYNOS_MMC, "samsung,exynos-mmc"),
COMPAT(SAMSUNG_EXYNOS_SERIAL, "samsung,exynos4210-uart"),
COMPAT(MAXIM_MAX77686_PMIC, "maxim,max77686_pmic"),
COMPAT(GENERIC_SPI_FLASH, "spi-flash"),
COMPAT(MAXIM_98095_CODEC, "maxim,max98095-codec"),
COMPAT(INFINEON_SLB9635_TPM, "infineon,slb9635-tpm"),
COMPAT(INFINEON_SLB9645_TPM, "infineon,slb9645-tpm"),
COMPAT(SAMSUNG_EXYNOS5_I2C, "samsung,exynos5-hsi2c"),
COMPAT(SANDBOX_LCD_SDL, "sandbox,lcd-sdl"),
COMPAT(TI_TPS65090, "ti,tps65090"),
COMPAT(COMPAT_NXP_PTN3460, "nxp,ptn3460"),
COMPAT(SAMSUNG_EXYNOS_SYSMMU, "samsung,sysmmu-v3.3"),
COMPAT(PARADE_PS8625, "parade,ps8625"),
COMPAT(INTEL_MICROCODE, "intel,microcode"),
COMPAT(MEMORY_SPD, "memory-spd"),
COMPAT(INTEL_PANTHERPOINT_AHCI, "intel,pantherpoint-ahci"),
COMPAT(INTEL_MODEL_206AX, "intel,model-206ax"),
COMPAT(INTEL_GMA, "intel,gma"),
COMPAT(AMS_AS3722, "ams,as3722"),
COMPAT(INTEL_ICH_SPI, "intel,ich-spi"),
COMPAT(INTEL_QRK_MRC, "intel,quark-mrc"),
COMPAT(SOCIONEXT_XHCI, "socionext,uniphier-xhci"),
COMPAT(COMPAT_INTEL_PCH, "intel,bd82x6x"),
};
const char *fdtdec_get_compatible(enum fdt_compat_id id)
{
/* We allow reading of the 'unknown' ID for testing purposes */
assert(id >= 0 && id < COMPAT_COUNT);
return compat_names[id];
}
fdt_addr_t fdtdec_get_addr_size(const void *blob, int node,
const char *prop_name, fdt_size_t *sizep)
{
const fdt_addr_t *cell;
int len;
debug("%s: %s: ", __func__, prop_name);
cell = fdt_getprop(blob, node, prop_name, &len);
if (cell && ((!sizep && len == sizeof(fdt_addr_t)) ||
len == sizeof(fdt_addr_t) * 2)) {
fdt_addr_t addr = fdt_addr_to_cpu(*cell);
if (sizep) {
const fdt_size_t *size;
size = (fdt_size_t *)((char *)cell +
sizeof(fdt_addr_t));
*sizep = fdt_size_to_cpu(*size);
debug("addr=%08lx, size=%08x\n",
(ulong)addr, *sizep);
} else {
debug("%08lx\n", (ulong)addr);
}
return addr;
}
debug("(not found)\n");
return FDT_ADDR_T_NONE;
}
fdt_addr_t fdtdec_get_addr(const void *blob, int node,
const char *prop_name)
{
return fdtdec_get_addr_size(blob, node, prop_name, NULL);
}
#ifdef CONFIG_PCI
int fdtdec_get_pci_addr(const void *blob, int node, enum fdt_pci_space type,
const char *prop_name, struct fdt_pci_addr *addr)
{
const u32 *cell;
int len;
int ret = -ENOENT;
debug("%s: %s: ", __func__, prop_name);
/*
* If we follow the pci bus bindings strictly, we should check
* the value of the node's parent node's #address-cells and
* #size-cells. They need to be 3 and 2 accordingly. However,
* for simplicity we skip the check here.
*/
cell = fdt_getprop(blob, node, prop_name, &len);
if (!cell)
goto fail;
if ((len % FDT_PCI_REG_SIZE) == 0) {
int num = len / FDT_PCI_REG_SIZE;
int i;
for (i = 0; i < num; i++) {
debug("pci address #%d: %08lx %08lx %08lx\n", i,
(ulong)fdt_addr_to_cpu(cell[0]),
(ulong)fdt_addr_to_cpu(cell[1]),
(ulong)fdt_addr_to_cpu(cell[2]));
if ((fdt_addr_to_cpu(*cell) & type) == type) {
addr->phys_hi = fdt_addr_to_cpu(cell[0]);
addr->phys_mid = fdt_addr_to_cpu(cell[1]);
addr->phys_lo = fdt_addr_to_cpu(cell[2]);
break;
} else {
cell += (FDT_PCI_ADDR_CELLS +
FDT_PCI_SIZE_CELLS);
}
}
if (i == num) {
ret = -ENXIO;
goto fail;
}
return 0;
} else {
ret = -EINVAL;
}
fail:
debug("(not found)\n");
return ret;
}
int fdtdec_get_pci_vendev(const void *blob, int node, u16 *vendor, u16 *device)
{
const char *list, *end;
int len;
list = fdt_getprop(blob, node, "compatible", &len);
if (!list)
return -ENOENT;
end = list + len;
while (list < end) {
char *s;
len = strlen(list);
if (len >= strlen("pciVVVV,DDDD")) {
s = strstr(list, "pci");
/*
* check if the string is something like pciVVVV,DDDD.RR
* or just pciVVVV,DDDD
*/
if (s && s[7] == ',' &&
(s[12] == '.' || s[12] == 0)) {
s += 3;
*vendor = simple_strtol(s, NULL, 16);
s += 5;
*device = simple_strtol(s, NULL, 16);
return 0;
}
} else {
list += (len + 1);
}
}
return -ENOENT;
}
int fdtdec_get_pci_bdf(const void *blob, int node,
struct fdt_pci_addr *addr, pci_dev_t *bdf)
{
u16 dt_vendor, dt_device, vendor, device;
int ret;
/* get vendor id & device id from the compatible string */
ret = fdtdec_get_pci_vendev(blob, node, &dt_vendor, &dt_device);
if (ret)
return ret;
/* extract the bdf from fdt_pci_addr */
*bdf = addr->phys_hi & 0xffff00;
/* read vendor id & device id based on bdf */
pci_read_config_word(*bdf, PCI_VENDOR_ID, &vendor);
pci_read_config_word(*bdf, PCI_DEVICE_ID, &device);
/*
* Note there are two places in the device tree to fully describe
* a pci device: one is via compatible string with a format of
* "pciVVVV,DDDD" and the other one is the bdf numbers encoded in
* the device node's reg address property. We read the vendor id
* and device id based on bdf and compare the values with the
* "VVVV,DDDD". If they are the same, then we are good to use bdf
* to read device's bar. But if they are different, we have to rely
* on the vendor id and device id extracted from the compatible
* string and locate the real bdf by pci_find_device(). This is
* because normally we may only know device's device number and
* function number when writing device tree. The bus number is
* dynamically assigned during the pci enumeration process.
*/
if ((dt_vendor != vendor) || (dt_device != device)) {
*bdf = pci_find_device(dt_vendor, dt_device, 0);
if (*bdf == -1)
return -ENODEV;
}
return 0;
}
int fdtdec_get_pci_bar32(const void *blob, int node,
struct fdt_pci_addr *addr, u32 *bar)
{
pci_dev_t bdf;
int barnum;
int ret;
/* get pci devices's bdf */
ret = fdtdec_get_pci_bdf(blob, node, addr, &bdf);
if (ret)
return ret;
/* extract the bar number from fdt_pci_addr */
barnum = addr->phys_hi & 0xff;
if ((barnum < PCI_BASE_ADDRESS_0) || (barnum > PCI_CARDBUS_CIS))
return -EINVAL;
barnum = (barnum - PCI_BASE_ADDRESS_0) / 4;
*bar = pci_read_bar32(pci_bus_to_hose(PCI_BUS(bdf)), bdf, barnum);
return 0;
}
#endif
uint64_t fdtdec_get_uint64(const void *blob, int node, const char *prop_name,
uint64_t default_val)
{
const uint64_t *cell64;
int length;
cell64 = fdt_getprop(blob, node, prop_name, &length);
if (!cell64 || length < sizeof(*cell64))
return default_val;
return fdt64_to_cpu(*cell64);
}
int fdtdec_get_is_enabled(const void *blob, int node)
{
const char *cell;
/*
* It should say "okay", so only allow that. Some fdts use "ok" but
* this is a bug. Please fix your device tree source file. See here
* for discussion:
*
* http://www.mail-archive.com/u-boot@lists.denx.de/msg71598.html
*/
cell = fdt_getprop(blob, node, "status", NULL);
if (cell)
return 0 == strcmp(cell, "okay");
return 1;
}
enum fdt_compat_id fdtdec_lookup(const void *blob, int node)
{
enum fdt_compat_id id;
/* Search our drivers */
for (id = COMPAT_UNKNOWN; id < COMPAT_COUNT; id++)
if (0 == fdt_node_check_compatible(blob, node,
compat_names[id]))
return id;
return COMPAT_UNKNOWN;
}
int fdtdec_next_compatible(const void *blob, int node,
enum fdt_compat_id id)
{
return fdt_node_offset_by_compatible(blob, node, compat_names[id]);
}
int fdtdec_next_compatible_subnode(const void *blob, int node,
enum fdt_compat_id id, int *depthp)
{
do {
node = fdt_next_node(blob, node, depthp);
} while (*depthp > 1);
/* If this is a direct subnode, and compatible, return it */
if (*depthp == 1 && 0 == fdt_node_check_compatible(
blob, node, compat_names[id]))
return node;
return -FDT_ERR_NOTFOUND;
}
int fdtdec_next_alias(const void *blob, const char *name,
enum fdt_compat_id id, int *upto)
{
#define MAX_STR_LEN 20
char str[MAX_STR_LEN + 20];
int node, err;
/* snprintf() is not available */
assert(strlen(name) < MAX_STR_LEN);
sprintf(str, "%.*s%d", MAX_STR_LEN, name, *upto);
node = fdt_path_offset(blob, str);
if (node < 0)
return node;
err = fdt_node_check_compatible(blob, node, compat_names[id]);
if (err < 0)
return err;
if (err)
return -FDT_ERR_NOTFOUND;
(*upto)++;
return node;
}
int fdtdec_find_aliases_for_id(const void *blob, const char *name,
enum fdt_compat_id id, int *node_list, int maxcount)
{
memset(node_list, '\0', sizeof(*node_list) * maxcount);
return fdtdec_add_aliases_for_id(blob, name, id, node_list, maxcount);
}
/* TODO: Can we tighten this code up a little? */
int fdtdec_add_aliases_for_id(const void *blob, const char *name,
enum fdt_compat_id id, int *node_list, int maxcount)
{
int name_len = strlen(name);
int nodes[maxcount];
int num_found = 0;
int offset, node;
int alias_node;
int count;
int i, j;
/* find the alias node if present */
alias_node = fdt_path_offset(blob, "/aliases");
/*
* start with nothing, and we can assume that the root node can't
* match
*/
memset(nodes, '\0', sizeof(nodes));
/* First find all the compatible nodes */
for (node = count = 0; node >= 0 && count < maxcount;) {
node = fdtdec_next_compatible(blob, node, id);
if (node >= 0)
nodes[count++] = node;
}
if (node >= 0)
debug("%s: warning: maxcount exceeded with alias '%s'\n",
__func__, name);
/* Now find all the aliases */
for (offset = fdt_first_property_offset(blob, alias_node);
offset > 0;
offset = fdt_next_property_offset(blob, offset)) {
const struct fdt_property *prop;
const char *path;
int number;
int found;
node = 0;
prop = fdt_get_property_by_offset(blob, offset, NULL);
path = fdt_string(blob, fdt32_to_cpu(prop->nameoff));
if (prop->len && 0 == strncmp(path, name, name_len))
node = fdt_path_offset(blob, prop->data);
if (node <= 0)
continue;
/* Get the alias number */
number = simple_strtoul(path + name_len, NULL, 10);
if (number < 0 || number >= maxcount) {
debug("%s: warning: alias '%s' is out of range\n",
__func__, path);
continue;
}
/* Make sure the node we found is actually in our list! */
found = -1;
for (j = 0; j < count; j++)
if (nodes[j] == node) {
found = j;
break;
}
if (found == -1) {
debug("%s: warning: alias '%s' points to a node "
"'%s' that is missing or is not compatible "
" with '%s'\n", __func__, path,
fdt_get_name(blob, node, NULL),
compat_names[id]);
continue;
}
/*
* Add this node to our list in the right place, and mark
* it as done.
*/
if (fdtdec_get_is_enabled(blob, node)) {
if (node_list[number]) {
debug("%s: warning: alias '%s' requires that "
"a node be placed in the list in a "
"position which is already filled by "
"node '%s'\n", __func__, path,
fdt_get_name(blob, node, NULL));
continue;
}
node_list[number] = node;
if (number >= num_found)
num_found = number + 1;
}
nodes[found] = 0;
}
/* Add any nodes not mentioned by an alias */
for (i = j = 0; i < maxcount; i++) {
if (!node_list[i]) {
for (; j < maxcount; j++)
if (nodes[j] &&
fdtdec_get_is_enabled(blob, nodes[j]))
break;
/* Have we run out of nodes to add? */
if (j == maxcount)
break;
assert(!node_list[i]);
node_list[i] = nodes[j++];
if (i >= num_found)
num_found = i + 1;
}
}
return num_found;
}
int fdtdec_get_alias_seq(const void *blob, const char *base, int offset,
int *seqp)
{
int base_len = strlen(base);
const char *find_name;
int find_namelen;
int prop_offset;
int aliases;
find_name = fdt_get_name(blob, offset, &find_namelen);
debug("Looking for '%s' at %d, name %s\n", base, offset, find_name);
aliases = fdt_path_offset(blob, "/aliases");
for (prop_offset = fdt_first_property_offset(blob, aliases);
prop_offset > 0;
prop_offset = fdt_next_property_offset(blob, prop_offset)) {
const char *prop;
const char *name;
const char *slash;
const char *p;
int len;
prop = fdt_getprop_by_offset(blob, prop_offset, &name, &len);
debug(" - %s, %s\n", name, prop);
if (len < find_namelen || *prop != '/' || prop[len - 1] ||
strncmp(name, base, base_len))
continue;
slash = strrchr(prop, '/');
if (strcmp(slash + 1, find_name))
continue;
for (p = name + strlen(name) - 1; p > name; p--) {
if (!isdigit(*p)) {
*seqp = simple_strtoul(p + 1, NULL, 10);
debug("Found seq %d\n", *seqp);
return 0;
}
}
}
debug("Not found\n");
return -ENOENT;
}
int fdtdec_get_chosen_node(const void *blob, const char *name)
{
const char *prop;
int chosen_node;
int len;
if (!blob)
return -FDT_ERR_NOTFOUND;
chosen_node = fdt_path_offset(blob, "/chosen");
prop = fdt_getprop(blob, chosen_node, name, &len);
if (!prop)
return -FDT_ERR_NOTFOUND;
return fdt_path_offset(blob, prop);
}
int fdtdec_check_fdt(void)
{
/*
* We must have an FDT, but we cannot panic() yet since the console
* is not ready. So for now, just assert(). Boards which need an early
* FDT (prior to console ready) will need to make their own
* arrangements and do their own checks.
*/
assert(!fdtdec_prepare_fdt());
return 0;
}
/*
* This function is a little odd in that it accesses global data. At some
* point if the architecture board.c files merge this will make more sense.
* Even now, it is common code.
*/
int fdtdec_prepare_fdt(void)
{
if (!gd->fdt_blob || ((uintptr_t)gd->fdt_blob & 3) ||
fdt_check_header(gd->fdt_blob)) {
#ifdef CONFIG_SPL_BUILD
puts("Missing DTB\n");
#else
puts("No valid device tree binary found - please append one to U-Boot binary, use u-boot-dtb.bin or define CONFIG_OF_EMBED. For sandbox, use -d <file.dtb>\n");
#endif
return -1;
}
return 0;
}
int fdtdec_lookup_phandle(const void *blob, int node, const char *prop_name)
{
const u32 *phandle;
int lookup;
debug("%s: %s\n", __func__, prop_name);
phandle = fdt_getprop(blob, node, prop_name, NULL);
if (!phandle)
return -FDT_ERR_NOTFOUND;
lookup = fdt_node_offset_by_phandle(blob, fdt32_to_cpu(*phandle));
return lookup;
}
/**
* Look up a property in a node and check that it has a minimum length.
*
* @param blob FDT blob
* @param node node to examine
* @param prop_name name of property to find
* @param min_len minimum property length in bytes
* @param err 0 if ok, or -FDT_ERR_NOTFOUND if the property is not
found, or -FDT_ERR_BADLAYOUT if not enough data
* @return pointer to cell, which is only valid if err == 0
*/
static const void *get_prop_check_min_len(const void *blob, int node,
const char *prop_name, int min_len, int *err)
{
const void *cell;
int len;
debug("%s: %s\n", __func__, prop_name);
cell = fdt_getprop(blob, node, prop_name, &len);
if (!cell)
*err = -FDT_ERR_NOTFOUND;
else if (len < min_len)
*err = -FDT_ERR_BADLAYOUT;
else
*err = 0;
return cell;
}
int fdtdec_get_int_array(const void *blob, int node, const char *prop_name,
u32 *array, int count)
{
const u32 *cell;
int i, err = 0;
debug("%s: %s\n", __func__, prop_name);
cell = get_prop_check_min_len(blob, node, prop_name,
sizeof(u32) * count, &err);
if (!err) {
for (i = 0; i < count; i++)
array[i] = fdt32_to_cpu(cell[i]);
}
return err;
}
int fdtdec_get_int_array_count(const void *blob, int node,
const char *prop_name, u32 *array, int count)
{
const u32 *cell;
int len, elems;
int i;
debug("%s: %s\n", __func__, prop_name);
cell = fdt_getprop(blob, node, prop_name, &len);
if (!cell)
return -FDT_ERR_NOTFOUND;
elems = len / sizeof(u32);
if (count > elems)
count = elems;
for (i = 0; i < count; i++)
array[i] = fdt32_to_cpu(cell[i]);
return count;
}
const u32 *fdtdec_locate_array(const void *blob, int node,
const char *prop_name, int count)
{
const u32 *cell;
int err;
cell = get_prop_check_min_len(blob, node, prop_name,
sizeof(u32) * count, &err);
return err ? NULL : cell;
}
int fdtdec_get_bool(const void *blob, int node, const char *prop_name)
{
const s32 *cell;
int len;
debug("%s: %s\n", __func__, prop_name);
cell = fdt_getprop(blob, node, prop_name, &len);
return cell != NULL;
}
int fdtdec_parse_phandle_with_args(const void *blob, int src_node,
const char *list_name,
const char *cells_name,
int cell_count, int index,
struct fdtdec_phandle_args *out_args)
{
const __be32 *list, *list_end;
int rc = 0, size, cur_index = 0;
uint32_t count = 0;
int node = -1;
int phandle;
/* Retrieve the phandle list property */
list = fdt_getprop(blob, src_node, list_name, &size);
if (!list)
return -ENOENT;
list_end = list + size / sizeof(*list);
/* Loop over the phandles until all the requested entry is found */
while (list < list_end) {
rc = -EINVAL;
count = 0;
/*
* If phandle is 0, then it is an empty entry with no
* arguments. Skip forward to the next entry.
*/
phandle = be32_to_cpup(list++);
if (phandle) {
/*
* Find the provider node and parse the #*-cells
* property to determine the argument length.
*
* This is not needed if the cell count is hard-coded
* (i.e. cells_name not set, but cell_count is set),
* except when we're going to return the found node
* below.
*/
if (cells_name || cur_index == index) {
node = fdt_node_offset_by_phandle(blob,
phandle);
if (!node) {
debug("%s: could not find phandle\n",
fdt_get_name(blob, src_node,
NULL));
goto err;
}
}
if (cells_name) {
count = fdtdec_get_int(blob, node, cells_name,
-1);
if (count == -1) {
debug("%s: could not get %s for %s\n",
fdt_get_name(blob, src_node,
NULL),
cells_name,
fdt_get_name(blob, node,
NULL));
goto err;
}
} else {
count = cell_count;
}
/*
* Make sure that the arguments actually fit in the
* remaining property data length
*/
if (list + count > list_end) {
debug("%s: arguments longer than property\n",
fdt_get_name(blob, src_node, NULL));
goto err;
}
}
/*
* All of the error cases above bail out of the loop, so at
* this point, the parsing is successful. If the requested
* index matches, then fill the out_args structure and return,
* or return -ENOENT for an empty entry.
*/
rc = -ENOENT;
if (cur_index == index) {
if (!phandle)
goto err;
if (out_args) {
int i;
if (count > MAX_PHANDLE_ARGS) {
debug("%s: too many arguments %d\n",
fdt_get_name(blob, src_node,
NULL), count);
count = MAX_PHANDLE_ARGS;
}
out_args->node = node;
out_args->args_count = count;
for (i = 0; i < count; i++) {
out_args->args[i] =
be32_to_cpup(list++);
}
}
/* Found it! return success */
return 0;
}
node = -1;
list += count;
cur_index++;
}
/*
* Result will be one of:
* -ENOENT : index is for empty phandle
* -EINVAL : parsing error on data
* [1..n] : Number of phandle (count mode; when index = -1)
*/
rc = index < 0 ? cur_index : -ENOENT;
err:
return rc;
}
int fdtdec_get_byte_array(const void *blob, int node, const char *prop_name,
u8 *array, int count)
{
const u8 *cell;
int err;
cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
if (!err)
memcpy(array, cell, count);
return err;
}
const u8 *fdtdec_locate_byte_array(const void *blob, int node,
const char *prop_name, int count)
{
const u8 *cell;
int err;
cell = get_prop_check_min_len(blob, node, prop_name, count, &err);
if (err)
return NULL;
return cell;
}
int fdtdec_get_config_int(const void *blob, const char *prop_name,
int default_val)
{
int config_node;
debug("%s: %s\n", __func__, prop_name);
config_node = fdt_path_offset(blob, "/config");
if (config_node < 0)
return default_val;
return fdtdec_get_int(blob, config_node, prop_name, default_val);
}
int fdtdec_get_config_bool(const void *blob, const char *prop_name)
{
int config_node;
const void *prop;
debug("%s: %s\n", __func__, prop_name);
config_node = fdt_path_offset(blob, "/config");
if (config_node < 0)
return 0;
prop = fdt_get_property(blob, config_node, prop_name, NULL);
return prop != NULL;
}
char *fdtdec_get_config_string(const void *blob, const char *prop_name)
{
const char *nodep;
int nodeoffset;
int len;
debug("%s: %s\n", __func__, prop_name);
nodeoffset = fdt_path_offset(blob, "/config");
if (nodeoffset < 0)
return NULL;
nodep = fdt_getprop(blob, nodeoffset, prop_name, &len);
if (!nodep)
return NULL;
return (char *)nodep;
}
int fdtdec_decode_region(const void *blob, int node, const char *prop_name,
fdt_addr_t *basep, fdt_size_t *sizep)
{
const fdt_addr_t *cell;
int len;
debug("%s: %s: %s\n", __func__, fdt_get_name(blob, node, NULL),
prop_name);
cell = fdt_getprop(blob, node, prop_name, &len);
if (!cell || (len < sizeof(fdt_addr_t) * 2)) {
debug("cell=%p, len=%d\n", cell, len);
return -1;
}
*basep = fdt_addr_to_cpu(*cell);
*sizep = fdt_size_to_cpu(cell[1]);
debug("%s: base=%08lx, size=%lx\n", __func__, (ulong)*basep,
(ulong)*sizep);
return 0;
}
/**
* Read a flash entry from the fdt
*
* @param blob FDT blob
* @param node Offset of node to read
* @param name Name of node being read
* @param entry Place to put offset and size of this node
* @return 0 if ok, -ve on error
*/
int fdtdec_read_fmap_entry(const void *blob, int node, const char *name,
struct fmap_entry *entry)
{
const char *prop;
u32 reg[2];
if (fdtdec_get_int_array(blob, node, "reg", reg, 2)) {
debug("Node '%s' has bad/missing 'reg' property\n", name);
return -FDT_ERR_NOTFOUND;
}
entry->offset = reg[0];
entry->length = reg[1];
entry->used = fdtdec_get_int(blob, node, "used", entry->length);
prop = fdt_getprop(blob, node, "compress", NULL);
entry->compress_algo = prop && !strcmp(prop, "lzo") ?
FMAP_COMPRESS_LZO : FMAP_COMPRESS_NONE;
prop = fdt_getprop(blob, node, "hash", &entry->hash_size);
entry->hash_algo = prop ? FMAP_HASH_SHA256 : FMAP_HASH_NONE;
entry->hash = (uint8_t *)prop;
return 0;
}
u64 fdtdec_get_number(const fdt32_t *ptr, unsigned int cells)
{
u64 number = 0;
while (cells--)
number = (number << 32) | fdt32_to_cpu(*ptr++);
return number;
}
int fdt_get_resource(const void *fdt, int node, const char *property,
unsigned int index, struct fdt_resource *res)
{
const fdt32_t *ptr, *end;
int na, ns, len, parent;
unsigned int i = 0;
parent = fdt_parent_offset(fdt, node);
if (parent < 0)
return parent;
na = fdt_address_cells(fdt, parent);
ns = fdt_size_cells(fdt, parent);
ptr = fdt_getprop(fdt, node, property, &len);
if (!ptr)
return len;
end = ptr + len / sizeof(*ptr);
while (ptr + na + ns <= end) {
if (i == index) {
res->start = res->end = fdtdec_get_number(ptr, na);
res->end += fdtdec_get_number(&ptr[na], ns) - 1;
return 0;
}
ptr += na + ns;
i++;
}
return -FDT_ERR_NOTFOUND;
}
int fdt_get_named_resource(const void *fdt, int node, const char *property,
const char *prop_names, const char *name,
struct fdt_resource *res)
{
int index;
index = fdt_find_string(fdt, node, prop_names, name);
if (index < 0)
return index;
return fdt_get_resource(fdt, node, property, index, res);
}
int fdtdec_decode_memory_region(const void *blob, int config_node,
const char *mem_type, const char *suffix,
fdt_addr_t *basep, fdt_size_t *sizep)
{
char prop_name[50];
const char *mem;
fdt_size_t size, offset_size;
fdt_addr_t base, offset;
int node;
if (config_node == -1) {
config_node = fdt_path_offset(blob, "/config");
if (config_node < 0) {
debug("%s: Cannot find /config node\n", __func__);
return -ENOENT;
}
}
if (!suffix)
suffix = "";
snprintf(prop_name, sizeof(prop_name), "%s-memory%s", mem_type,
suffix);
mem = fdt_getprop(blob, config_node, prop_name, NULL);
if (!mem) {
debug("%s: No memory type for '%s', using /memory\n", __func__,
prop_name);
mem = "/memory";
}
node = fdt_path_offset(blob, mem);
if (node < 0) {
debug("%s: Failed to find node '%s': %s\n", __func__, mem,
fdt_strerror(node));
return -ENOENT;
}
/*
* Not strictly correct - the memory may have multiple banks. We just
* use the first
*/
if (fdtdec_decode_region(blob, node, "reg", &base, &size)) {
debug("%s: Failed to decode memory region %s\n", __func__,
mem);
return -EINVAL;
}
snprintf(prop_name, sizeof(prop_name), "%s-offset%s", mem_type,
suffix);
if (fdtdec_decode_region(blob, config_node, prop_name, &offset,
&offset_size)) {
debug("%s: Failed to decode memory region '%s'\n", __func__,
prop_name);
return -EINVAL;
}
*basep = base + offset;
*sizep = offset_size;
return 0;
}
static int decode_timing_property(const void *blob, int node, const char *name,
struct timing_entry *result)
{
int length, ret = 0;
const u32 *prop;
prop = fdt_getprop(blob, node, name, &length);
if (!prop) {
debug("%s: could not find property %s\n",
fdt_get_name(blob, node, NULL), name);
return length;
}
if (length == sizeof(u32)) {
result->typ = fdtdec_get_int(blob, node, name, 0);
result->min = result->typ;
result->max = result->typ;
} else {
ret = fdtdec_get_int_array(blob, node, name, &result->min, 3);
}
return ret;
}
int fdtdec_decode_display_timing(const void *blob, int parent, int index,
struct display_timing *dt)
{
int i, node, timings_node;
u32 val = 0;
int ret = 0;
timings_node = fdt_subnode_offset(blob, parent, "display-timings");
if (timings_node < 0)
return timings_node;
for (i = 0, node = fdt_first_subnode(blob, timings_node);
node > 0 && i != index;
node = fdt_next_subnode(blob, node))
i++;
if (node < 0)
return node;
memset(dt, 0, sizeof(*dt));
ret |= decode_timing_property(blob, node, "hback-porch",
&dt->hback_porch);
ret |= decode_timing_property(blob, node, "hfront-porch",
&dt->hfront_porch);
ret |= decode_timing_property(blob, node, "hactive", &dt->hactive);
ret |= decode_timing_property(blob, node, "hsync-len", &dt->hsync_len);
ret |= decode_timing_property(blob, node, "vback-porch",
&dt->vback_porch);
ret |= decode_timing_property(blob, node, "vfront-porch",
&dt->vfront_porch);
ret |= decode_timing_property(blob, node, "vactive", &dt->vactive);
ret |= decode_timing_property(blob, node, "vsync-len", &dt->vsync_len);
ret |= decode_timing_property(blob, node, "clock-frequency",
&dt->pixelclock);
dt->flags = 0;
val = fdtdec_get_int(blob, node, "vsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_VSYNC_HIGH :
DISPLAY_FLAGS_VSYNC_LOW;
}
val = fdtdec_get_int(blob, node, "hsync-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_HSYNC_HIGH :
DISPLAY_FLAGS_HSYNC_LOW;
}
val = fdtdec_get_int(blob, node, "de-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_DE_HIGH :
DISPLAY_FLAGS_DE_LOW;
}
val = fdtdec_get_int(blob, node, "pixelclk-active", -1);
if (val != -1) {
dt->flags |= val ? DISPLAY_FLAGS_PIXDATA_POSEDGE :
DISPLAY_FLAGS_PIXDATA_NEGEDGE;
}
if (fdtdec_get_bool(blob, node, "interlaced"))
dt->flags |= DISPLAY_FLAGS_INTERLACED;
if (fdtdec_get_bool(blob, node, "doublescan"))
dt->flags |= DISPLAY_FLAGS_DOUBLESCAN;
if (fdtdec_get_bool(blob, node, "doubleclk"))
dt->flags |= DISPLAY_FLAGS_DOUBLECLK;
return 0;
}
int fdtdec_setup(void)
{
#ifdef CONFIG_OF_CONTROL
# ifdef CONFIG_OF_EMBED
/* Get a pointer to the FDT */
gd->fdt_blob = __dtb_dt_begin;
# elif defined CONFIG_OF_SEPARATE
# ifdef CONFIG_SPL_BUILD
/* FDT is at end of BSS */
gd->fdt_blob = (ulong *)&__bss_end;
# else
/* FDT is at end of image */
gd->fdt_blob = (ulong *)&_end;
#endif
# elif defined(CONFIG_OF_HOSTFILE)
if (sandbox_read_fdt_from_file()) {
puts("Failed to read control FDT\n");
return -1;
}
# endif
# ifndef CONFIG_SPL_BUILD
/* Allow the early environment to override the fdt address */
gd->fdt_blob = (void *)getenv_ulong("fdtcontroladdr", 16,
(uintptr_t)gd->fdt_blob);
# endif
#endif
return fdtdec_prepare_fdt();
}
#endif /* !USE_HOSTCC */