blob: ad56dd7d019d98369adf6ce2eca061b21d78cda3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2013
* Reinhard Pfau, Guntermann & Drunck GmbH, reinhard.pfau@gdsys.cc
*/
/* TODO: some more #ifdef's to avoid unneeded code for stage 1 / stage 2 */
#ifdef CCDM_ID_DEBUG
#define DEBUG
#endif
#include <common.h>
#include <command.h>
#include <dm.h>
#include <env.h>
#include <hang.h>
#include <malloc.h>
#include <fs.h>
#include <i2c.h>
#include <mmc.h>
#include <tpm-v1.h>
#include <u-boot/crc.h>
#include <u-boot/sha1.h>
#include <asm/byteorder.h>
#include <asm/unaligned.h>
#include <pca9698.h>
#undef CCDM_FIRST_STAGE
#undef CCDM_SECOND_STAGE
#undef CCDM_AUTO_FIRST_STAGE
#ifdef CONFIG_DEVELOP
#define CCDM_DEVELOP
#endif
#ifdef CONFIG_TRAILBLAZER
#define CCDM_FIRST_STAGE
#undef CCDM_SECOND_STAGE
#else
#undef CCDM_FIRST_STAGE
#define CCDM_SECOND_STAGE
#endif
#if defined(CCDM_DEVELOP) && defined(CCDM_SECOND_STAGE) && \
!defined(CCCM_FIRST_STAGE)
#define CCDM_AUTO_FIRST_STAGE
#endif
/* CCDM specific contants */
enum {
/* NV indices */
NV_COMMON_DATA_INDEX = 0x40000001,
/* magics for key blob chains */
MAGIC_KEY_PROGRAM = 0x68726500,
MAGIC_HMAC = 0x68616300,
MAGIC_END_OF_CHAIN = 0x00000000,
/* sizes */
NV_COMMON_DATA_MIN_SIZE = 3 * sizeof(uint64_t) + 2 * sizeof(uint16_t),
};
/* other constants */
enum {
ESDHC_BOOT_IMAGE_SIG_OFS = 0x40,
ESDHC_BOOT_IMAGE_SIZE_OFS = 0x48,
ESDHC_BOOT_IMAGE_ADDR_OFS = 0x50,
ESDHC_BOOT_IMAGE_TARGET_OFS = 0x58,
ESDHC_BOOT_IMAGE_ENTRY_OFS = 0x60,
};
enum {
I2C_SOC_0 = 0,
I2C_SOC_1 = 1,
};
struct key_program {
uint32_t magic;
uint32_t code_crc;
uint32_t code_size;
uint8_t code[];
};
struct h_reg {
bool valid;
uint8_t digest[20];
};
enum access_mode {
HREG_NONE = 0,
HREG_RD = 1,
HREG_WR = 2,
HREG_RDWR = 3,
};
/* register constants */
enum {
FIX_HREG_DEVICE_ID_HASH = 0,
FIX_HREG_SELF_HASH = 1,
FIX_HREG_STAGE2_HASH = 2,
FIX_HREG_VENDOR = 3,
COUNT_FIX_HREGS
};
/* hre opcodes */
enum {
/* opcodes w/o data */
HRE_NOP = 0x00,
HRE_SYNC = HRE_NOP,
HRE_CHECK0 = 0x01,
/* opcodes w/o data, w/ sync dst */
/* opcodes w/ data */
HRE_LOAD = 0x81,
/* opcodes w/data, w/sync dst */
HRE_XOR = 0xC1,
HRE_AND = 0xC2,
HRE_OR = 0xC3,
HRE_EXTEND = 0xC4,
HRE_LOADKEY = 0xC5,
};
/* hre errors */
enum {
HRE_E_OK = 0,
HRE_E_TPM_FAILURE,
HRE_E_INVALID_HREG,
};
static uint64_t device_id;
static uint64_t device_cl;
static uint64_t device_type;
static uint32_t platform_key_handle;
static void(*bl2_entry)(void);
static struct h_reg pcr_hregs[24];
static struct h_reg fix_hregs[COUNT_FIX_HREGS];
static struct h_reg var_hregs[8];
static uint32_t hre_tpm_err;
static int hre_err = HRE_E_OK;
#define IS_PCR_HREG(spec) ((spec) & 0x20)
#define IS_FIX_HREG(spec) (((spec) & 0x38) == 0x08)
#define IS_VAR_HREG(spec) (((spec) & 0x38) == 0x10)
#define HREG_IDX(spec) ((spec) & (IS_PCR_HREG(spec) ? 0x1f : 0x7))
static int get_tpm(struct udevice **devp)
{
int rc;
rc = uclass_first_device_err(UCLASS_TPM, devp);
if (rc) {
printf("Could not find TPM (ret=%d)\n", rc);
return CMD_RET_FAILURE;
}
return 0;
}
static const uint8_t vendor[] = "Guntermann & Drunck";
/**
* @brief read a bunch of data from MMC into memory.
*
* @param mmc pointer to the mmc structure to use.
* @param src offset where the data starts on MMC/SD device (in bytes).
* @param dst pointer to the location where the read data should be stored.
* @param size number of bytes to read from the MMC/SD device.
* @return number of bytes read or -1 on error.
*/
static int ccdm_mmc_read(struct mmc *mmc, u64 src, u8 *dst, int size)
{
int result = 0;
u32 blk_len, ofs;
ulong block_no, n, cnt;
u8 *tmp_buf = NULL;
if (size <= 0)
goto end;
blk_len = mmc->read_bl_len;
tmp_buf = malloc(blk_len);
if (!tmp_buf)
goto failure;
block_no = src / blk_len;
ofs = src % blk_len;
if (ofs) {
n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
tmp_buf);
if (!n)
goto failure;
result = min(size, (int)(blk_len - ofs));
memcpy(dst, tmp_buf + ofs, result);
dst += result;
size -= result;
}
cnt = size / blk_len;
if (cnt) {
n = mmc->block_dev.block_read(&mmc->block_dev, block_no, cnt,
dst);
if (n != cnt)
goto failure;
size -= cnt * blk_len;
result += cnt * blk_len;
dst += cnt * blk_len;
block_no += cnt;
}
if (size) {
n = mmc->block_dev.block_read(&mmc->block_dev, block_no++, 1,
tmp_buf);
if (!n)
goto failure;
memcpy(dst, tmp_buf, size);
result += size;
}
goto end;
failure:
result = -1;
end:
if (tmp_buf)
free(tmp_buf);
return result;
}
/**
* @brief returns a location where the 2nd stage bootloader can be(/ is) placed.
*
* @return pointer to the location for/of the 2nd stage bootloader
*/
static u8 *get_2nd_stage_bl_location(ulong target_addr)
{
ulong addr;
#ifdef CCDM_SECOND_STAGE
addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
#else
addr = target_addr;
#endif
return (u8 *)(addr);
}
#ifdef CCDM_SECOND_STAGE
/**
* @brief returns a location where the image can be(/ is) placed.
*
* @return pointer to the location for/of the image
*/
static u8 *get_image_location(void)
{
ulong addr;
/* TODO use other area? */
addr = env_get_ulong("loadaddr", 16, CONFIG_LOADADDR);
return (u8 *)(addr);
}
#endif
/**
* @brief get the size of a given (TPM) NV area
* @param index NV index of the area to get size for
* @param size pointer to the size
* @return 0 on success, != 0 on error
*/
static int get_tpm_nv_size(struct udevice *tpm, uint32_t index, uint32_t *size)
{
uint32_t err;
uint8_t info[72];
uint8_t *ptr;
uint16_t v16;
err = tpm_get_capability(tpm, TPM_CAP_NV_INDEX, index,
info, sizeof(info));
if (err) {
printf("tpm_get_capability(CAP_NV_INDEX, %08x) failed: %u\n",
index, err);
return 1;
}
/* skip tag and nvIndex */
ptr = info + 6;
/* skip 2 pcr info fields */
v16 = get_unaligned_be16(ptr);
ptr += 2 + v16 + 1 + 20;
v16 = get_unaligned_be16(ptr);
ptr += 2 + v16 + 1 + 20;
/* skip permission and flags */
ptr += 6 + 3;
*size = get_unaligned_be32(ptr);
return 0;
}
/**
* @brief search for a key by usage auth and pub key hash.
* @param auth usage auth of the key to search for
* @param pubkey_digest (SHA1) hash of the pub key structure of the key
* @param[out] handle the handle of the key iff found
* @return 0 if key was found in TPM; != 0 if not.
*/
static int find_key(struct udevice *tpm, const uint8_t auth[20],
const uint8_t pubkey_digest[20], uint32_t *handle)
{
uint16_t key_count;
uint32_t key_handles[10];
uint8_t buf[288];
uint8_t *ptr;
uint32_t err;
uint8_t digest[20];
size_t buf_len;
unsigned int i;
/* fetch list of already loaded keys in the TPM */
err = tpm_get_capability(tpm, TPM_CAP_HANDLE, TPM_RT_KEY, buf,
sizeof(buf));
if (err)
return -1;
key_count = get_unaligned_be16(buf);
ptr = buf + 2;
for (i = 0; i < key_count; ++i, ptr += 4)
key_handles[i] = get_unaligned_be32(ptr);
/* now search a(/ the) key which we can access with the given auth */
for (i = 0; i < key_count; ++i) {
buf_len = sizeof(buf);
err = tpm_get_pub_key_oiap(tpm, key_handles[i], auth, buf,
&buf_len);
if (err && err != TPM_AUTHFAIL)
return -1;
if (err)
continue;
sha1_csum(buf, buf_len, digest);
if (!memcmp(digest, pubkey_digest, 20)) {
*handle = key_handles[i];
return 0;
}
}
return 1;
}
/**
* @brief read CCDM common data from TPM NV
* @return 0 if CCDM common data was found and read, !=0 if something failed.
*/
static int read_common_data(struct udevice *tpm)
{
uint32_t size;
uint32_t err;
uint8_t buf[256];
sha1_context ctx;
if (get_tpm_nv_size(tpm, NV_COMMON_DATA_INDEX, &size) ||
size < NV_COMMON_DATA_MIN_SIZE)
return 1;
err = tpm_nv_read_value(tpm, NV_COMMON_DATA_INDEX,
buf, min(sizeof(buf), size));
if (err) {
printf("tpm_nv_read_value() failed: %u\n", err);
return 1;
}
device_id = get_unaligned_be64(buf);
device_cl = get_unaligned_be64(buf + 8);
device_type = get_unaligned_be64(buf + 16);
sha1_starts(&ctx);
sha1_update(&ctx, buf, 24);
sha1_finish(&ctx, fix_hregs[FIX_HREG_DEVICE_ID_HASH].digest);
fix_hregs[FIX_HREG_DEVICE_ID_HASH].valid = true;
platform_key_handle = get_unaligned_be32(buf + 24);
return 0;
}
/**
* @brief compute hash of bootloader itself.
* @param[out] dst hash register where the hash should be stored
* @return 0 on success, != 0 on failure.
*
* @note MUST be called at a time where the boot loader is accessible at the
* configured location (; so take care when code is reallocated).
*/
static int compute_self_hash(struct h_reg *dst)
{
sha1_csum((const uint8_t *)CONFIG_SYS_MONITOR_BASE,
CONFIG_SYS_MONITOR_LEN, dst->digest);
dst->valid = true;
return 0;
}
int ccdm_compute_self_hash(void)
{
if (!fix_hregs[FIX_HREG_SELF_HASH].valid)
compute_self_hash(&fix_hregs[FIX_HREG_SELF_HASH]);
return 0;
}
/**
* @brief compute the hash of the 2nd stage boot loader (on SD card)
* @param[out] dst hash register to store the computed hash
* @return 0 on success, != 0 on failure
*
* Determines the size and location of the 2nd stage boot loader on SD card,
* loads the 2nd stage boot loader and computes the (SHA1) hash value.
* Within the 1st stage boot loader, the 2nd stage boot loader is loaded at
* the desired memory location and the variable @a bl2_entry is set.
*
* @note This sets the variable @a bl2_entry to the entry point when the
* 2nd stage boot loader is loaded at its configured memory location.
*/
static int compute_second_stage_hash(struct h_reg *dst)
{
int result = 0;
u32 code_len, code_offset, target_addr, exec_entry;
struct mmc *mmc;
u8 *load_addr = NULL;
u8 buf[128];
mmc = find_mmc_device(0);
if (!mmc)
goto failure;
mmc_init(mmc);
if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) < 0)
goto failure;
code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
target_addr = *(u32 *)(buf + ESDHC_BOOT_IMAGE_TARGET_OFS);
exec_entry = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ENTRY_OFS);
load_addr = get_2nd_stage_bl_location(target_addr);
if (load_addr == (u8 *)target_addr)
bl2_entry = (void(*)(void))exec_entry;
if (ccdm_mmc_read(mmc, code_offset, load_addr, code_len) < 0)
goto failure;
sha1_csum(load_addr, code_len, dst->digest);
dst->valid = true;
goto end;
failure:
result = 1;
bl2_entry = NULL;
end:
return result;
}
/**
* @brief get pointer to hash register by specification
* @param spec specification of a hash register
* @return pointer to hash register or NULL if @a spec does not qualify a
* valid hash register; NULL else.
*/
static struct h_reg *get_hreg(uint8_t spec)
{
uint8_t idx;
idx = HREG_IDX(spec);
if (IS_FIX_HREG(spec)) {
if (idx < ARRAY_SIZE(fix_hregs))
return fix_hregs + idx;
hre_err = HRE_E_INVALID_HREG;
} else if (IS_PCR_HREG(spec)) {
if (idx < ARRAY_SIZE(pcr_hregs))
return pcr_hregs + idx;
hre_err = HRE_E_INVALID_HREG;
} else if (IS_VAR_HREG(spec)) {
if (idx < ARRAY_SIZE(var_hregs))
return var_hregs + idx;
hre_err = HRE_E_INVALID_HREG;
}
return NULL;
}
/**
* @brief get pointer of a hash register by specification and usage.
* @param spec specification of a hash register
* @param mode access mode (read or write or read/write)
* @return pointer to hash register if found and valid; NULL else.
*
* This func uses @a get_reg() to determine the hash register for a given spec.
* If a register is found it is validated according to the desired access mode.
* The value of automatic registers (PCR register and fixed registers) is
* loaded or computed on read access.
*/
static struct h_reg *access_hreg(struct udevice *tpm, uint8_t spec,
enum access_mode mode)
{
struct h_reg *result;
result = get_hreg(spec);
if (!result)
return NULL;
if (mode & HREG_WR) {
if (IS_FIX_HREG(spec)) {
hre_err = HRE_E_INVALID_HREG;
return NULL;
}
}
if (mode & HREG_RD) {
if (!result->valid) {
if (IS_PCR_HREG(spec)) {
hre_tpm_err = tpm_pcr_read(tpm, HREG_IDX(spec),
result->digest, 20);
result->valid = (hre_tpm_err == TPM_SUCCESS);
} else if (IS_FIX_HREG(spec)) {
switch (HREG_IDX(spec)) {
case FIX_HREG_DEVICE_ID_HASH:
read_common_data(tpm);
break;
case FIX_HREG_SELF_HASH:
ccdm_compute_self_hash();
break;
case FIX_HREG_STAGE2_HASH:
compute_second_stage_hash(result);
break;
case FIX_HREG_VENDOR:
memcpy(result->digest, vendor, 20);
result->valid = true;
break;
}
} else {
result->valid = true;
}
}
if (!result->valid) {
hre_err = HRE_E_INVALID_HREG;
return NULL;
}
}
return result;
}
static void *compute_and(void *_dst, const void *_src, size_t n)
{
uint8_t *dst = _dst;
const uint8_t *src = _src;
size_t i;
for (i = n; i-- > 0; )
*dst++ &= *src++;
return _dst;
}
static void *compute_or(void *_dst, const void *_src, size_t n)
{
uint8_t *dst = _dst;
const uint8_t *src = _src;
size_t i;
for (i = n; i-- > 0; )
*dst++ |= *src++;
return _dst;
}
static void *compute_xor(void *_dst, const void *_src, size_t n)
{
uint8_t *dst = _dst;
const uint8_t *src = _src;
size_t i;
for (i = n; i-- > 0; )
*dst++ ^= *src++;
return _dst;
}
static void *compute_extend(void *_dst, const void *_src, size_t n)
{
uint8_t digest[20];
sha1_context ctx;
sha1_starts(&ctx);
sha1_update(&ctx, _dst, n);
sha1_update(&ctx, _src, n);
sha1_finish(&ctx, digest);
memcpy(_dst, digest, min(n, sizeof(digest)));
return _dst;
}
static int hre_op_loadkey(struct udevice *tpm, struct h_reg *src_reg,
struct h_reg *dst_reg, const void *key,
size_t key_size)
{
uint32_t parent_handle;
uint32_t key_handle;
if (!src_reg || !dst_reg || !src_reg->valid || !dst_reg->valid)
return -1;
if (find_key(tpm, src_reg->digest, dst_reg->digest, &parent_handle))
return -1;
hre_tpm_err = tpm_load_key2_oiap(tpm, parent_handle, key, key_size,
src_reg->digest, &key_handle);
if (hre_tpm_err) {
hre_err = HRE_E_TPM_FAILURE;
return -1;
}
/* TODO remember key handle somehow? */
return 0;
}
/**
* @brief executes the next opcode on the hash register engine.
* @param[in,out] ip pointer to the opcode (instruction pointer)
* @param[in,out] code_size (remaining) size of the code
* @return new instruction pointer on success, NULL on error.
*/
static const uint8_t *hre_execute_op(struct udevice *tpm, const uint8_t **ip,
size_t *code_size)
{
bool dst_modified = false;
uint32_t ins;
uint8_t opcode;
uint8_t src_spec;
uint8_t dst_spec;
uint16_t data_size;
struct h_reg *src_reg, *dst_reg;
uint8_t buf[20];
const uint8_t *src_buf, *data;
uint8_t *ptr;
int i;
void * (*bin_func)(void *, const void *, size_t);
if (*code_size < 4)
return NULL;
ins = get_unaligned_be32(*ip);
opcode = **ip;
data = *ip + 4;
src_spec = (ins >> 18) & 0x3f;
dst_spec = (ins >> 12) & 0x3f;
data_size = (ins & 0x7ff);
debug("HRE: ins=%08x (op=%02x, s=%02x, d=%02x, L=%d)\n", ins,
opcode, src_spec, dst_spec, data_size);
if ((opcode & 0x80) && (data_size + 4) > *code_size)
return NULL;
src_reg = access_hreg(tpm, src_spec, HREG_RD);
if (hre_err || hre_tpm_err)
return NULL;
dst_reg = access_hreg(tpm, dst_spec,
(opcode & 0x40) ? HREG_RDWR : HREG_WR);
if (hre_err || hre_tpm_err)
return NULL;
switch (opcode) {
case HRE_NOP:
goto end;
case HRE_CHECK0:
if (src_reg) {
for (i = 0; i < 20; ++i) {
if (src_reg->digest[i])
return NULL;
}
}
break;
case HRE_LOAD:
bin_func = memcpy;
goto do_bin_func;
case HRE_XOR:
bin_func = compute_xor;
goto do_bin_func;
case HRE_AND:
bin_func = compute_and;
goto do_bin_func;
case HRE_OR:
bin_func = compute_or;
goto do_bin_func;
case HRE_EXTEND:
bin_func = compute_extend;
do_bin_func:
if (!dst_reg)
return NULL;
if (src_reg) {
src_buf = src_reg->digest;
} else {
if (!data_size) {
memset(buf, 0, 20);
src_buf = buf;
} else if (data_size == 1) {
memset(buf, *data, 20);
src_buf = buf;
} else if (data_size >= 20) {
src_buf = data;
} else {
src_buf = buf;
for (ptr = (uint8_t *)src_buf, i = 20; i > 0;
i -= data_size, ptr += data_size)
memcpy(ptr, data,
min_t(size_t, i, data_size));
}
}
bin_func(dst_reg->digest, src_buf, 20);
dst_reg->valid = true;
dst_modified = true;
break;
case HRE_LOADKEY:
if (hre_op_loadkey(tpm, src_reg, dst_reg, data, data_size))
return NULL;
break;
default:
return NULL;
}
if (dst_reg && dst_modified && IS_PCR_HREG(dst_spec)) {
hre_tpm_err = tpm_extend(tpm, HREG_IDX(dst_spec),
dst_reg->digest, dst_reg->digest);
if (hre_tpm_err) {
hre_err = HRE_E_TPM_FAILURE;
return NULL;
}
}
end:
*ip += 4;
*code_size -= 4;
if (opcode & 0x80) {
*ip += data_size;
*code_size -= data_size;
}
return *ip;
}
/**
* @brief runs a program on the hash register engine.
* @param code pointer to the (HRE) code.
* @param code_size size of the code (in bytes).
* @return 0 on success, != 0 on failure.
*/
static int hre_run_program(struct udevice *tpm, const uint8_t *code,
size_t code_size)
{
size_t code_left;
const uint8_t *ip = code;
code_left = code_size;
hre_tpm_err = 0;
hre_err = HRE_E_OK;
while (code_left > 0)
if (!hre_execute_op(tpm, &ip, &code_left))
return -1;
return hre_err;
}
static int check_hmac(struct key_program *hmac,
const uint8_t *data, size_t data_size)
{
uint8_t key[20], computed_hmac[20];
uint32_t type;
type = get_unaligned_be32(hmac->code);
if (type != 0)
return 1;
memset(key, 0, sizeof(key));
compute_extend(key, pcr_hregs[1].digest, 20);
compute_extend(key, pcr_hregs[2].digest, 20);
compute_extend(key, pcr_hregs[3].digest, 20);
compute_extend(key, pcr_hregs[4].digest, 20);
sha1_hmac(key, sizeof(key), data, data_size, computed_hmac);
return memcmp(computed_hmac, hmac->code + 4, 20);
}
static int verify_program(struct key_program *prg)
{
uint32_t crc;
crc = crc32(0, prg->code, prg->code_size);
if (crc != prg->code_crc) {
printf("HRC crc mismatch: %08x != %08x\n",
crc, prg->code_crc);
return 1;
}
return 0;
}
#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
static struct key_program *load_sd_key_program(void)
{
u32 code_len, code_offset;
struct mmc *mmc;
u8 buf[128];
struct key_program *result = NULL, *hmac = NULL;
struct key_program header;
mmc = find_mmc_device(0);
if (!mmc)
return NULL;
mmc_init(mmc);
if (ccdm_mmc_read(mmc, 0, buf, sizeof(buf)) <= 0)
goto failure;
code_offset = *(u32 *)(buf + ESDHC_BOOT_IMAGE_ADDR_OFS);
code_len = *(u32 *)(buf + ESDHC_BOOT_IMAGE_SIZE_OFS);
code_offset += code_len;
/* TODO: the following needs to be the size of the 2nd stage env */
code_offset += CONFIG_ENV_SIZE;
if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
goto failure;
header.magic = get_unaligned_be32(buf);
header.code_crc = get_unaligned_be32(buf + 4);
header.code_size = get_unaligned_be32(buf + 8);
if (header.magic != MAGIC_KEY_PROGRAM)
goto failure;
result = malloc(sizeof(struct key_program) + header.code_size);
if (!result)
goto failure;
*result = header;
printf("load key program chunk from SD card (%u bytes) ",
header.code_size);
code_offset += 12;
if (ccdm_mmc_read(mmc, code_offset, result->code, header.code_size)
< 0)
goto failure;
code_offset += header.code_size;
puts("\n");
if (verify_program(result))
goto failure;
if (ccdm_mmc_read(mmc, code_offset, buf, 4*3) < 0)
goto failure;
header.magic = get_unaligned_be32(buf);
header.code_crc = get_unaligned_be32(buf + 4);
header.code_size = get_unaligned_be32(buf + 8);
if (header.magic == MAGIC_HMAC) {
puts("check integrity\n");
hmac = malloc(sizeof(struct key_program) + header.code_size);
if (!hmac)
goto failure;
*hmac = header;
code_offset += 12;
if (ccdm_mmc_read(mmc, code_offset, hmac->code,
hmac->code_size) < 0)
goto failure;
if (verify_program(hmac))
goto failure;
if (check_hmac(hmac, result->code, result->code_size)) {
puts("key program integrity could not be verified\n");
goto failure;
}
puts("key program verified\n");
}
goto end;
failure:
if (result)
free(result);
result = NULL;
end:
if (hmac)
free(hmac);
return result;
}
#endif
#ifdef CCDM_SECOND_STAGE
/**
* @brief load a key program from file system.
* @param ifname interface of the file system
* @param dev_part_str device part of the file system
* @param fs_type tyep of the file system
* @param path path of the file to load.
* @return the loaded structure or NULL on failure.
*/
static struct key_program *load_key_chunk(const char *ifname,
const char *dev_part_str, int fs_type,
const char *path)
{
struct key_program *result = NULL;
struct key_program header;
uint32_t crc;
uint8_t buf[12];
loff_t i;
if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
goto failure;
if (fs_read(path, (ulong)buf, 0, 12, &i) < 0)
goto failure;
if (i < 12)
goto failure;
header.magic = get_unaligned_be32(buf);
header.code_crc = get_unaligned_be32(buf + 4);
header.code_size = get_unaligned_be32(buf + 8);
if (header.magic != MAGIC_HMAC && header.magic != MAGIC_KEY_PROGRAM)
goto failure;
result = malloc(sizeof(struct key_program) + header.code_size);
if (!result)
goto failure;
if (fs_set_blk_dev(ifname, dev_part_str, fs_type))
goto failure;
if (fs_read(path, (ulong)result, 0,
sizeof(struct key_program) + header.code_size, &i) < 0)
goto failure;
if (i <= 0)
goto failure;
*result = header;
crc = crc32(0, result->code, result->code_size);
if (crc != result->code_crc) {
printf("%s: HRC crc mismatch: %08x != %08x\n",
path, crc, result->code_crc);
goto failure;
}
goto end;
failure:
if (result) {
free(result);
result = NULL;
}
end:
return result;
}
#endif
#if defined(CCDM_FIRST_STAGE) || (defined CCDM_AUTO_FIRST_STAGE)
static const uint8_t prg_stage1_prepare[] = {
0x00, 0x20, 0x00, 0x00, /* opcode: SYNC f0 */
0x00, 0x24, 0x00, 0x00, /* opcode: SYNC f1 */
0x01, 0x80, 0x00, 0x00, /* opcode: CHECK0 PCR0 */
0x81, 0x22, 0x00, 0x00, /* opcode: LOAD PCR0, f0 */
0x01, 0x84, 0x00, 0x00, /* opcode: CHECK0 PCR1 */
0x81, 0x26, 0x10, 0x00, /* opcode: LOAD PCR1, f1 */
0x01, 0x88, 0x00, 0x00, /* opcode: CHECK0 PCR2 */
0x81, 0x2a, 0x20, 0x00, /* opcode: LOAD PCR2, f2 */
0x01, 0x8c, 0x00, 0x00, /* opcode: CHECK0 PCR3 */
0x81, 0x2e, 0x30, 0x00, /* opcode: LOAD PCR3, f3 */
};
static int first_stage_actions(struct udevice *tpm)
{
int result = 0;
struct key_program *sd_prg = NULL;
puts("CCDM S1: start actions\n");
#ifndef CCDM_SECOND_STAGE
if (tpm_continue_self_test(tpm))
goto failure;
#else
tpm_continue_self_test(tpm);
#endif
mdelay(37);
if (hre_run_program(tpm, prg_stage1_prepare,
sizeof(prg_stage1_prepare)))
goto failure;
sd_prg = load_sd_key_program();
if (sd_prg) {
if (hre_run_program(tpm, sd_prg->code, sd_prg->code_size))
goto failure;
puts("SD code run successfully\n");
} else {
puts("no key program found on SD\n");
goto failure;
}
goto end;
failure:
result = 1;
end:
if (sd_prg)
free(sd_prg);
printf("CCDM S1: actions done (%d)\n", result);
return result;
}
#endif
#ifdef CCDM_FIRST_STAGE
static int first_stage_init(void)
{
struct udevice *tpm;
int ret;
puts("CCDM S1\n");
ret = get_tpm(&tpm);
if (ret || tpm_init(tpm) || tpm_startup(tpm, TPM_ST_CLEAR))
return 1;
ret = first_stage_actions(tpm);
#ifndef CCDM_SECOND_STAGE
if (!ret) {
if (bl2_entry)
(*bl2_entry)();
ret = 1;
}
#endif
return ret;
}
#endif
#ifdef CCDM_SECOND_STAGE
static const uint8_t prg_stage2_prepare[] = {
0x00, 0x80, 0x00, 0x00, /* opcode: SYNC PCR0 */
0x00, 0x84, 0x00, 0x00, /* opcode: SYNC PCR1 */
0x00, 0x88, 0x00, 0x00, /* opcode: SYNC PCR2 */
0x00, 0x8c, 0x00, 0x00, /* opcode: SYNC PCR3 */
0x00, 0x90, 0x00, 0x00, /* opcode: SYNC PCR4 */
};
static const uint8_t prg_stage2_success[] = {
0x81, 0x02, 0x40, 0x14, /* opcode: LOAD PCR4, #<20B data> */
0x48, 0xfd, 0x95, 0x17, 0xe7, 0x54, 0x6b, 0x68, /* data */
0x92, 0x31, 0x18, 0x05, 0xf8, 0x58, 0x58, 0x3c, /* data */
0xe4, 0xd2, 0x81, 0xe0, /* data */
};
static const uint8_t prg_stage_fail[] = {
0x81, 0x01, 0x00, 0x14, /* opcode: LOAD v0, #<20B data> */
0xc0, 0x32, 0xad, 0xc1, 0xff, 0x62, 0x9c, 0x9b, /* data */
0x66, 0xf2, 0x27, 0x49, 0xad, 0x66, 0x7e, 0x6b, /* data */
0xea, 0xdf, 0x14, 0x4b, /* data */
0x81, 0x42, 0x30, 0x00, /* opcode: LOAD PCR3, v0 */
0x81, 0x42, 0x40, 0x00, /* opcode: LOAD PCR4, v0 */
};
static int second_stage_init(void)
{
static const char mac_suffix[] = ".mac";
bool did_first_stage_run = true;
int result = 0;
char *cptr, *mmcdev = NULL;
struct key_program *hmac_blob = NULL;
const char *image_path = "/ccdm.itb";
char *mac_path = NULL;
ulong image_addr;
loff_t image_size;
struct udevice *tpm;
uint32_t err;
int ret;
printf("CCDM S2\n");
ret = get_tpm(&tpm);
if (ret || tpm_init(tpm))
return 1;
err = tpm_startup(tpm, TPM_ST_CLEAR);
if (err != TPM_INVALID_POSTINIT)
did_first_stage_run = false;
#ifdef CCDM_AUTO_FIRST_STAGE
if (!did_first_stage_run && first_stage_actions(tpm))
goto failure;
#else
if (!did_first_stage_run)
goto failure;
#endif
if (hre_run_program(tpm, prg_stage2_prepare,
sizeof(prg_stage2_prepare)))
goto failure;
/* run "prepboot" from env to get "mmcdev" set */
cptr = env_get("prepboot");
if (cptr && !run_command(cptr, 0))
mmcdev = env_get("mmcdev");
if (!mmcdev)
goto failure;
cptr = env_get("ramdiskimage");
if (cptr)
image_path = cptr;
mac_path = malloc(strlen(image_path) + strlen(mac_suffix) + 1);
if (mac_path == NULL)
goto failure;
strcpy(mac_path, image_path);
strcat(mac_path, mac_suffix);
/* read image from mmcdev (ccdm.itb) */
image_addr = (ulong)get_image_location();
if (fs_set_blk_dev("mmc", mmcdev, FS_TYPE_EXT))
goto failure;
if (fs_read(image_path, image_addr, 0, 0, &image_size) < 0)
goto failure;
if (image_size <= 0)
goto failure;
printf("CCDM image found on %s, %lld bytes\n", mmcdev, image_size);
hmac_blob = load_key_chunk("mmc", mmcdev, FS_TYPE_EXT, mac_path);
if (!hmac_blob) {
puts("failed to load mac file\n");
goto failure;
}
if (verify_program(hmac_blob)) {
puts("corrupted mac file\n");
goto failure;
}
if (check_hmac(hmac_blob, (u8 *)image_addr, image_size)) {
puts("image integrity could not be verified\n");
goto failure;
}
puts("CCDM image OK\n");
hre_run_program(tpm, prg_stage2_success, sizeof(prg_stage2_success));
goto end;
failure:
result = 1;
hre_run_program(tpm, prg_stage_fail, sizeof(prg_stage_fail));
end:
if (hmac_blob)
free(hmac_blob);
if (mac_path)
free(mac_path);
return result;
}
#endif
int show_self_hash(void)
{
struct h_reg *hash_ptr;
#ifdef CCDM_SECOND_STAGE
struct h_reg hash;
hash_ptr = &hash;
if (compute_self_hash(hash_ptr))
return 1;
#else
hash_ptr = &fix_hregs[FIX_HREG_SELF_HASH];
#endif
puts("self hash: ");
if (hash_ptr && hash_ptr->valid)
print_buffer(0, hash_ptr->digest, 1, 20, 20);
else
puts("INVALID\n");
return 0;
}
/**
* @brief let the system hang.
*
* Called on error.
* Will stop the boot process; display a message and signal the error condition
* by blinking the "status" and the "finder" LED of the controller board.
*
* @note the develop version runs the blink cycle 2 times and then returns.
* The release version never returns.
*/
static void ccdm_hang(void)
{
static const u64 f0 = 0x0ba3bb8ba2e880; /* blink code "finder" LED */
static const u64 s0 = 0x00f0f0f0f0f0f0; /* blink code "status" LED */
u64 f, s;
int i;
#ifdef CCDM_DEVELOP
int j;
#endif
I2C_SET_BUS(I2C_SOC_0);
pca9698_direction_output(0x22, 0, 0); /* Finder */
pca9698_direction_output(0x22, 4, 0); /* Status */
puts("### ERROR ### Please RESET the board ###\n");
bootstage_error(BOOTSTAGE_ID_NEED_RESET);
#ifdef CCDM_DEVELOP
puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
puts("** but we continue since this is a DEVELOP version **\n");
puts("*** ERROR ******** THIS WOULD HANG ******** ERROR ***\n");
for (j = 2; j-- > 0;) {
putc('#');
#else
for (;;) {
#endif
f = f0;
s = s0;
for (i = 54; i-- > 0;) {
pca9698_set_value(0x22, 0, !(f & 1));
pca9698_set_value(0x22, 4, (s & 1));
f >>= 1;
s >>= 1;
mdelay(120);
}
}
puts("\ncontinue...\n");
}
int startup_ccdm_id_module(void)
{
int result = 0;
unsigned int orig_i2c_bus;
orig_i2c_bus = i2c_get_bus_num();
i2c_set_bus_num(I2C_SOC_1);
/* goto end; */
#ifdef CCDM_DEVELOP
show_self_hash();
#endif
#ifdef CCDM_FIRST_STAGE
result = first_stage_init();
if (result) {
puts("1st stage init failed\n");
goto failure;
}
#endif
#ifdef CCDM_SECOND_STAGE
result = second_stage_init();
if (result) {
puts("2nd stage init failed\n");
goto failure;
}
#endif
goto end;
failure:
result = 1;
end:
i2c_set_bus_num(orig_i2c_bus);
if (result)
ccdm_hang();
return result;
}