blob: 4f9fa7d0ec3f7b3fb97a6c919438064b91431dd8 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* MediaTek SD/MMC Card Interface driver
*
* Copyright (C) 2018 MediaTek Inc.
* Author: Weijie Gao <weijie.gao@mediatek.com>
*/
#include <clk.h>
#include <common.h>
#include <dm.h>
#include <mmc.h>
#include <errno.h>
#include <malloc.h>
#include <mapmem.h>
#include <stdbool.h>
#include <asm/gpio.h>
#include <dm/device_compat.h>
#include <dm/pinctrl.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/iopoll.h>
/* MSDC_CFG */
#define MSDC_CFG_HS400_CK_MODE_EXT BIT(22)
#define MSDC_CFG_CKMOD_EXT_M 0x300000
#define MSDC_CFG_CKMOD_EXT_S 20
#define MSDC_CFG_CKDIV_EXT_M 0xfff00
#define MSDC_CFG_CKDIV_EXT_S 8
#define MSDC_CFG_HS400_CK_MODE BIT(18)
#define MSDC_CFG_CKMOD_M 0x30000
#define MSDC_CFG_CKMOD_S 16
#define MSDC_CFG_CKDIV_M 0xff00
#define MSDC_CFG_CKDIV_S 8
#define MSDC_CFG_CKSTB BIT(7)
#define MSDC_CFG_PIO BIT(3)
#define MSDC_CFG_RST BIT(2)
#define MSDC_CFG_CKPDN BIT(1)
#define MSDC_CFG_MODE BIT(0)
/* MSDC_IOCON */
#define MSDC_IOCON_W_DSPL BIT(8)
#define MSDC_IOCON_DSPL BIT(2)
#define MSDC_IOCON_RSPL BIT(1)
/* MSDC_PS */
#define MSDC_PS_DAT0 BIT(16)
#define MSDC_PS_CDDBCE_M 0xf000
#define MSDC_PS_CDDBCE_S 12
#define MSDC_PS_CDSTS BIT(1)
#define MSDC_PS_CDEN BIT(0)
/* #define MSDC_INT(EN) */
#define MSDC_INT_ACMDRDY BIT(3)
#define MSDC_INT_ACMDTMO BIT(4)
#define MSDC_INT_ACMDCRCERR BIT(5)
#define MSDC_INT_CMDRDY BIT(8)
#define MSDC_INT_CMDTMO BIT(9)
#define MSDC_INT_RSPCRCERR BIT(10)
#define MSDC_INT_XFER_COMPL BIT(12)
#define MSDC_INT_DATTMO BIT(14)
#define MSDC_INT_DATCRCERR BIT(15)
/* MSDC_FIFOCS */
#define MSDC_FIFOCS_CLR BIT(31)
#define MSDC_FIFOCS_TXCNT_M 0xff0000
#define MSDC_FIFOCS_TXCNT_S 16
#define MSDC_FIFOCS_RXCNT_M 0xff
#define MSDC_FIFOCS_RXCNT_S 0
/* #define SDC_CFG */
#define SDC_CFG_DTOC_M 0xff000000
#define SDC_CFG_DTOC_S 24
#define SDC_CFG_SDIOIDE BIT(20)
#define SDC_CFG_SDIO BIT(19)
#define SDC_CFG_BUSWIDTH_M 0x30000
#define SDC_CFG_BUSWIDTH_S 16
/* SDC_CMD */
#define SDC_CMD_BLK_LEN_M 0xfff0000
#define SDC_CMD_BLK_LEN_S 16
#define SDC_CMD_STOP BIT(14)
#define SDC_CMD_WR BIT(13)
#define SDC_CMD_DTYPE_M 0x1800
#define SDC_CMD_DTYPE_S 11
#define SDC_CMD_RSPTYP_M 0x380
#define SDC_CMD_RSPTYP_S 7
#define SDC_CMD_CMD_M 0x3f
#define SDC_CMD_CMD_S 0
/* SDC_STS */
#define SDC_STS_CMDBUSY BIT(1)
#define SDC_STS_SDCBUSY BIT(0)
/* SDC_ADV_CFG0 */
#define SDC_RX_ENHANCE_EN BIT(20)
/* PATCH_BIT0 */
#define MSDC_INT_DAT_LATCH_CK_SEL_M 0x380
#define MSDC_INT_DAT_LATCH_CK_SEL_S 7
/* PATCH_BIT1 */
#define MSDC_PB1_STOP_DLY_M 0xf00
#define MSDC_PB1_STOP_DLY_S 8
/* PATCH_BIT2 */
#define MSDC_PB2_CRCSTSENSEL_M 0xe0000000
#define MSDC_PB2_CRCSTSENSEL_S 29
#define MSDC_PB2_CFGCRCSTS BIT(28)
#define MSDC_PB2_RESPSTSENSEL_M 0x70000
#define MSDC_PB2_RESPSTSENSEL_S 16
#define MSDC_PB2_CFGRESP BIT(15)
#define MSDC_PB2_RESPWAIT_M 0x0c
#define MSDC_PB2_RESPWAIT_S 2
/* PAD_TUNE */
#define MSDC_PAD_TUNE_CMDRRDLY_M 0x7c00000
#define MSDC_PAD_TUNE_CMDRRDLY_S 22
#define MSDC_PAD_TUNE_CMD_SEL BIT(21)
#define MSDC_PAD_TUNE_CMDRDLY_M 0x1f0000
#define MSDC_PAD_TUNE_CMDRDLY_S 16
#define MSDC_PAD_TUNE_RXDLYSEL BIT(15)
#define MSDC_PAD_TUNE_RD_SEL BIT(13)
#define MSDC_PAD_TUNE_DATRRDLY_M 0x1f00
#define MSDC_PAD_TUNE_DATRRDLY_S 8
#define MSDC_PAD_TUNE_DATWRDLY_M 0x1f
#define MSDC_PAD_TUNE_DATWRDLY_S 0
#define PAD_CMD_TUNE_RX_DLY3 0x3E
#define PAD_CMD_TUNE_RX_DLY3_S 1
/* EMMC50_CFG0 */
#define EMMC50_CFG_CFCSTS_SEL BIT(4)
/* SDC_FIFO_CFG */
#define SDC_FIFO_CFG_WRVALIDSEL BIT(24)
#define SDC_FIFO_CFG_RDVALIDSEL BIT(25)
/* EMMC_TOP_CONTROL mask */
#define PAD_RXDLY_SEL BIT(0)
#define DELAY_EN BIT(1)
#define PAD_DAT_RD_RXDLY2 (0x1f << 2)
#define PAD_DAT_RD_RXDLY (0x1f << 7)
#define PAD_DAT_RD_RXDLY_S 7
#define PAD_DAT_RD_RXDLY2_SEL BIT(12)
#define PAD_DAT_RD_RXDLY_SEL BIT(13)
#define DATA_K_VALUE_SEL BIT(14)
#define SDC_RX_ENH_EN BIT(15)
/* EMMC_TOP_CMD mask */
#define PAD_CMD_RXDLY2 (0x1f << 0)
#define PAD_CMD_RXDLY (0x1f << 5)
#define PAD_CMD_RXDLY_S 5
#define PAD_CMD_RD_RXDLY2_SEL BIT(10)
#define PAD_CMD_RD_RXDLY_SEL BIT(11)
#define PAD_CMD_TX_DLY (0x1f << 12)
/* SDC_CFG_BUSWIDTH */
#define MSDC_BUS_1BITS 0x0
#define MSDC_BUS_4BITS 0x1
#define MSDC_BUS_8BITS 0x2
#define MSDC_FIFO_SIZE 128
#define PAD_DELAY_MAX 32
#define DEFAULT_CD_DEBOUNCE 8
#define CMD_INTS_MASK \
(MSDC_INT_CMDRDY | MSDC_INT_RSPCRCERR | MSDC_INT_CMDTMO)
#define DATA_INTS_MASK \
(MSDC_INT_XFER_COMPL | MSDC_INT_DATTMO | MSDC_INT_DATCRCERR)
/* Register offset */
struct mtk_sd_regs {
u32 msdc_cfg;
u32 msdc_iocon;
u32 msdc_ps;
u32 msdc_int;
u32 msdc_inten;
u32 msdc_fifocs;
u32 msdc_txdata;
u32 msdc_rxdata;
u32 reserved0[4];
u32 sdc_cfg;
u32 sdc_cmd;
u32 sdc_arg;
u32 sdc_sts;
u32 sdc_resp[4];
u32 sdc_blk_num;
u32 sdc_vol_chg;
u32 sdc_csts;
u32 sdc_csts_en;
u32 sdc_datcrc_sts;
u32 sdc_adv_cfg0;
u32 reserved1[2];
u32 emmc_cfg0;
u32 emmc_cfg1;
u32 emmc_sts;
u32 emmc_iocon;
u32 sd_acmd_resp;
u32 sd_acmd19_trg;
u32 sd_acmd19_sts;
u32 dma_sa_high4bit;
u32 dma_sa;
u32 dma_ca;
u32 dma_ctrl;
u32 dma_cfg;
u32 sw_dbg_sel;
u32 sw_dbg_out;
u32 dma_length;
u32 reserved2;
u32 patch_bit0;
u32 patch_bit1;
u32 patch_bit2;
u32 reserved3;
u32 dat0_tune_crc;
u32 dat1_tune_crc;
u32 dat2_tune_crc;
u32 dat3_tune_crc;
u32 cmd_tune_crc;
u32 sdio_tune_wind;
u32 reserved4[5];
u32 pad_tune;
u32 pad_tune0;
u32 pad_tune1;
u32 dat_rd_dly[4];
u32 reserved5[2];
u32 hw_dbg_sel;
u32 main_ver;
u32 eco_ver;
u32 reserved6[27];
u32 pad_ds_tune;
u32 pad_cmd_tune;
u32 reserved7[30];
u32 emmc50_cfg0;
u32 reserved8[7];
u32 sdc_fifo_cfg;
};
struct msdc_top_regs {
u32 emmc_top_control;
u32 emmc_top_cmd;
u32 emmc50_pad_ctl0;
u32 emmc50_pad_ds_tune;
u32 emmc50_pad_dat0_tune;
u32 emmc50_pad_dat1_tune;
u32 emmc50_pad_dat2_tune;
u32 emmc50_pad_dat3_tune;
u32 emmc50_pad_dat4_tune;
u32 emmc50_pad_dat5_tune;
u32 emmc50_pad_dat6_tune;
u32 emmc50_pad_dat7_tune;
};
struct msdc_compatible {
u8 clk_div_bits;
u8 sclk_cycle_shift;
bool pad_tune0;
bool async_fifo;
bool data_tune;
bool busy_check;
bool stop_clk_fix;
bool enhance_rx;
};
struct msdc_delay_phase {
u8 maxlen;
u8 start;
u8 final_phase;
};
struct msdc_plat {
struct mmc_config cfg;
struct mmc mmc;
};
struct msdc_tune_para {
u32 iocon;
u32 pad_tune;
u32 pad_cmd_tune;
};
struct msdc_host {
struct mtk_sd_regs *base;
struct msdc_top_regs *top_base;
struct mmc *mmc;
struct msdc_compatible *dev_comp;
struct clk src_clk; /* for SD/MMC bus clock */
struct clk src_clk_cg; /* optional, MSDC source clock control gate */
struct clk h_clk; /* MSDC core clock */
u32 src_clk_freq; /* source clock */
u32 mclk; /* mmc framework required bus clock */
u32 sclk; /* actual calculated bus clock */
/* operation timeout clocks */
u32 timeout_ns;
u32 timeout_clks;
/* tuning options */
u32 hs400_ds_delay;
u32 hs200_cmd_int_delay;
u32 hs200_write_int_delay;
u32 latch_ck;
u32 r_smpl; /* sample edge */
bool hs400_mode;
/* whether to use gpio detection or built-in hw detection */
bool builtin_cd;
bool cd_active_high;
/* card detection / write protection GPIOs */
#if CONFIG_IS_ENABLED(DM_GPIO)
struct gpio_desc gpio_wp;
struct gpio_desc gpio_cd;
#endif
uint last_resp_type;
uint last_data_write;
enum bus_mode timing;
struct msdc_tune_para def_tune_para;
struct msdc_tune_para saved_tune_para;
};
static void msdc_reset_hw(struct msdc_host *host)
{
u32 reg;
setbits_le32(&host->base->msdc_cfg, MSDC_CFG_RST);
readl_poll_timeout(&host->base->msdc_cfg, reg,
!(reg & MSDC_CFG_RST), 1000000);
}
static void msdc_fifo_clr(struct msdc_host *host)
{
u32 reg;
setbits_le32(&host->base->msdc_fifocs, MSDC_FIFOCS_CLR);
readl_poll_timeout(&host->base->msdc_fifocs, reg,
!(reg & MSDC_FIFOCS_CLR), 1000000);
}
static u32 msdc_fifo_rx_bytes(struct msdc_host *host)
{
return (readl(&host->base->msdc_fifocs) &
MSDC_FIFOCS_RXCNT_M) >> MSDC_FIFOCS_RXCNT_S;
}
static u32 msdc_fifo_tx_bytes(struct msdc_host *host)
{
return (readl(&host->base->msdc_fifocs) &
MSDC_FIFOCS_TXCNT_M) >> MSDC_FIFOCS_TXCNT_S;
}
static u32 msdc_cmd_find_resp(struct msdc_host *host, struct mmc_cmd *cmd)
{
u32 resp;
switch (cmd->resp_type) {
/* Actually, R1, R5, R6, R7 are the same */
case MMC_RSP_R1:
resp = 0x1;
break;
case MMC_RSP_R1b:
resp = 0x7;
break;
case MMC_RSP_R2:
resp = 0x2;
break;
case MMC_RSP_R3:
resp = 0x3;
break;
case MMC_RSP_NONE:
default:
resp = 0x0;
break;
}
return resp;
}
static u32 msdc_cmd_prepare_raw_cmd(struct msdc_host *host,
struct mmc_cmd *cmd,
struct mmc_data *data)
{
u32 opcode = cmd->cmdidx;
u32 resp_type = msdc_cmd_find_resp(host, cmd);
uint blocksize = 0;
u32 dtype = 0;
u32 rawcmd = 0;
switch (opcode) {
case MMC_CMD_WRITE_MULTIPLE_BLOCK:
case MMC_CMD_READ_MULTIPLE_BLOCK:
dtype = 2;
break;
case MMC_CMD_WRITE_SINGLE_BLOCK:
case MMC_CMD_READ_SINGLE_BLOCK:
case SD_CMD_APP_SEND_SCR:
case MMC_CMD_SEND_TUNING_BLOCK:
case MMC_CMD_SEND_TUNING_BLOCK_HS200:
dtype = 1;
break;
case SD_CMD_SWITCH_FUNC: /* same as MMC_CMD_SWITCH */
case SD_CMD_SEND_IF_COND: /* same as MMC_CMD_SEND_EXT_CSD */
case SD_CMD_APP_SD_STATUS: /* same as MMC_CMD_SEND_STATUS */
if (data)
dtype = 1;
}
if (data) {
if (data->flags == MMC_DATA_WRITE)
rawcmd |= SDC_CMD_WR;
if (data->blocks > 1)
dtype = 2;
blocksize = data->blocksize;
}
rawcmd |= ((opcode << SDC_CMD_CMD_S) & SDC_CMD_CMD_M) |
((resp_type << SDC_CMD_RSPTYP_S) & SDC_CMD_RSPTYP_M) |
((blocksize << SDC_CMD_BLK_LEN_S) & SDC_CMD_BLK_LEN_M) |
((dtype << SDC_CMD_DTYPE_S) & SDC_CMD_DTYPE_M);
if (opcode == MMC_CMD_STOP_TRANSMISSION)
rawcmd |= SDC_CMD_STOP;
return rawcmd;
}
static int msdc_cmd_done(struct msdc_host *host, int events,
struct mmc_cmd *cmd)
{
u32 *rsp = cmd->response;
int ret = 0;
if (cmd->resp_type & MMC_RSP_PRESENT) {
if (cmd->resp_type & MMC_RSP_136) {
rsp[0] = readl(&host->base->sdc_resp[3]);
rsp[1] = readl(&host->base->sdc_resp[2]);
rsp[2] = readl(&host->base->sdc_resp[1]);
rsp[3] = readl(&host->base->sdc_resp[0]);
} else {
rsp[0] = readl(&host->base->sdc_resp[0]);
}
}
if (!(events & MSDC_INT_CMDRDY)) {
if (cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK &&
cmd->cmdidx != MMC_CMD_SEND_TUNING_BLOCK_HS200)
/*
* should not clear fifo/interrupt as the tune data
* may have alreay come.
*/
msdc_reset_hw(host);
if (events & MSDC_INT_CMDTMO)
ret = -ETIMEDOUT;
else
ret = -EIO;
}
return ret;
}
static bool msdc_cmd_is_ready(struct msdc_host *host)
{
int ret;
u32 reg;
/* The max busy time we can endure is 20ms */
ret = readl_poll_timeout(&host->base->sdc_sts, reg,
!(reg & SDC_STS_CMDBUSY), 20000);
if (ret) {
pr_err("CMD bus busy detected\n");
msdc_reset_hw(host);
return false;
}
if (host->last_resp_type == MMC_RSP_R1b && host->last_data_write) {
ret = readl_poll_timeout(&host->base->msdc_ps, reg,
reg & MSDC_PS_DAT0, 1000000);
if (ret) {
pr_err("Card stuck in programming state!\n");
msdc_reset_hw(host);
return false;
}
}
return true;
}
static int msdc_start_command(struct msdc_host *host, struct mmc_cmd *cmd,
struct mmc_data *data)
{
u32 rawcmd;
u32 status;
u32 blocks = 0;
int ret;
if (!msdc_cmd_is_ready(host))
return -EIO;
if ((readl(&host->base->msdc_fifocs) &
MSDC_FIFOCS_TXCNT_M) >> MSDC_FIFOCS_TXCNT_S ||
(readl(&host->base->msdc_fifocs) &
MSDC_FIFOCS_RXCNT_M) >> MSDC_FIFOCS_RXCNT_S) {
pr_err("TX/RX FIFO non-empty before start of IO. Reset\n");
msdc_reset_hw(host);
}
msdc_fifo_clr(host);
host->last_resp_type = cmd->resp_type;
host->last_data_write = 0;
rawcmd = msdc_cmd_prepare_raw_cmd(host, cmd, data);
if (data)
blocks = data->blocks;
writel(CMD_INTS_MASK, &host->base->msdc_int);
writel(DATA_INTS_MASK, &host->base->msdc_int);
writel(blocks, &host->base->sdc_blk_num);
writel(cmd->cmdarg, &host->base->sdc_arg);
writel(rawcmd, &host->base->sdc_cmd);
ret = readl_poll_timeout(&host->base->msdc_int, status,
status & CMD_INTS_MASK, 1000000);
if (ret)
status = MSDC_INT_CMDTMO;
return msdc_cmd_done(host, status, cmd);
}
static void msdc_fifo_read(struct msdc_host *host, u8 *buf, u32 size)
{
u32 *wbuf;
while ((size_t)buf % 4) {
*buf++ = readb(&host->base->msdc_rxdata);
size--;
}
wbuf = (u32 *)buf;
while (size >= 4) {
*wbuf++ = readl(&host->base->msdc_rxdata);
size -= 4;
}
buf = (u8 *)wbuf;
while (size) {
*buf++ = readb(&host->base->msdc_rxdata);
size--;
}
}
static void msdc_fifo_write(struct msdc_host *host, const u8 *buf, u32 size)
{
const u32 *wbuf;
while ((size_t)buf % 4) {
writeb(*buf++, &host->base->msdc_txdata);
size--;
}
wbuf = (const u32 *)buf;
while (size >= 4) {
writel(*wbuf++, &host->base->msdc_txdata);
size -= 4;
}
buf = (const u8 *)wbuf;
while (size) {
writeb(*buf++, &host->base->msdc_txdata);
size--;
}
}
static int msdc_pio_read(struct msdc_host *host, u8 *ptr, u32 size)
{
u32 status;
u32 chksz;
int ret = 0;
while (1) {
status = readl(&host->base->msdc_int);
writel(status, &host->base->msdc_int);
status &= DATA_INTS_MASK;
if (status & MSDC_INT_DATCRCERR) {
ret = -EIO;
break;
}
if (status & MSDC_INT_DATTMO) {
ret = -ETIMEDOUT;
break;
}
chksz = min(size, (u32)MSDC_FIFO_SIZE);
if (msdc_fifo_rx_bytes(host) >= chksz) {
msdc_fifo_read(host, ptr, chksz);
ptr += chksz;
size -= chksz;
}
if (status & MSDC_INT_XFER_COMPL) {
if (size) {
pr_err("data not fully read\n");
ret = -EIO;
}
break;
}
}
return ret;
}
static int msdc_pio_write(struct msdc_host *host, const u8 *ptr, u32 size)
{
u32 status;
u32 chksz;
int ret = 0;
while (1) {
status = readl(&host->base->msdc_int);
writel(status, &host->base->msdc_int);
status &= DATA_INTS_MASK;
if (status & MSDC_INT_DATCRCERR) {
ret = -EIO;
break;
}
if (status & MSDC_INT_DATTMO) {
ret = -ETIMEDOUT;
break;
}
if (status & MSDC_INT_XFER_COMPL) {
if (size) {
pr_err("data not fully written\n");
ret = -EIO;
}
break;
}
chksz = min(size, (u32)MSDC_FIFO_SIZE);
if (MSDC_FIFO_SIZE - msdc_fifo_tx_bytes(host) >= chksz) {
msdc_fifo_write(host, ptr, chksz);
ptr += chksz;
size -= chksz;
}
}
return ret;
}
static int msdc_start_data(struct msdc_host *host, struct mmc_data *data)
{
u32 size;
int ret;
if (data->flags == MMC_DATA_WRITE)
host->last_data_write = 1;
size = data->blocks * data->blocksize;
if (data->flags == MMC_DATA_WRITE)
ret = msdc_pio_write(host, (const u8 *)data->src, size);
else
ret = msdc_pio_read(host, (u8 *)data->dest, size);
if (ret) {
msdc_reset_hw(host);
msdc_fifo_clr(host);
}
return ret;
}
static int msdc_ops_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
struct mmc_data *data)
{
struct msdc_host *host = dev_get_priv(dev);
int cmd_ret, data_ret;
cmd_ret = msdc_start_command(host, cmd, data);
if (cmd_ret &&
!(cmd_ret == -EIO &&
(cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK ||
cmd->cmdidx == MMC_CMD_SEND_TUNING_BLOCK_HS200)))
return cmd_ret;
if (data) {
data_ret = msdc_start_data(host, data);
if (cmd_ret)
return cmd_ret;
else
return data_ret;
}
return 0;
}
static void msdc_set_timeout(struct msdc_host *host, u32 ns, u32 clks)
{
u32 timeout, clk_ns, shift;
u32 mode = 0;
host->timeout_ns = ns;
host->timeout_clks = clks;
if (host->sclk == 0) {
timeout = 0;
} else {
shift = host->dev_comp->sclk_cycle_shift;
clk_ns = 1000000000UL / host->sclk;
timeout = (ns + clk_ns - 1) / clk_ns + clks;
/* unit is 1048576 sclk cycles */
timeout = (timeout + (0x1 << shift) - 1) >> shift;
if (host->dev_comp->clk_div_bits == 8)
mode = (readl(&host->base->msdc_cfg) &
MSDC_CFG_CKMOD_M) >> MSDC_CFG_CKMOD_S;
else
mode = (readl(&host->base->msdc_cfg) &
MSDC_CFG_CKMOD_EXT_M) >> MSDC_CFG_CKMOD_EXT_S;
/* DDR mode will double the clk cycles for data timeout */
timeout = mode >= 2 ? timeout * 2 : timeout;
timeout = timeout > 1 ? timeout - 1 : 0;
timeout = timeout > 255 ? 255 : timeout;
}
clrsetbits_le32(&host->base->sdc_cfg, SDC_CFG_DTOC_M,
timeout << SDC_CFG_DTOC_S);
}
static void msdc_set_buswidth(struct msdc_host *host, u32 width)
{
u32 val = readl(&host->base->sdc_cfg);
val &= ~SDC_CFG_BUSWIDTH_M;
switch (width) {
default:
case 1:
val |= (MSDC_BUS_1BITS << SDC_CFG_BUSWIDTH_S);
break;
case 4:
val |= (MSDC_BUS_4BITS << SDC_CFG_BUSWIDTH_S);
break;
case 8:
val |= (MSDC_BUS_8BITS << SDC_CFG_BUSWIDTH_S);
break;
}
writel(val, &host->base->sdc_cfg);
}
static void msdc_set_mclk(struct udevice *dev,
struct msdc_host *host, enum bus_mode timing, u32 hz)
{
u32 mode;
u32 div;
u32 sclk;
u32 reg;
if (!hz) {
host->mclk = 0;
clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN);
return;
}
if (host->dev_comp->clk_div_bits == 8)
clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_HS400_CK_MODE);
else
clrbits_le32(&host->base->msdc_cfg,
MSDC_CFG_HS400_CK_MODE_EXT);
if (timing == UHS_DDR50 || timing == MMC_DDR_52 ||
timing == MMC_HS_400) {
if (timing == MMC_HS_400)
mode = 0x3;
else
mode = 0x2; /* ddr mode and use divisor */
if (hz >= (host->src_clk_freq >> 2)) {
div = 0; /* mean div = 1/4 */
sclk = host->src_clk_freq >> 2; /* sclk = clk / 4 */
} else {
div = (host->src_clk_freq + ((hz << 2) - 1)) /
(hz << 2);
sclk = (host->src_clk_freq >> 2) / div;
div = (div >> 1);
}
if (timing == MMC_HS_400 && hz >= (host->src_clk_freq >> 1)) {
if (host->dev_comp->clk_div_bits == 8)
setbits_le32(&host->base->msdc_cfg,
MSDC_CFG_HS400_CK_MODE);
else
setbits_le32(&host->base->msdc_cfg,
MSDC_CFG_HS400_CK_MODE_EXT);
sclk = host->src_clk_freq >> 1;
div = 0; /* div is ignore when bit18 is set */
}
} else if (hz >= host->src_clk_freq) {
mode = 0x1; /* no divisor */
div = 0;
sclk = host->src_clk_freq;
} else {
mode = 0x0; /* use divisor */
if (hz >= (host->src_clk_freq >> 1)) {
div = 0; /* mean div = 1/2 */
sclk = host->src_clk_freq >> 1; /* sclk = clk / 2 */
} else {
div = (host->src_clk_freq + ((hz << 2) - 1)) /
(hz << 2);
sclk = (host->src_clk_freq >> 2) / div;
}
}
clrbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN);
if (host->dev_comp->clk_div_bits == 8) {
div = min(div, (u32)(MSDC_CFG_CKDIV_M >> MSDC_CFG_CKDIV_S));
clrsetbits_le32(&host->base->msdc_cfg,
MSDC_CFG_CKMOD_M | MSDC_CFG_CKDIV_M,
(mode << MSDC_CFG_CKMOD_S) |
(div << MSDC_CFG_CKDIV_S));
} else {
div = min(div, (u32)(MSDC_CFG_CKDIV_EXT_M >>
MSDC_CFG_CKDIV_EXT_S));
clrsetbits_le32(&host->base->msdc_cfg,
MSDC_CFG_CKMOD_EXT_M | MSDC_CFG_CKDIV_EXT_M,
(mode << MSDC_CFG_CKMOD_EXT_S) |
(div << MSDC_CFG_CKDIV_EXT_S));
}
readl_poll_timeout(&host->base->msdc_cfg, reg,
reg & MSDC_CFG_CKSTB, 1000000);
setbits_le32(&host->base->msdc_cfg, MSDC_CFG_CKPDN);
host->sclk = sclk;
host->mclk = hz;
host->timing = timing;
/* needed because clk changed. */
msdc_set_timeout(host, host->timeout_ns, host->timeout_clks);
/*
* mmc_select_hs400() will drop to 50Mhz and High speed mode,
* tune result of hs200/200Mhz is not suitable for 50Mhz
*/
if (host->sclk <= 52000000) {
writel(host->def_tune_para.iocon, &host->base->msdc_iocon);
writel(host->def_tune_para.pad_tune,
&host->base->pad_tune);
} else {
writel(host->saved_tune_para.iocon, &host->base->msdc_iocon);
writel(host->saved_tune_para.pad_tune,
&host->base->pad_tune);
}
dev_dbg(dev, "sclk: %d, timing: %d\n", host->sclk, timing);
}
static int msdc_ops_set_ios(struct udevice *dev)
{
struct msdc_plat *plat = dev_get_platdata(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
uint clock = mmc->clock;
msdc_set_buswidth(host, mmc->bus_width);
if (mmc->clk_disable)
clock = 0;
else if (clock < mmc->cfg->f_min)
clock = mmc->cfg->f_min;
if (host->mclk != clock || host->timing != mmc->selected_mode)
msdc_set_mclk(dev, host, mmc->selected_mode, clock);
return 0;
}
static int msdc_ops_get_cd(struct udevice *dev)
{
struct msdc_host *host = dev_get_priv(dev);
u32 val;
if (host->builtin_cd) {
val = readl(&host->base->msdc_ps);
val = !!(val & MSDC_PS_CDSTS);
return !val ^ host->cd_active_high;
}
#if CONFIG_IS_ENABLED(DM_GPIO)
if (!host->gpio_cd.dev)
return 1;
return dm_gpio_get_value(&host->gpio_cd);
#else
return 1;
#endif
}
static int msdc_ops_get_wp(struct udevice *dev)
{
#if CONFIG_IS_ENABLED(DM_GPIO)
struct msdc_host *host = dev_get_priv(dev);
if (!host->gpio_wp.dev)
return 0;
return !dm_gpio_get_value(&host->gpio_wp);
#else
return 0;
#endif
}
#ifdef MMC_SUPPORTS_TUNING
static u32 test_delay_bit(u32 delay, u32 bit)
{
bit %= PAD_DELAY_MAX;
return delay & (1 << bit);
}
static int get_delay_len(u32 delay, u32 start_bit)
{
int i;
for (i = 0; i < (PAD_DELAY_MAX - start_bit); i++) {
if (test_delay_bit(delay, start_bit + i) == 0)
return i;
}
return PAD_DELAY_MAX - start_bit;
}
static struct msdc_delay_phase get_best_delay(struct udevice *dev,
struct msdc_host *host, u32 delay)
{
int start = 0, len = 0;
int start_final = 0, len_final = 0;
u8 final_phase = 0xff;
struct msdc_delay_phase delay_phase = { 0, };
if (delay == 0) {
dev_err(dev, "phase error: [map:%x]\n", delay);
delay_phase.final_phase = final_phase;
return delay_phase;
}
while (start < PAD_DELAY_MAX) {
len = get_delay_len(delay, start);
if (len_final < len) {
start_final = start;
len_final = len;
}
start += len ? len : 1;
if (len >= 12 && start_final < 4)
break;
}
/* The rule is to find the smallest delay cell */
if (start_final == 0)
final_phase = (start_final + len_final / 3) % PAD_DELAY_MAX;
else
final_phase = (start_final + len_final / 2) % PAD_DELAY_MAX;
dev_info(dev, "phase: [map:%x] [maxlen:%d] [final:%d]\n",
delay, len_final, final_phase);
delay_phase.maxlen = len_final;
delay_phase.start = start_final;
delay_phase.final_phase = final_phase;
return delay_phase;
}
static inline void msdc_set_cmd_delay(struct msdc_host *host, u32 value)
{
void __iomem *tune_reg = &host->base->pad_tune;
if (host->dev_comp->pad_tune0)
tune_reg = &host->base->pad_tune0;
if (host->top_base)
clrsetbits_le32(&host->top_base->emmc_top_cmd, PAD_CMD_RXDLY,
value << PAD_CMD_RXDLY_S);
else
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
value << MSDC_PAD_TUNE_CMDRDLY_S);
}
static inline void msdc_set_data_delay(struct msdc_host *host, u32 value)
{
void __iomem *tune_reg = &host->base->pad_tune;
if (host->dev_comp->pad_tune0)
tune_reg = &host->base->pad_tune0;
if (host->top_base)
clrsetbits_le32(&host->top_base->emmc_top_control,
PAD_DAT_RD_RXDLY, value << PAD_DAT_RD_RXDLY_S);
else
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
value << MSDC_PAD_TUNE_DATRRDLY_S);
}
static int hs400_tune_response(struct udevice *dev, u32 opcode)
{
struct msdc_plat *plat = dev_get_platdata(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
u32 cmd_delay = 0;
struct msdc_delay_phase final_cmd_delay = { 0, };
u8 final_delay;
void __iomem *tune_reg = &host->base->pad_cmd_tune;
int cmd_err;
int i, j;
setbits_le32(&host->base->pad_cmd_tune, BIT(0));
if (mmc->selected_mode == MMC_HS_200 ||
mmc->selected_mode == UHS_SDR104)
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
host->hs200_cmd_int_delay <<
MSDC_PAD_TUNE_CMDRRDLY_S);
if (host->r_smpl)
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
else
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, PAD_CMD_TUNE_RX_DLY3,
i << PAD_CMD_TUNE_RX_DLY3_S);
for (j = 0; j < 3; j++) {
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err) {
cmd_delay |= (1 << i);
} else {
cmd_delay &= ~(1 << i);
break;
}
}
}
final_cmd_delay = get_best_delay(dev, host, cmd_delay);
clrsetbits_le32(tune_reg, PAD_CMD_TUNE_RX_DLY3,
final_cmd_delay.final_phase <<
PAD_CMD_TUNE_RX_DLY3_S);
final_delay = final_cmd_delay.final_phase;
dev_info(dev, "Final cmd pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
static int msdc_tune_response(struct udevice *dev, u32 opcode)
{
struct msdc_plat *plat = dev_get_platdata(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
u32 rise_delay = 0, fall_delay = 0;
struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, };
struct msdc_delay_phase internal_delay_phase;
u8 final_delay, final_maxlen;
u32 internal_delay = 0;
void __iomem *tune_reg = &host->base->pad_tune;
int cmd_err;
int i, j;
if (host->dev_comp->pad_tune0)
tune_reg = &host->base->pad_tune0;
if (mmc->selected_mode == MMC_HS_200 ||
mmc->selected_mode == UHS_SDR104)
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
host->hs200_cmd_int_delay <<
MSDC_PAD_TUNE_CMDRRDLY_S);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
i << MSDC_PAD_TUNE_CMDRDLY_S);
for (j = 0; j < 3; j++) {
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err) {
rise_delay |= (1 << i);
} else {
rise_delay &= ~(1 << i);
break;
}
}
}
final_rise_delay = get_best_delay(dev, host, rise_delay);
/* if rising edge has enough margin, do not scan falling edge */
if (final_rise_delay.maxlen >= 12 ||
(final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
goto skip_fall;
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
i << MSDC_PAD_TUNE_CMDRDLY_S);
for (j = 0; j < 3; j++) {
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err) {
fall_delay |= (1 << i);
} else {
fall_delay &= ~(1 << i);
break;
}
}
}
final_fall_delay = get_best_delay(dev, host, fall_delay);
skip_fall:
final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
if (final_maxlen == final_rise_delay.maxlen) {
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
final_rise_delay.final_phase <<
MSDC_PAD_TUNE_CMDRDLY_S);
final_delay = final_rise_delay.final_phase;
} else {
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRDLY_M,
final_fall_delay.final_phase <<
MSDC_PAD_TUNE_CMDRDLY_S);
final_delay = final_fall_delay.final_phase;
}
if (host->dev_comp->async_fifo || host->hs200_cmd_int_delay)
goto skip_internal;
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
i << MSDC_PAD_TUNE_CMDRRDLY_S);
mmc_send_tuning(mmc, opcode, &cmd_err);
if (!cmd_err)
internal_delay |= (1 << i);
}
dev_dbg(dev, "Final internal delay: 0x%x\n", internal_delay);
internal_delay_phase = get_best_delay(dev, host, internal_delay);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_CMDRRDLY_M,
internal_delay_phase.final_phase <<
MSDC_PAD_TUNE_CMDRRDLY_S);
skip_internal:
dev_dbg(dev, "Final cmd pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
static int msdc_tune_data(struct udevice *dev, u32 opcode)
{
struct msdc_plat *plat = dev_get_platdata(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
u32 rise_delay = 0, fall_delay = 0;
struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, };
u8 final_delay, final_maxlen;
void __iomem *tune_reg = &host->base->pad_tune;
int cmd_err;
int i, ret;
if (host->dev_comp->pad_tune0)
tune_reg = &host->base->pad_tune0;
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
i << MSDC_PAD_TUNE_DATRRDLY_S);
ret = mmc_send_tuning(mmc, opcode, &cmd_err);
if (!ret) {
rise_delay |= (1 << i);
} else if (cmd_err) {
/* in this case, retune response is needed */
ret = msdc_tune_response(dev, opcode);
if (ret)
break;
}
}
final_rise_delay = get_best_delay(dev, host, rise_delay);
if (final_rise_delay.maxlen >= 12 ||
(final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
goto skip_fall;
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
i << MSDC_PAD_TUNE_DATRRDLY_S);
ret = mmc_send_tuning(mmc, opcode, &cmd_err);
if (!ret) {
fall_delay |= (1 << i);
} else if (cmd_err) {
/* in this case, retune response is needed */
ret = msdc_tune_response(dev, opcode);
if (ret)
break;
}
}
final_fall_delay = get_best_delay(dev, host, fall_delay);
skip_fall:
final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
if (final_maxlen == final_rise_delay.maxlen) {
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
final_rise_delay.final_phase <<
MSDC_PAD_TUNE_DATRRDLY_S);
final_delay = final_rise_delay.final_phase;
} else {
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATRRDLY_M,
final_fall_delay.final_phase <<
MSDC_PAD_TUNE_DATRRDLY_S);
final_delay = final_fall_delay.final_phase;
}
if (mmc->selected_mode == MMC_HS_200 ||
mmc->selected_mode == UHS_SDR104)
clrsetbits_le32(tune_reg, MSDC_PAD_TUNE_DATWRDLY_M,
host->hs200_write_int_delay <<
MSDC_PAD_TUNE_DATWRDLY_S);
dev_dbg(dev, "Final data pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
/*
* MSDC IP which supports data tune + async fifo can do CMD/DAT tune
* together, which can save the tuning time.
*/
static int msdc_tune_together(struct udevice *dev, u32 opcode)
{
struct msdc_plat *plat = dev_get_platdata(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
u32 rise_delay = 0, fall_delay = 0;
struct msdc_delay_phase final_rise_delay, final_fall_delay = { 0, };
u8 final_delay, final_maxlen;
int i, ret;
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
msdc_set_cmd_delay(host, i);
msdc_set_data_delay(host, i);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret)
rise_delay |= (1 << i);
}
final_rise_delay = get_best_delay(dev, host, rise_delay);
if (final_rise_delay.maxlen >= 12 ||
(final_rise_delay.start == 0 && final_rise_delay.maxlen >= 4))
goto skip_fall;
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
for (i = 0; i < PAD_DELAY_MAX; i++) {
msdc_set_cmd_delay(host, i);
msdc_set_data_delay(host, i);
ret = mmc_send_tuning(mmc, opcode, NULL);
if (!ret)
fall_delay |= (1 << i);
}
final_fall_delay = get_best_delay(dev, host, fall_delay);
skip_fall:
final_maxlen = max(final_rise_delay.maxlen, final_fall_delay.maxlen);
if (final_maxlen == final_rise_delay.maxlen) {
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
final_delay = final_rise_delay.final_phase;
} else {
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_DSPL);
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_W_DSPL);
final_delay = final_fall_delay.final_phase;
}
msdc_set_cmd_delay(host, final_delay);
msdc_set_data_delay(host, final_delay);
dev_info(dev, "Final pad delay: %x\n", final_delay);
return final_delay == 0xff ? -EIO : 0;
}
static int msdc_execute_tuning(struct udevice *dev, uint opcode)
{
struct msdc_plat *plat = dev_get_platdata(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc *mmc = &plat->mmc;
int ret = 0;
if (host->dev_comp->data_tune && host->dev_comp->async_fifo) {
ret = msdc_tune_together(dev, opcode);
if (ret == -EIO) {
dev_err(dev, "Tune fail!\n");
return ret;
}
if (mmc->selected_mode == MMC_HS_400) {
clrbits_le32(&host->base->msdc_iocon,
MSDC_IOCON_DSPL | MSDC_IOCON_W_DSPL);
clrsetbits_le32(&host->base->pad_tune,
MSDC_PAD_TUNE_DATRRDLY_M, 0);
writel(host->hs400_ds_delay, &host->base->pad_ds_tune);
/* for hs400 mode it must be set to 0 */
clrbits_le32(&host->base->patch_bit2,
MSDC_PB2_CFGCRCSTS);
host->hs400_mode = true;
}
goto tune_done;
}
if (mmc->selected_mode == MMC_HS_400)
ret = hs400_tune_response(dev, opcode);
else
ret = msdc_tune_response(dev, opcode);
if (ret == -EIO) {
dev_err(dev, "Tune response fail!\n");
return ret;
}
if (mmc->selected_mode != MMC_HS_400) {
ret = msdc_tune_data(dev, opcode);
if (ret == -EIO) {
dev_err(dev, "Tune data fail!\n");
return ret;
}
}
tune_done:
host->saved_tune_para.iocon = readl(&host->base->msdc_iocon);
host->saved_tune_para.pad_tune = readl(&host->base->pad_tune);
host->saved_tune_para.pad_cmd_tune = readl(&host->base->pad_cmd_tune);
return ret;
}
#endif
static void msdc_init_hw(struct msdc_host *host)
{
u32 val;
void __iomem *tune_reg = &host->base->pad_tune;
if (host->dev_comp->pad_tune0)
tune_reg = &host->base->pad_tune0;
/* Configure to MMC/SD mode, clock free running */
setbits_le32(&host->base->msdc_cfg, MSDC_CFG_MODE);
/* Use PIO mode */
setbits_le32(&host->base->msdc_cfg, MSDC_CFG_PIO);
/* Reset */
msdc_reset_hw(host);
/* Enable/disable hw card detection according to fdt option */
if (host->builtin_cd)
clrsetbits_le32(&host->base->msdc_ps,
MSDC_PS_CDDBCE_M,
(DEFAULT_CD_DEBOUNCE << MSDC_PS_CDDBCE_S) |
MSDC_PS_CDEN);
else
clrbits_le32(&host->base->msdc_ps, MSDC_PS_CDEN);
/* Clear all interrupts */
val = readl(&host->base->msdc_int);
writel(val, &host->base->msdc_int);
/* Enable data & cmd interrupts */
writel(DATA_INTS_MASK | CMD_INTS_MASK, &host->base->msdc_inten);
writel(0, tune_reg);
writel(0, &host->base->msdc_iocon);
if (host->r_smpl)
setbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
else
clrbits_le32(&host->base->msdc_iocon, MSDC_IOCON_RSPL);
writel(0x403c0046, &host->base->patch_bit0);
writel(0xffff4089, &host->base->patch_bit1);
if (host->dev_comp->stop_clk_fix)
clrsetbits_le32(&host->base->patch_bit1, MSDC_PB1_STOP_DLY_M,
3 << MSDC_PB1_STOP_DLY_S);
if (host->dev_comp->busy_check)
clrbits_le32(&host->base->patch_bit1, (1 << 7));
setbits_le32(&host->base->emmc50_cfg0, EMMC50_CFG_CFCSTS_SEL);
if (host->dev_comp->async_fifo) {
clrsetbits_le32(&host->base->patch_bit2, MSDC_PB2_RESPWAIT_M,
3 << MSDC_PB2_RESPWAIT_S);
if (host->dev_comp->enhance_rx) {
if (host->top_base)
setbits_le32(&host->top_base->emmc_top_control,
SDC_RX_ENH_EN);
else
setbits_le32(&host->base->sdc_adv_cfg0,
SDC_RX_ENHANCE_EN);
} else {
clrsetbits_le32(&host->base->patch_bit2,
MSDC_PB2_RESPSTSENSEL_M,
2 << MSDC_PB2_RESPSTSENSEL_S);
clrsetbits_le32(&host->base->patch_bit2,
MSDC_PB2_CRCSTSENSEL_M,
2 << MSDC_PB2_CRCSTSENSEL_S);
}
/* use async fifo to avoid tune internal delay */
clrbits_le32(&host->base->patch_bit2,
MSDC_PB2_CFGRESP);
clrbits_le32(&host->base->patch_bit2,
MSDC_PB2_CFGCRCSTS);
}
if (host->dev_comp->data_tune) {
setbits_le32(tune_reg,
MSDC_PAD_TUNE_RD_SEL | MSDC_PAD_TUNE_CMD_SEL);
clrsetbits_le32(&host->base->patch_bit0,
MSDC_INT_DAT_LATCH_CK_SEL_M,
host->latch_ck <<
MSDC_INT_DAT_LATCH_CK_SEL_S);
} else {
/* choose clock tune */
setbits_le32(tune_reg, MSDC_PAD_TUNE_RXDLYSEL);
}
/* Configure to enable SDIO mode otherwise sdio cmd5 won't work */
setbits_le32(&host->base->sdc_cfg, SDC_CFG_SDIO);
/* disable detecting SDIO device interrupt function */
clrbits_le32(&host->base->sdc_cfg, SDC_CFG_SDIOIDE);
/* Configure to default data timeout */
clrsetbits_le32(&host->base->sdc_cfg, SDC_CFG_DTOC_M,
3 << SDC_CFG_DTOC_S);
if (host->dev_comp->stop_clk_fix) {
clrbits_le32(&host->base->sdc_fifo_cfg,
SDC_FIFO_CFG_WRVALIDSEL);
clrbits_le32(&host->base->sdc_fifo_cfg,
SDC_FIFO_CFG_RDVALIDSEL);
}
host->def_tune_para.iocon = readl(&host->base->msdc_iocon);
host->def_tune_para.pad_tune = readl(&host->base->pad_tune);
}
static void msdc_ungate_clock(struct msdc_host *host)
{
clk_enable(&host->src_clk);
clk_enable(&host->h_clk);
if (host->src_clk_cg.dev)
clk_enable(&host->src_clk_cg);
}
static int msdc_drv_probe(struct udevice *dev)
{
struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
struct msdc_plat *plat = dev_get_platdata(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc_config *cfg = &plat->cfg;
cfg->name = dev->name;
host->dev_comp = (struct msdc_compatible *)dev_get_driver_data(dev);
host->src_clk_freq = clk_get_rate(&host->src_clk);
if (host->dev_comp->clk_div_bits == 8)
cfg->f_min = host->src_clk_freq / (4 * 255);
else
cfg->f_min = host->src_clk_freq / (4 * 4095);
cfg->b_max = 1024;
cfg->voltages = MMC_VDD_32_33 | MMC_VDD_33_34;
host->mmc = &plat->mmc;
host->timeout_ns = 100000000;
host->timeout_clks = 3 * (1 << host->dev_comp->sclk_cycle_shift);
#ifdef CONFIG_PINCTRL
pinctrl_select_state(dev, "default");
#endif
msdc_ungate_clock(host);
msdc_init_hw(host);
upriv->mmc = &plat->mmc;
return 0;
}
static int msdc_ofdata_to_platdata(struct udevice *dev)
{
struct msdc_plat *plat = dev_get_platdata(dev);
struct msdc_host *host = dev_get_priv(dev);
struct mmc_config *cfg = &plat->cfg;
fdt_addr_t base, top_base;
int ret;
base = dev_read_addr(dev);
if (base == FDT_ADDR_T_NONE)
return -EINVAL;
host->base = map_sysmem(base, 0);
top_base = dev_read_addr_index(dev, 1);
if (top_base == FDT_ADDR_T_NONE)
host->top_base = NULL;
else
host->top_base = map_sysmem(top_base, 0);
ret = mmc_of_parse(dev, cfg);
if (ret)
return ret;
ret = clk_get_by_name(dev, "source", &host->src_clk);
if (ret < 0)
return ret;
ret = clk_get_by_name(dev, "hclk", &host->h_clk);
if (ret < 0)
return ret;
clk_get_by_name(dev, "source_cg", &host->src_clk_cg); /* optional */
#if CONFIG_IS_ENABLED(DM_GPIO)
gpio_request_by_name(dev, "wp-gpios", 0, &host->gpio_wp, GPIOD_IS_IN);
gpio_request_by_name(dev, "cd-gpios", 0, &host->gpio_cd, GPIOD_IS_IN);
#endif
host->hs400_ds_delay = dev_read_u32_default(dev, "hs400-ds-delay", 0);
host->hs200_cmd_int_delay =
dev_read_u32_default(dev, "cmd_int_delay", 0);
host->hs200_write_int_delay =
dev_read_u32_default(dev, "write_int_delay", 0);
host->latch_ck = dev_read_u32_default(dev, "latch-ck", 0);
host->r_smpl = dev_read_u32_default(dev, "r_smpl", 0);
host->builtin_cd = dev_read_u32_default(dev, "builtin-cd", 0);
host->cd_active_high = dev_read_bool(dev, "cd-active-high");
return 0;
}
static int msdc_drv_bind(struct udevice *dev)
{
struct msdc_plat *plat = dev_get_platdata(dev);
return mmc_bind(dev, &plat->mmc, &plat->cfg);
}
static const struct dm_mmc_ops msdc_ops = {
.send_cmd = msdc_ops_send_cmd,
.set_ios = msdc_ops_set_ios,
.get_cd = msdc_ops_get_cd,
.get_wp = msdc_ops_get_wp,
#ifdef MMC_SUPPORTS_TUNING
.execute_tuning = msdc_execute_tuning,
#endif
};
static const struct msdc_compatible mt7620_compat = {
.clk_div_bits = 8,
.sclk_cycle_shift = 16,
.pad_tune0 = false,
.async_fifo = false,
.data_tune = false,
.busy_check = false,
.stop_clk_fix = false,
.enhance_rx = false
};
static const struct msdc_compatible mt7622_compat = {
.clk_div_bits = 12,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
};
static const struct msdc_compatible mt7623_compat = {
.clk_div_bits = 12,
.sclk_cycle_shift = 20,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = false,
.stop_clk_fix = false,
.enhance_rx = false
};
static const struct msdc_compatible mt8512_compat = {
.clk_div_bits = 12,
.sclk_cycle_shift = 20,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
};
static const struct msdc_compatible mt8516_compat = {
.clk_div_bits = 12,
.sclk_cycle_shift = 20,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
};
static const struct msdc_compatible mt8183_compat = {
.clk_div_bits = 12,
.sclk_cycle_shift = 20,
.pad_tune0 = true,
.async_fifo = true,
.data_tune = true,
.busy_check = true,
.stop_clk_fix = true,
};
static const struct udevice_id msdc_ids[] = {
{ .compatible = "mediatek,mt7620-mmc", .data = (ulong)&mt7620_compat },
{ .compatible = "mediatek,mt7622-mmc", .data = (ulong)&mt7622_compat },
{ .compatible = "mediatek,mt7623-mmc", .data = (ulong)&mt7623_compat },
{ .compatible = "mediatek,mt8512-mmc", .data = (ulong)&mt8512_compat },
{ .compatible = "mediatek,mt8516-mmc", .data = (ulong)&mt8516_compat },
{ .compatible = "mediatek,mt8183-mmc", .data = (ulong)&mt8183_compat },
{}
};
U_BOOT_DRIVER(mtk_sd_drv) = {
.name = "mtk_sd",
.id = UCLASS_MMC,
.of_match = msdc_ids,
.ofdata_to_platdata = msdc_ofdata_to_platdata,
.bind = msdc_drv_bind,
.probe = msdc_drv_probe,
.ops = &msdc_ops,
.platdata_auto_alloc_size = sizeof(struct msdc_plat),
.priv_auto_alloc_size = sizeof(struct msdc_host),
};