blob: 85386bfc7084aeaf251934f9c8b4052a097d9ffb [file] [log] [blame]
/*
* Copyright (C) 2006 Freescale Semiconductor, Inc.
*
* Dave Liu <daveliu@freescale.com>
* based on source code of Shlomi Gridish
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include "common.h"
#include "malloc.h"
#include "asm/errno.h"
#include "asm/io.h"
#include "linux/immap_qe.h"
#include "qe.h"
#include "uccf.h"
void ucc_fast_transmit_on_demand(ucc_fast_private_t *uccf)
{
out_be16(&uccf->uf_regs->utodr, UCC_FAST_TOD);
}
u32 ucc_fast_get_qe_cr_subblock(int ucc_num)
{
switch (ucc_num) {
case 0: return QE_CR_SUBBLOCK_UCCFAST1;
case 1: return QE_CR_SUBBLOCK_UCCFAST2;
case 2: return QE_CR_SUBBLOCK_UCCFAST3;
case 3: return QE_CR_SUBBLOCK_UCCFAST4;
case 4: return QE_CR_SUBBLOCK_UCCFAST5;
case 5: return QE_CR_SUBBLOCK_UCCFAST6;
case 6: return QE_CR_SUBBLOCK_UCCFAST7;
case 7: return QE_CR_SUBBLOCK_UCCFAST8;
default: return QE_CR_SUBBLOCK_INVALID;
}
}
static void ucc_get_cmxucr_reg(int ucc_num, volatile u32 **p_cmxucr,
u8 *reg_num, u8 *shift)
{
switch (ucc_num) {
case 0: /* UCC1 */
*p_cmxucr = &(qe_immr->qmx.cmxucr1);
*reg_num = 1;
*shift = 16;
break;
case 2: /* UCC3 */
*p_cmxucr = &(qe_immr->qmx.cmxucr1);
*reg_num = 1;
*shift = 0;
break;
case 4: /* UCC5 */
*p_cmxucr = &(qe_immr->qmx.cmxucr2);
*reg_num = 2;
*shift = 16;
break;
case 6: /* UCC7 */
*p_cmxucr = &(qe_immr->qmx.cmxucr2);
*reg_num = 2;
*shift = 0;
break;
case 1: /* UCC2 */
*p_cmxucr = &(qe_immr->qmx.cmxucr3);
*reg_num = 3;
*shift = 16;
break;
case 3: /* UCC4 */
*p_cmxucr = &(qe_immr->qmx.cmxucr3);
*reg_num = 3;
*shift = 0;
break;
case 5: /* UCC6 */
*p_cmxucr = &(qe_immr->qmx.cmxucr4);
*reg_num = 4;
*shift = 16;
break;
case 7: /* UCC8 */
*p_cmxucr = &(qe_immr->qmx.cmxucr4);
*reg_num = 4;
*shift = 0;
break;
default:
break;
}
}
static int ucc_set_clk_src(int ucc_num, qe_clock_e clock, comm_dir_e mode)
{
volatile u32 *p_cmxucr = NULL;
u8 reg_num = 0;
u8 shift = 0;
u32 clockBits;
u32 clockMask;
int source = -1;
/* check if the UCC number is in range. */
if ((ucc_num > UCC_MAX_NUM - 1) || (ucc_num < 0))
return -EINVAL;
if (! ((mode == COMM_DIR_RX) || (mode == COMM_DIR_TX))) {
printf("%s: bad comm mode type passed\n", __FUNCTION__);
return -EINVAL;
}
ucc_get_cmxucr_reg(ucc_num, &p_cmxucr, &reg_num, &shift);
switch (reg_num) {
case 1:
switch (clock) {
case QE_BRG1: source = 1; break;
case QE_BRG2: source = 2; break;
case QE_BRG7: source = 3; break;
case QE_BRG8: source = 4; break;
case QE_CLK9: source = 5; break;
case QE_CLK10: source = 6; break;
case QE_CLK11: source = 7; break;
case QE_CLK12: source = 8; break;
case QE_CLK15: source = 9; break;
case QE_CLK16: source = 10; break;
default: source = -1; break;
}
break;
case 2:
switch (clock) {
case QE_BRG5: source = 1; break;
case QE_BRG6: source = 2; break;
case QE_BRG7: source = 3; break;
case QE_BRG8: source = 4; break;
case QE_CLK13: source = 5; break;
case QE_CLK14: source = 6; break;
case QE_CLK19: source = 7; break;
case QE_CLK20: source = 8; break;
case QE_CLK15: source = 9; break;
case QE_CLK16: source = 10; break;
default: source = -1; break;
}
break;
case 3:
switch (clock) {
case QE_BRG9: source = 1; break;
case QE_BRG10: source = 2; break;
case QE_BRG15: source = 3; break;
case QE_BRG16: source = 4; break;
case QE_CLK3: source = 5; break;
case QE_CLK4: source = 6; break;
case QE_CLK17: source = 7; break;
case QE_CLK18: source = 8; break;
case QE_CLK7: source = 9; break;
case QE_CLK8: source = 10; break;
case QE_CLK16: source = 11; break;
default: source = -1; break;
}
break;
case 4:
switch (clock) {
case QE_BRG13: source = 1; break;
case QE_BRG14: source = 2; break;
case QE_BRG15: source = 3; break;
case QE_BRG16: source = 4; break;
case QE_CLK5: source = 5; break;
case QE_CLK6: source = 6; break;
case QE_CLK21: source = 7; break;
case QE_CLK22: source = 8; break;
case QE_CLK7: source = 9; break;
case QE_CLK8: source = 10; break;
case QE_CLK16: source = 11; break;
default: source = -1; break;
}
break;
default:
source = -1;
break;
}
if (source == -1) {
printf("%s: Bad combination of clock and UCC\n", __FUNCTION__);
return -ENOENT;
}
clockBits = (u32) source;
clockMask = QE_CMXUCR_TX_CLK_SRC_MASK;
if (mode == COMM_DIR_RX) {
clockBits <<= 4; /* Rx field is 4 bits to left of Tx field */
clockMask <<= 4; /* Rx field is 4 bits to left of Tx field */
}
clockBits <<= shift;
clockMask <<= shift;
out_be32(p_cmxucr, (in_be32(p_cmxucr) & ~clockMask) | clockBits);
return 0;
}
static uint ucc_get_reg_baseaddr(int ucc_num)
{
uint base = 0;
/* check if the UCC number is in range */
if ((ucc_num > UCC_MAX_NUM - 1) || (ucc_num < 0)) {
printf("%s: the UCC num not in ranges\n", __FUNCTION__);
return 0;
}
switch (ucc_num) {
case 0: base = 0x00002000; break;
case 1: base = 0x00003000; break;
case 2: base = 0x00002200; break;
case 3: base = 0x00003200; break;
case 4: base = 0x00002400; break;
case 5: base = 0x00003400; break;
case 6: base = 0x00002600; break;
case 7: base = 0x00003600; break;
default: break;
}
base = (uint)qe_immr + base;
return base;
}
void ucc_fast_enable(ucc_fast_private_t *uccf, comm_dir_e mode)
{
ucc_fast_t *uf_regs;
u32 gumr;
uf_regs = uccf->uf_regs;
/* Enable reception and/or transmission on this UCC. */
gumr = in_be32(&uf_regs->gumr);
if (mode & COMM_DIR_TX) {
gumr |= UCC_FAST_GUMR_ENT;
uccf->enabled_tx = 1;
}
if (mode & COMM_DIR_RX) {
gumr |= UCC_FAST_GUMR_ENR;
uccf->enabled_rx = 1;
}
out_be32(&uf_regs->gumr, gumr);
}
void ucc_fast_disable(ucc_fast_private_t *uccf, comm_dir_e mode)
{
ucc_fast_t *uf_regs;
u32 gumr;
uf_regs = uccf->uf_regs;
/* Disable reception and/or transmission on this UCC. */
gumr = in_be32(&uf_regs->gumr);
if (mode & COMM_DIR_TX) {
gumr &= ~UCC_FAST_GUMR_ENT;
uccf->enabled_tx = 0;
}
if (mode & COMM_DIR_RX) {
gumr &= ~UCC_FAST_GUMR_ENR;
uccf->enabled_rx = 0;
}
out_be32(&uf_regs->gumr, gumr);
}
int ucc_fast_init(ucc_fast_info_t *uf_info, ucc_fast_private_t **uccf_ret)
{
ucc_fast_private_t *uccf;
ucc_fast_t *uf_regs;
if (!uf_info)
return -EINVAL;
if ((uf_info->ucc_num < 0) || (uf_info->ucc_num > UCC_MAX_NUM - 1)) {
printf("%s: Illagal UCC number!\n", __FUNCTION__);
return -EINVAL;
}
uccf = (ucc_fast_private_t *)malloc(sizeof(ucc_fast_private_t));
if (!uccf) {
printf("%s: No memory for UCC fast data structure!\n",
__FUNCTION__);
return -ENOMEM;
}
memset(uccf, 0, sizeof(ucc_fast_private_t));
/* Save fast UCC structure */
uccf->uf_info = uf_info;
uccf->uf_regs = (ucc_fast_t *)ucc_get_reg_baseaddr(uf_info->ucc_num);
if (uccf->uf_regs == NULL) {
printf("%s: No memory map for UCC fast controller!\n",
__FUNCTION__);
return -ENOMEM;
}
uccf->enabled_tx = 0;
uccf->enabled_rx = 0;
uf_regs = uccf->uf_regs;
uccf->p_ucce = (u32 *) &(uf_regs->ucce);
uccf->p_uccm = (u32 *) &(uf_regs->uccm);
/* Init GUEMR register, UCC both Rx and Tx is Fast protocol */
out_8(&uf_regs->guemr, UCC_GUEMR_SET_RESERVED3 | UCC_GUEMR_MODE_FAST_RX
| UCC_GUEMR_MODE_FAST_TX);
/* Set GUMR, disable UCC both Rx and Tx, Ethernet protocol */
out_be32(&uf_regs->gumr, UCC_FAST_GUMR_ETH);
/* Set the Giga ethernet VFIFO stuff */
if (uf_info->eth_type == GIGA_ETH) {
/* Allocate memory for Tx Virtual Fifo */
uccf->ucc_fast_tx_virtual_fifo_base_offset =
qe_muram_alloc(UCC_GETH_UTFS_GIGA_INIT,
UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT);
/* Allocate memory for Rx Virtual Fifo */
uccf->ucc_fast_rx_virtual_fifo_base_offset =
qe_muram_alloc(UCC_GETH_URFS_GIGA_INIT +
UCC_FAST_RX_VIRTUAL_FIFO_SIZE_PAD,
UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT);
/* utfb, urfb are offsets from MURAM base */
out_be32(&uf_regs->utfb,
uccf->ucc_fast_tx_virtual_fifo_base_offset);
out_be32(&uf_regs->urfb,
uccf->ucc_fast_rx_virtual_fifo_base_offset);
/* Set Virtual Fifo registers */
out_be16(&uf_regs->urfs, UCC_GETH_URFS_GIGA_INIT);
out_be16(&uf_regs->urfet, UCC_GETH_URFET_GIGA_INIT);
out_be16(&uf_regs->urfset, UCC_GETH_URFSET_GIGA_INIT);
out_be16(&uf_regs->utfs, UCC_GETH_UTFS_GIGA_INIT);
out_be16(&uf_regs->utfet, UCC_GETH_UTFET_GIGA_INIT);
out_be16(&uf_regs->utftt, UCC_GETH_UTFTT_GIGA_INIT);
}
/* Set the Fast ethernet VFIFO stuff */
if (uf_info->eth_type == FAST_ETH) {
/* Allocate memory for Tx Virtual Fifo */
uccf->ucc_fast_tx_virtual_fifo_base_offset =
qe_muram_alloc(UCC_GETH_UTFS_INIT,
UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT);
/* Allocate memory for Rx Virtual Fifo */
uccf->ucc_fast_rx_virtual_fifo_base_offset =
qe_muram_alloc(UCC_GETH_URFS_INIT +
UCC_FAST_RX_VIRTUAL_FIFO_SIZE_PAD,
UCC_FAST_VIRT_FIFO_REGS_ALIGNMENT);
/* utfb, urfb are offsets from MURAM base */
out_be32(&uf_regs->utfb,
uccf->ucc_fast_tx_virtual_fifo_base_offset);
out_be32(&uf_regs->urfb,
uccf->ucc_fast_rx_virtual_fifo_base_offset);
/* Set Virtual Fifo registers */
out_be16(&uf_regs->urfs, UCC_GETH_URFS_INIT);
out_be16(&uf_regs->urfet, UCC_GETH_URFET_INIT);
out_be16(&uf_regs->urfset, UCC_GETH_URFSET_INIT);
out_be16(&uf_regs->utfs, UCC_GETH_UTFS_INIT);
out_be16(&uf_regs->utfet, UCC_GETH_UTFET_INIT);
out_be16(&uf_regs->utftt, UCC_GETH_UTFTT_INIT);
}
/* Rx clock routing */
if (uf_info->rx_clock != QE_CLK_NONE) {
if (ucc_set_clk_src(uf_info->ucc_num,
uf_info->rx_clock, COMM_DIR_RX)) {
printf("%s: Illegal value for parameter 'RxClock'.\n",
__FUNCTION__);
return -EINVAL;
}
}
/* Tx clock routing */
if (uf_info->tx_clock != QE_CLK_NONE) {
if (ucc_set_clk_src(uf_info->ucc_num,
uf_info->tx_clock, COMM_DIR_TX)) {
printf("%s: Illegal value for parameter 'TxClock'.\n",
__FUNCTION__);
return -EINVAL;
}
}
/* Clear interrupt mask register to disable all of interrupts */
out_be32(&uf_regs->uccm, 0x0);
/* Writing '1' to clear all of envents */
out_be32(&uf_regs->ucce, 0xffffffff);
*uccf_ret = uccf;
return 0;
}