| /* |
| * Copyright (c) 2014-2015, Antmicro Ltd <www.antmicro.com> |
| * Copyright (c) 2015, AW-SOM Technologies <www.aw-som.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <asm/arch/clock.h> |
| #include <asm/io.h> |
| #include <common.h> |
| #include <config.h> |
| #include <nand.h> |
| |
| /* registers */ |
| #define NFC_CTL 0x00000000 |
| #define NFC_ST 0x00000004 |
| #define NFC_INT 0x00000008 |
| #define NFC_TIMING_CTL 0x0000000C |
| #define NFC_TIMING_CFG 0x00000010 |
| #define NFC_ADDR_LOW 0x00000014 |
| #define NFC_ADDR_HIGH 0x00000018 |
| #define NFC_SECTOR_NUM 0x0000001C |
| #define NFC_CNT 0x00000020 |
| #define NFC_CMD 0x00000024 |
| #define NFC_RCMD_SET 0x00000028 |
| #define NFC_WCMD_SET 0x0000002C |
| #define NFC_IO_DATA 0x00000030 |
| #define NFC_ECC_CTL 0x00000034 |
| #define NFC_ECC_ST 0x00000038 |
| #define NFC_DEBUG 0x0000003C |
| #define NFC_ECC_CNT0 0x00000040 |
| #define NFC_ECC_CNT1 0x00000044 |
| #define NFC_ECC_CNT2 0x00000048 |
| #define NFC_ECC_CNT3 0x0000004C |
| #define NFC_USER_DATA_BASE 0x00000050 |
| #define NFC_EFNAND_STATUS 0x00000090 |
| #define NFC_SPARE_AREA 0x000000A0 |
| #define NFC_PATTERN_ID 0x000000A4 |
| #define NFC_RAM0_BASE 0x00000400 |
| #define NFC_RAM1_BASE 0x00000800 |
| |
| #define NFC_CTL_EN (1 << 0) |
| #define NFC_CTL_RESET (1 << 1) |
| #define NFC_CTL_RAM_METHOD (1 << 14) |
| #define NFC_CTL_PAGE_SIZE_MASK (0xf << 8) |
| #define NFC_CTL_PAGE_SIZE(a) ((fls(a) - 11) << 8) |
| |
| |
| #define NFC_ECC_EN (1 << 0) |
| #define NFC_ECC_PIPELINE (1 << 3) |
| #define NFC_ECC_EXCEPTION (1 << 4) |
| #define NFC_ECC_BLOCK_SIZE (1 << 5) |
| #define NFC_ECC_RANDOM_EN (1 << 9) |
| #define NFC_ECC_RANDOM_DIRECTION (1 << 10) |
| |
| |
| #define NFC_ADDR_NUM_OFFSET 16 |
| #define NFC_SEND_ADR (1 << 19) |
| #define NFC_ACCESS_DIR (1 << 20) |
| #define NFC_DATA_TRANS (1 << 21) |
| #define NFC_SEND_CMD1 (1 << 22) |
| #define NFC_WAIT_FLAG (1 << 23) |
| #define NFC_SEND_CMD2 (1 << 24) |
| #define NFC_SEQ (1 << 25) |
| #define NFC_DATA_SWAP_METHOD (1 << 26) |
| #define NFC_ROW_AUTO_INC (1 << 27) |
| #define NFC_SEND_CMD3 (1 << 28) |
| #define NFC_SEND_CMD4 (1 << 29) |
| #define NFC_RAW_CMD (0 << 30) |
| #define NFC_PAGE_CMD (2 << 30) |
| |
| #define NFC_ST_CMD_INT_FLAG (1 << 1) |
| #define NFC_ST_DMA_INT_FLAG (1 << 2) |
| |
| #define NFC_READ_CMD_OFFSET 0 |
| #define NFC_RANDOM_READ_CMD0_OFFSET 8 |
| #define NFC_RANDOM_READ_CMD1_OFFSET 16 |
| |
| #define NFC_CMD_RNDOUTSTART 0xE0 |
| #define NFC_CMD_RNDOUT 0x05 |
| #define NFC_CMD_READSTART 0x30 |
| |
| #define SUNXI_DMA_CFG_REG0 0x300 |
| #define SUNXI_DMA_SRC_START_ADDR_REG0 0x304 |
| #define SUNXI_DMA_DEST_START_ADDRR_REG0 0x308 |
| #define SUNXI_DMA_DDMA_BC_REG0 0x30C |
| #define SUNXI_DMA_DDMA_PARA_REG0 0x318 |
| |
| #define SUNXI_DMA_DDMA_CFG_REG_LOADING (1 << 31) |
| #define SUNXI_DMA_DDMA_CFG_REG_DMA_DEST_DATA_WIDTH_32 (2 << 25) |
| #define SUNXI_DMA_DDMA_CFG_REG_DDMA_DST_DRQ_TYPE_DRAM (1 << 16) |
| #define SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_DATA_WIDTH_32 (2 << 9) |
| #define SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_ADDR_MODE_IO (1 << 5) |
| #define SUNXI_DMA_DDMA_CFG_REG_DDMA_SRC_DRQ_TYPE_NFC (3 << 0) |
| |
| #define SUNXI_DMA_DDMA_PARA_REG_SRC_WAIT_CYC (0x0F << 0) |
| #define SUNXI_DMA_DDMA_PARA_REG_SRC_BLK_SIZE (0x7F << 8) |
| |
| struct nfc_config { |
| int page_size; |
| int ecc_strength; |
| int ecc_size; |
| int addr_cycles; |
| int nseeds; |
| bool randomize; |
| bool valid; |
| }; |
| |
| /* minimal "boot0" style NAND support for Allwinner A20 */ |
| |
| /* random seed used by linux */ |
| const uint16_t random_seed[128] = { |
| 0x2b75, 0x0bd0, 0x5ca3, 0x62d1, 0x1c93, 0x07e9, 0x2162, 0x3a72, |
| 0x0d67, 0x67f9, 0x1be7, 0x077d, 0x032f, 0x0dac, 0x2716, 0x2436, |
| 0x7922, 0x1510, 0x3860, 0x5287, 0x480f, 0x4252, 0x1789, 0x5a2d, |
| 0x2a49, 0x5e10, 0x437f, 0x4b4e, 0x2f45, 0x216e, 0x5cb7, 0x7130, |
| 0x2a3f, 0x60e4, 0x4dc9, 0x0ef0, 0x0f52, 0x1bb9, 0x6211, 0x7a56, |
| 0x226d, 0x4ea7, 0x6f36, 0x3692, 0x38bf, 0x0c62, 0x05eb, 0x4c55, |
| 0x60f4, 0x728c, 0x3b6f, 0x2037, 0x7f69, 0x0936, 0x651a, 0x4ceb, |
| 0x6218, 0x79f3, 0x383f, 0x18d9, 0x4f05, 0x5c82, 0x2912, 0x6f17, |
| 0x6856, 0x5938, 0x1007, 0x61ab, 0x3e7f, 0x57c2, 0x542f, 0x4f62, |
| 0x7454, 0x2eac, 0x7739, 0x42d4, 0x2f90, 0x435a, 0x2e52, 0x2064, |
| 0x637c, 0x66ad, 0x2c90, 0x0bad, 0x759c, 0x0029, 0x0986, 0x7126, |
| 0x1ca7, 0x1605, 0x386a, 0x27f5, 0x1380, 0x6d75, 0x24c3, 0x0f8e, |
| 0x2b7a, 0x1418, 0x1fd1, 0x7dc1, 0x2d8e, 0x43af, 0x2267, 0x7da3, |
| 0x4e3d, 0x1338, 0x50db, 0x454d, 0x764d, 0x40a3, 0x42e6, 0x262b, |
| 0x2d2e, 0x1aea, 0x2e17, 0x173d, 0x3a6e, 0x71bf, 0x25f9, 0x0a5d, |
| 0x7c57, 0x0fbe, 0x46ce, 0x4939, 0x6b17, 0x37bb, 0x3e91, 0x76db, |
| }; |
| |
| #define DEFAULT_TIMEOUT_US 100000 |
| |
| static int check_value_inner(int offset, int expected_bits, |
| int timeout_us, int negation) |
| { |
| do { |
| int val = readl(offset) & expected_bits; |
| if (negation ? !val : val) |
| return 1; |
| udelay(1); |
| } while (--timeout_us); |
| |
| return 0; |
| } |
| |
| static inline int check_value(int offset, int expected_bits, |
| int timeout_us) |
| { |
| return check_value_inner(offset, expected_bits, timeout_us, 0); |
| } |
| |
| static inline int check_value_negated(int offset, int unexpected_bits, |
| int timeout_us) |
| { |
| return check_value_inner(offset, unexpected_bits, timeout_us, 1); |
| } |
| |
| void nand_init(void) |
| { |
| uint32_t val; |
| |
| board_nand_init(); |
| |
| val = readl(SUNXI_NFC_BASE + NFC_CTL); |
| /* enable and reset CTL */ |
| writel(val | NFC_CTL_EN | NFC_CTL_RESET, |
| SUNXI_NFC_BASE + NFC_CTL); |
| |
| if (!check_value_negated(SUNXI_NFC_BASE + NFC_CTL, |
| NFC_CTL_RESET, DEFAULT_TIMEOUT_US)) { |
| printf("Couldn't initialize nand\n"); |
| } |
| |
| /* reset NAND */ |
| writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST); |
| writel(NFC_SEND_CMD1 | NFC_WAIT_FLAG | NAND_CMD_RESET, |
| SUNXI_NFC_BASE + NFC_CMD); |
| |
| if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG, |
| DEFAULT_TIMEOUT_US)) { |
| printf("Error timeout waiting for nand reset\n"); |
| return; |
| } |
| writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST); |
| } |
| |
| static void nand_apply_config(const struct nfc_config *conf) |
| { |
| u32 val; |
| |
| val = readl(SUNXI_NFC_BASE + NFC_CTL); |
| val &= ~NFC_CTL_PAGE_SIZE_MASK; |
| writel(val | NFC_CTL_RAM_METHOD | NFC_CTL_PAGE_SIZE(conf->page_size), |
| SUNXI_NFC_BASE + NFC_CTL); |
| writel(conf->ecc_size, SUNXI_NFC_BASE + NFC_CNT); |
| writel(conf->page_size, SUNXI_NFC_BASE + NFC_SPARE_AREA); |
| } |
| |
| static int nand_load_page(const struct nfc_config *conf, u32 offs) |
| { |
| int page = offs / conf->page_size; |
| |
| writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) | |
| (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) | |
| (NFC_CMD_READSTART << NFC_READ_CMD_OFFSET), |
| SUNXI_NFC_BASE + NFC_RCMD_SET); |
| writel(((page & 0xFFFF) << 16), SUNXI_NFC_BASE + NFC_ADDR_LOW); |
| writel((page >> 16) & 0xFF, SUNXI_NFC_BASE + NFC_ADDR_HIGH); |
| writel(NFC_ST_CMD_INT_FLAG, SUNXI_NFC_BASE + NFC_ST); |
| writel(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD | NFC_WAIT_FLAG | |
| ((conf->addr_cycles - 1) << NFC_ADDR_NUM_OFFSET) | NFC_SEND_ADR, |
| SUNXI_NFC_BASE + NFC_CMD); |
| |
| if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG, |
| DEFAULT_TIMEOUT_US)) { |
| printf("Error while initializing dma interrupt\n"); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| static int nand_reset_column(void) |
| { |
| writel((NFC_CMD_RNDOUTSTART << NFC_RANDOM_READ_CMD1_OFFSET) | |
| (NFC_CMD_RNDOUT << NFC_RANDOM_READ_CMD0_OFFSET) | |
| (NFC_CMD_RNDOUTSTART << NFC_READ_CMD_OFFSET), |
| SUNXI_NFC_BASE + NFC_RCMD_SET); |
| writel(0, SUNXI_NFC_BASE + NFC_ADDR_LOW); |
| writel(NFC_SEND_CMD1 | NFC_SEND_CMD2 | NFC_RAW_CMD | |
| (1 << NFC_ADDR_NUM_OFFSET) | NFC_SEND_ADR | NFC_CMD_RNDOUT, |
| SUNXI_NFC_BASE + NFC_CMD); |
| |
| if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_CMD_INT_FLAG, |
| DEFAULT_TIMEOUT_US)) { |
| printf("Error while initializing dma interrupt\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static int nand_read_page(const struct nfc_config *conf, u32 offs, |
| void *dest, int len) |
| { |
| dma_addr_t dst = (dma_addr_t)dest; |
| int nsectors = len / conf->ecc_size; |
| u16 rand_seed; |
| u32 val; |
| int page; |
| |
| page = offs / conf->page_size; |
| |
| if (offs % conf->page_size || len % conf->ecc_size || |
| len > conf->page_size || len < 0) |
| return -EINVAL; |
| |
| /* clear ecc status */ |
| writel(0, SUNXI_NFC_BASE + NFC_ECC_ST); |
| |
| /* Choose correct seed */ |
| rand_seed = random_seed[page % conf->nseeds]; |
| |
| writel((rand_seed << 16) | (conf->ecc_strength << 12) | |
| (conf->randomize ? NFC_ECC_RANDOM_EN : 0) | |
| (conf->ecc_size == 512 ? NFC_ECC_BLOCK_SIZE : 0) | |
| NFC_ECC_EN | NFC_ECC_PIPELINE | NFC_ECC_EXCEPTION, |
| SUNXI_NFC_BASE + NFC_ECC_CTL); |
| |
| flush_dcache_range(dst, ALIGN(dst + conf->ecc_size, ARCH_DMA_MINALIGN)); |
| |
| /* SUNXI_DMA */ |
| writel(0x0, SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0); /* clr dma cmd */ |
| /* read from REG_IO_DATA */ |
| writel(SUNXI_NFC_BASE + NFC_IO_DATA, |
| SUNXI_DMA_BASE + SUNXI_DMA_SRC_START_ADDR_REG0); |
| /* read to RAM */ |
| writel(dst, SUNXI_DMA_BASE + SUNXI_DMA_DEST_START_ADDRR_REG0); |
| writel(SUNXI_DMA_DDMA_PARA_REG_SRC_WAIT_CYC | |
| SUNXI_DMA_DDMA_PARA_REG_SRC_BLK_SIZE, |
| SUNXI_DMA_BASE + SUNXI_DMA_DDMA_PARA_REG0); |
| writel(len, SUNXI_DMA_BASE + SUNXI_DMA_DDMA_BC_REG0); |
| writel(SUNXI_DMA_DDMA_CFG_REG_LOADING | |
| SUNXI_DMA_DDMA_CFG_REG_DMA_DEST_DATA_WIDTH_32 | |
| SUNXI_DMA_DDMA_CFG_REG_DDMA_DST_DRQ_TYPE_DRAM | |
| SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_DATA_WIDTH_32 | |
| SUNXI_DMA_DDMA_CFG_REG_DMA_SRC_ADDR_MODE_IO | |
| SUNXI_DMA_DDMA_CFG_REG_DDMA_SRC_DRQ_TYPE_NFC, |
| SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0); |
| |
| writel(nsectors, SUNXI_NFC_BASE + NFC_SECTOR_NUM); |
| writel(NFC_ST_DMA_INT_FLAG, SUNXI_NFC_BASE + NFC_ST); |
| writel(NFC_DATA_TRANS | NFC_PAGE_CMD | NFC_DATA_SWAP_METHOD, |
| SUNXI_NFC_BASE + NFC_CMD); |
| |
| if (!check_value(SUNXI_NFC_BASE + NFC_ST, NFC_ST_DMA_INT_FLAG, |
| DEFAULT_TIMEOUT_US)) { |
| printf("Error while initializing dma interrupt\n"); |
| return -EIO; |
| } |
| writel(NFC_ST_DMA_INT_FLAG, SUNXI_NFC_BASE + NFC_ST); |
| |
| if (!check_value_negated(SUNXI_DMA_BASE + SUNXI_DMA_CFG_REG0, |
| SUNXI_DMA_DDMA_CFG_REG_LOADING, |
| DEFAULT_TIMEOUT_US)) { |
| printf("Error while waiting for dma transfer to finish\n"); |
| return -EIO; |
| } |
| |
| invalidate_dcache_range(dst, |
| ALIGN(dst + conf->ecc_size, ARCH_DMA_MINALIGN)); |
| |
| val = readl(SUNXI_NFC_BASE + NFC_ECC_ST); |
| |
| /* ECC error detected. */ |
| if (val & 0xffff) |
| return -EIO; |
| |
| /* |
| * Return 1 if the page is empty. |
| * We consider the page as empty if the first ECC block is marked |
| * empty. |
| */ |
| return (val & 0x10000) ? 1 : 0; |
| } |
| |
| static int nand_max_ecc_strength(struct nfc_config *conf) |
| { |
| static const int ecc_bytes[] = { 32, 46, 54, 60, 74, 88, 102, 110, 116 }; |
| int max_oobsize, max_ecc_bytes; |
| int nsectors = conf->page_size / conf->ecc_size; |
| int i; |
| |
| /* |
| * ECC strength is limited by the size of the OOB area which is |
| * correlated with the page size. |
| */ |
| switch (conf->page_size) { |
| case 2048: |
| max_oobsize = 64; |
| break; |
| case 4096: |
| max_oobsize = 256; |
| break; |
| case 8192: |
| max_oobsize = 640; |
| break; |
| case 16384: |
| max_oobsize = 1664; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| max_ecc_bytes = max_oobsize / nsectors; |
| |
| for (i = 0; i < ARRAY_SIZE(ecc_bytes); i++) { |
| if (ecc_bytes[i] > max_ecc_bytes) |
| break; |
| } |
| |
| if (!i) |
| return -EINVAL; |
| |
| return i - 1; |
| } |
| |
| static int nand_detect_ecc_config(struct nfc_config *conf, u32 offs, |
| void *dest) |
| { |
| /* NAND with pages > 4k will likely require 1k sector size. */ |
| int min_ecc_size = conf->page_size > 4096 ? 1024 : 512; |
| int page = offs / conf->page_size; |
| int ret; |
| |
| /* |
| * In most cases, 1k sectors are preferred over 512b ones, start |
| * testing this config first. |
| */ |
| for (conf->ecc_size = 1024; conf->ecc_size >= min_ecc_size; |
| conf->ecc_size >>= 1) { |
| int max_ecc_strength = nand_max_ecc_strength(conf); |
| |
| nand_apply_config(conf); |
| |
| /* |
| * We are starting from the maximum ECC strength because |
| * most of the time NAND vendors provide an OOB area that |
| * barely meets the ECC requirements. |
| */ |
| for (conf->ecc_strength = max_ecc_strength; |
| conf->ecc_strength >= 0; |
| conf->ecc_strength--) { |
| conf->randomize = false; |
| if (nand_reset_column()) |
| return -EIO; |
| |
| /* |
| * Only read the first sector to speedup detection. |
| */ |
| ret = nand_read_page(conf, offs, dest, conf->ecc_size); |
| if (!ret) { |
| return 0; |
| } else if (ret > 0) { |
| /* |
| * If page is empty we can't deduce anything |
| * about the ECC config => stop the detection. |
| */ |
| return -EINVAL; |
| } |
| |
| conf->randomize = true; |
| conf->nseeds = ARRAY_SIZE(random_seed); |
| do { |
| if (nand_reset_column()) |
| return -EIO; |
| |
| if (!nand_read_page(conf, offs, dest, |
| conf->ecc_size)) |
| return 0; |
| |
| /* |
| * Find the next ->nseeds value that would |
| * change the randomizer seed for the page |
| * we're trying to read. |
| */ |
| while (conf->nseeds >= 16) { |
| int seed = page % conf->nseeds; |
| |
| conf->nseeds >>= 1; |
| if (seed != page % conf->nseeds) |
| break; |
| } |
| } while (conf->nseeds >= 16); |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int nand_detect_config(struct nfc_config *conf, u32 offs, void *dest) |
| { |
| if (conf->valid) |
| return 0; |
| |
| /* |
| * Modern NANDs are more likely than legacy ones, so we start testing |
| * with 5 address cycles. |
| */ |
| for (conf->addr_cycles = 5; |
| conf->addr_cycles >= 4; |
| conf->addr_cycles--) { |
| int max_page_size = conf->addr_cycles == 4 ? 2048 : 16384; |
| |
| /* |
| * Ignoring 1k pages cause I'm not even sure this case exist |
| * in the real world. |
| */ |
| for (conf->page_size = 2048; conf->page_size <= max_page_size; |
| conf->page_size <<= 1) { |
| if (nand_load_page(conf, offs)) |
| return -1; |
| |
| if (!nand_detect_ecc_config(conf, offs, dest)) { |
| conf->valid = true; |
| return 0; |
| } |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int nand_read_buffer(struct nfc_config *conf, uint32_t offs, |
| unsigned int size, void *dest) |
| { |
| int first_seed, page, ret; |
| |
| size = ALIGN(size, conf->page_size); |
| page = offs / conf->page_size; |
| first_seed = page % conf->nseeds; |
| |
| for (; size; size -= conf->page_size) { |
| if (nand_load_page(conf, offs)) |
| return -1; |
| |
| ret = nand_read_page(conf, offs, dest, conf->page_size); |
| /* |
| * The ->nseeds value should be equal to the number of pages |
| * in an eraseblock. Since we don't know this information in |
| * advance we might have picked a wrong value. |
| */ |
| if (ret < 0 && conf->randomize) { |
| int cur_seed = page % conf->nseeds; |
| |
| /* |
| * We already tried all the seed values => we are |
| * facing a real corruption. |
| */ |
| if (cur_seed < first_seed) |
| return -EIO; |
| |
| /* Try to adjust ->nseeds and read the page again... */ |
| conf->nseeds = cur_seed; |
| |
| if (nand_reset_column()) |
| return -EIO; |
| |
| /* ... it still fails => it's a real corruption. */ |
| if (nand_read_page(conf, offs, dest, conf->page_size)) |
| return -EIO; |
| } else if (ret && conf->randomize) { |
| memset(dest, 0xff, conf->page_size); |
| } |
| |
| page++; |
| offs += conf->page_size; |
| dest += conf->page_size; |
| } |
| |
| return 0; |
| } |
| |
| int nand_spl_load_image(uint32_t offs, unsigned int size, void *dest) |
| { |
| static struct nfc_config conf = { }; |
| int ret; |
| |
| ret = nand_detect_config(&conf, offs, dest); |
| if (ret) |
| return ret; |
| |
| return nand_read_buffer(&conf, offs, size, dest); |
| } |
| |
| void nand_deselect(void) |
| { |
| struct sunxi_ccm_reg *const ccm = |
| (struct sunxi_ccm_reg *)SUNXI_CCM_BASE; |
| |
| clrbits_le32(&ccm->ahb_gate0, (CLK_GATE_OPEN << AHB_GATE_OFFSET_NAND0)); |
| #ifdef CONFIG_MACH_SUN9I |
| clrbits_le32(&ccm->ahb_gate1, (1 << AHB_GATE_OFFSET_DMA)); |
| #else |
| clrbits_le32(&ccm->ahb_gate0, (1 << AHB_GATE_OFFSET_DMA)); |
| #endif |
| clrbits_le32(&ccm->nand0_clk_cfg, CCM_NAND_CTRL_ENABLE | AHB_DIV_1); |
| } |