| /* |
| * (C) Copyright 2006-2008 |
| * Stefan Roese, DENX Software Engineering, sr@denx.de. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <nand.h> |
| |
| #define CFG_NAND_READ_DELAY \ |
| { volatile int dummy; int i; for (i=0; i<10000; i++) dummy = i; } |
| |
| static int nand_ecc_pos[] = CFG_NAND_ECCPOS; |
| |
| extern void board_nand_init(struct nand_chip *nand); |
| |
| #if (CFG_NAND_PAGE_SIZE <= 512) |
| /* |
| * NAND command for small page NAND devices (512) |
| */ |
| static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd) |
| { |
| struct nand_chip *this = mtd->priv; |
| int page_addr = page + block * CFG_NAND_PAGE_COUNT; |
| |
| if (this->dev_ready) |
| this->dev_ready(mtd); |
| else |
| CFG_NAND_READ_DELAY; |
| |
| /* Begin command latch cycle */ |
| this->hwcontrol(mtd, NAND_CTL_SETCLE); |
| this->write_byte(mtd, cmd); |
| /* Set ALE and clear CLE to start address cycle */ |
| this->hwcontrol(mtd, NAND_CTL_CLRCLE); |
| this->hwcontrol(mtd, NAND_CTL_SETALE); |
| /* Column address */ |
| this->write_byte(mtd, offs); /* A[7:0] */ |
| this->write_byte(mtd, (uchar)(page_addr & 0xff)); /* A[16:9] */ |
| this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff)); /* A[24:17] */ |
| #ifdef CFG_NAND_4_ADDR_CYCLE |
| /* One more address cycle for devices > 32MiB */ |
| this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f)); /* A[xx:25] */ |
| #endif |
| /* Latch in address */ |
| this->hwcontrol(mtd, NAND_CTL_CLRALE); |
| |
| /* |
| * Wait a while for the data to be ready |
| */ |
| if (this->dev_ready) |
| this->dev_ready(mtd); |
| else |
| CFG_NAND_READ_DELAY; |
| |
| return 0; |
| } |
| #else |
| /* |
| * NAND command for large page NAND devices (2k) |
| */ |
| static int nand_command(struct mtd_info *mtd, int block, int page, int offs, u8 cmd) |
| { |
| struct nand_chip *this = mtd->priv; |
| int page_offs = offs; |
| int page_addr = page + block * CFG_NAND_PAGE_COUNT; |
| |
| if (this->dev_ready) |
| this->dev_ready(mtd); |
| else |
| CFG_NAND_READ_DELAY; |
| |
| /* Emulate NAND_CMD_READOOB */ |
| if (cmd == NAND_CMD_READOOB) { |
| page_offs += CFG_NAND_PAGE_SIZE; |
| cmd = NAND_CMD_READ0; |
| } |
| |
| /* Begin command latch cycle */ |
| this->hwcontrol(mtd, NAND_CTL_SETCLE); |
| this->write_byte(mtd, cmd); |
| /* Set ALE and clear CLE to start address cycle */ |
| this->hwcontrol(mtd, NAND_CTL_CLRCLE); |
| this->hwcontrol(mtd, NAND_CTL_SETALE); |
| /* Column address */ |
| this->write_byte(mtd, page_offs & 0xff); /* A[7:0] */ |
| this->write_byte(mtd, (uchar)((page_offs >> 8) & 0xff)); /* A[11:9] */ |
| /* Row address */ |
| this->write_byte(mtd, (uchar)(page_addr & 0xff)); /* A[19:12] */ |
| this->write_byte(mtd, (uchar)((page_addr >> 8) & 0xff)); /* A[27:20] */ |
| #ifdef CFG_NAND_5_ADDR_CYCLE |
| /* One more address cycle for devices > 128MiB */ |
| this->write_byte(mtd, (uchar)((page_addr >> 16) & 0x0f)); /* A[xx:28] */ |
| #endif |
| /* Latch in address */ |
| this->hwcontrol(mtd, NAND_CTL_CLRALE); |
| |
| /* Begin command latch cycle */ |
| this->hwcontrol(mtd, NAND_CTL_SETCLE); |
| /* Write out the start read command */ |
| this->write_byte(mtd, NAND_CMD_READSTART); |
| /* End command latch cycle */ |
| this->hwcontrol(mtd, NAND_CTL_CLRCLE); |
| |
| /* |
| * Wait a while for the data to be ready |
| */ |
| if (this->dev_ready) |
| this->dev_ready(mtd); |
| else |
| CFG_NAND_READ_DELAY; |
| |
| return 0; |
| } |
| #endif |
| |
| static int nand_is_bad_block(struct mtd_info *mtd, int block) |
| { |
| struct nand_chip *this = mtd->priv; |
| |
| nand_command(mtd, block, 0, CFG_NAND_BAD_BLOCK_POS, NAND_CMD_READOOB); |
| |
| /* |
| * Read one byte |
| */ |
| if (this->read_byte(mtd) != 0xff) |
| return 1; |
| |
| return 0; |
| } |
| |
| static int nand_read_page(struct mtd_info *mtd, int block, int page, uchar *dst) |
| { |
| struct nand_chip *this = mtd->priv; |
| u_char *ecc_calc; |
| u_char *ecc_code; |
| u_char *oob_data; |
| int i; |
| int eccsize = CFG_NAND_ECCSIZE; |
| int eccbytes = CFG_NAND_ECCBYTES; |
| int eccsteps = CFG_NAND_ECCSTEPS; |
| uint8_t *p = dst; |
| int stat; |
| |
| nand_command(mtd, block, page, 0, NAND_CMD_READ0); |
| |
| /* No malloc available for now, just use some temporary locations |
| * in SDRAM |
| */ |
| ecc_calc = (u_char *)(CFG_SDRAM_BASE + 0x10000); |
| ecc_code = ecc_calc + 0x100; |
| oob_data = ecc_calc + 0x200; |
| |
| for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| this->enable_hwecc(mtd, NAND_ECC_READ); |
| this->read_buf(mtd, p, eccsize); |
| this->calculate_ecc(mtd, p, &ecc_calc[i]); |
| } |
| this->read_buf(mtd, oob_data, CFG_NAND_OOBSIZE); |
| |
| /* Pick the ECC bytes out of the oob data */ |
| for (i = 0; i < CFG_NAND_ECCTOTAL; i++) |
| ecc_code[i] = oob_data[nand_ecc_pos[i]]; |
| |
| eccsteps = CFG_NAND_ECCSTEPS; |
| p = dst; |
| |
| for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) { |
| /* No chance to do something with the possible error message |
| * from correct_data(). We just hope that all possible errors |
| * are corrected by this routine. |
| */ |
| stat = this->correct_data(mtd, p, &ecc_code[i], &ecc_calc[i]); |
| } |
| |
| return 0; |
| } |
| |
| static int nand_load(struct mtd_info *mtd, int offs, int uboot_size, uchar *dst) |
| { |
| int block; |
| int blockcopy_count; |
| int page; |
| |
| /* |
| * offs has to be aligned to a block address! |
| */ |
| block = offs / CFG_NAND_BLOCK_SIZE; |
| blockcopy_count = 0; |
| |
| while (blockcopy_count < (uboot_size / CFG_NAND_BLOCK_SIZE)) { |
| if (!nand_is_bad_block(mtd, block)) { |
| /* |
| * Skip bad blocks |
| */ |
| for (page = 0; page < CFG_NAND_PAGE_COUNT; page++) { |
| nand_read_page(mtd, block, page, dst); |
| dst += CFG_NAND_PAGE_SIZE; |
| } |
| |
| blockcopy_count++; |
| } |
| |
| block++; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * The main entry for NAND booting. It's necessary that SDRAM is already |
| * configured and available since this code loads the main U-Boot image |
| * from NAND into SDRAM and starts it from there. |
| */ |
| void nand_boot(void) |
| { |
| struct nand_chip nand_chip; |
| nand_info_t nand_info; |
| int ret; |
| void (*uboot)(void); |
| |
| /* |
| * Init board specific nand support |
| */ |
| nand_info.priv = &nand_chip; |
| nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W = (void __iomem *)CFG_NAND_BASE; |
| nand_chip.dev_ready = NULL; /* preset to NULL */ |
| board_nand_init(&nand_chip); |
| |
| /* |
| * Load U-Boot image from NAND into RAM |
| */ |
| ret = nand_load(&nand_info, CFG_NAND_U_BOOT_OFFS, CFG_NAND_U_BOOT_SIZE, |
| (uchar *)CFG_NAND_U_BOOT_DST); |
| |
| /* |
| * Jump to U-Boot image |
| */ |
| uboot = (void (*)(void))CFG_NAND_U_BOOT_START; |
| (*uboot)(); |
| } |