blob: 49974878b9c774a66cedaafd0edde801438c525f [file] [log] [blame]
/*
* Copyright 2014 Freescale Semiconductor, Inc.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/armv8/mmu.h>
#include <asm/io.h>
#include <asm/arch-fsl-lsch3/immap_lsch3.h>
#include <fsl-mc/fsl_mc.h>
#include "cpu.h"
#include "mp.h"
#include "speed.h"
DECLARE_GLOBAL_DATA_PTR;
#ifndef CONFIG_SYS_DCACHE_OFF
/*
* To start MMU before DDR is available, we create MMU table in SRAM.
* The base address of SRAM is CONFIG_SYS_FSL_OCRAM_BASE. We use three
* levels of translation tables here to cover 40-bit address space.
* We use 4KB granule size, with 40 bits physical address, T0SZ=24
* Level 0 IA[39], table address @0
* Level 1 IA[31:30], table address @01000, 0x2000
* Level 2 IA[29:21], table address @0x3000
*/
#define SECTION_SHIFT_L0 39UL
#define SECTION_SHIFT_L1 30UL
#define SECTION_SHIFT_L2 21UL
#define BLOCK_SIZE_L0 0x8000000000UL
#define BLOCK_SIZE_L1 (1 << SECTION_SHIFT_L1)
#define BLOCK_SIZE_L2 (1 << SECTION_SHIFT_L2)
#define CONFIG_SYS_IFC_BASE 0x30000000
#define CONFIG_SYS_IFC_SIZE 0x10000000
#define CONFIG_SYS_IFC_BASE2 0x500000000
#define CONFIG_SYS_IFC_SIZE2 0x100000000
#define TCR_EL2_PS_40BIT (2 << 16)
#define LSCH3_VA_BITS (40)
#define LSCH3_TCR (TCR_TG0_4K | \
TCR_EL2_PS_40BIT | \
TCR_SHARED_NON | \
TCR_ORGN_NC | \
TCR_IRGN_NC | \
TCR_T0SZ(LSCH3_VA_BITS))
/*
* Final MMU
* Let's start from the same layout as early MMU and modify as needed.
* IFC regions will be cache-inhibit.
*/
#define FINAL_QBMAN_CACHED_MEM 0x818000000UL
#define FINAL_QBMAN_CACHED_SIZE 0x4000000
static inline void early_mmu_setup(void)
{
int el;
u64 i;
u64 section_l1t0, section_l1t1, section_l2;
u64 *level0_table = (u64 *)CONFIG_SYS_FSL_OCRAM_BASE;
u64 *level1_table_0 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x1000);
u64 *level1_table_1 = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x2000);
u64 *level2_table = (u64 *)(CONFIG_SYS_FSL_OCRAM_BASE + 0x3000);
level0_table[0] =
(u64)level1_table_0 | PMD_TYPE_TABLE;
level0_table[1] =
(u64)level1_table_1 | PMD_TYPE_TABLE;
/*
* set level 1 table 0 to cache_inhibit, covering 0 to 512GB
* set level 1 table 1 to cache enabled, covering 512GB to 1TB
* set level 2 table to cache-inhibit, covering 0 to 1GB
*/
section_l1t0 = 0;
section_l1t1 = BLOCK_SIZE_L0;
section_l2 = 0;
for (i = 0; i < 512; i++) {
set_pgtable_section(level1_table_0, i, section_l1t0,
MT_DEVICE_NGNRNE);
set_pgtable_section(level1_table_1, i, section_l1t1,
MT_NORMAL);
set_pgtable_section(level2_table, i, section_l2,
MT_DEVICE_NGNRNE);
section_l1t0 += BLOCK_SIZE_L1;
section_l1t1 += BLOCK_SIZE_L1;
section_l2 += BLOCK_SIZE_L2;
}
level1_table_0[0] =
(u64)level2_table | PMD_TYPE_TABLE;
level1_table_0[1] =
0x40000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_ATTRINDX(MT_DEVICE_NGNRNE);
level1_table_0[2] =
0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_ATTRINDX(MT_NORMAL);
level1_table_0[3] =
0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_ATTRINDX(MT_NORMAL);
/* Rewrite table to enable cache */
set_pgtable_section(level2_table,
CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2,
CONFIG_SYS_FSL_OCRAM_BASE,
MT_NORMAL);
for (i = CONFIG_SYS_IFC_BASE >> SECTION_SHIFT_L2;
i < (CONFIG_SYS_IFC_BASE + CONFIG_SYS_IFC_SIZE)
>> SECTION_SHIFT_L2; i++) {
section_l2 = i << SECTION_SHIFT_L2;
set_pgtable_section(level2_table, i,
section_l2, MT_NORMAL);
}
el = current_el();
set_ttbr_tcr_mair(el, (u64)level0_table, LSCH3_TCR, MEMORY_ATTRIBUTES);
set_sctlr(get_sctlr() | CR_M);
}
/*
* This final tale looks similar to early table, but different in detail.
* These tables are in regular memory. Cache on IFC is disabled. One sub table
* is added to enable cache for QBMan.
*/
static inline void final_mmu_setup(void)
{
int el;
u64 i, tbl_base, tbl_limit, section_base;
u64 section_l1t0, section_l1t1, section_l2;
u64 *level0_table = (u64 *)gd->arch.tlb_addr;
u64 *level1_table_0 = (u64 *)(gd->arch.tlb_addr + 0x1000);
u64 *level1_table_1 = (u64 *)(gd->arch.tlb_addr + 0x2000);
u64 *level2_table_0 = (u64 *)(gd->arch.tlb_addr + 0x3000);
u64 *level2_table_1 = (u64 *)(gd->arch.tlb_addr + 0x4000);
level0_table[0] =
(u64)level1_table_0 | PMD_TYPE_TABLE;
level0_table[1] =
(u64)level1_table_1 | PMD_TYPE_TABLE;
/*
* set level 1 table 0 to cache_inhibit, covering 0 to 512GB
* set level 1 table 1 to cache enabled, covering 512GB to 1TB
* set level 2 table 0 to cache-inhibit, covering 0 to 1GB
*/
section_l1t0 = 0;
section_l1t1 = BLOCK_SIZE_L0 | PMD_SECT_OUTER_SHARE;
section_l2 = 0;
for (i = 0; i < 512; i++) {
set_pgtable_section(level1_table_0, i, section_l1t0,
MT_DEVICE_NGNRNE);
set_pgtable_section(level1_table_1, i, section_l1t1,
MT_NORMAL);
set_pgtable_section(level2_table_0, i, section_l2,
MT_DEVICE_NGNRNE);
section_l1t0 += BLOCK_SIZE_L1;
section_l1t1 += BLOCK_SIZE_L1;
section_l2 += BLOCK_SIZE_L2;
}
level1_table_0[0] =
(u64)level2_table_0 | PMD_TYPE_TABLE;
level1_table_0[2] =
0x80000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_SECT_OUTER_SHARE | PMD_ATTRINDX(MT_NORMAL);
level1_table_0[3] =
0xc0000000 | PMD_SECT_AF | PMD_TYPE_SECT |
PMD_SECT_OUTER_SHARE | PMD_ATTRINDX(MT_NORMAL);
/* Rewrite table to enable cache */
set_pgtable_section(level2_table_0,
CONFIG_SYS_FSL_OCRAM_BASE >> SECTION_SHIFT_L2,
CONFIG_SYS_FSL_OCRAM_BASE,
MT_NORMAL);
/*
* Fill in other part of tables if cache is needed
* If finer granularity than 1GB is needed, sub table
* should be created.
*/
section_base = FINAL_QBMAN_CACHED_MEM & ~(BLOCK_SIZE_L1 - 1);
i = section_base >> SECTION_SHIFT_L1;
level1_table_0[i] = (u64)level2_table_1 | PMD_TYPE_TABLE;
section_l2 = section_base;
for (i = 0; i < 512; i++) {
set_pgtable_section(level2_table_1, i, section_l2,
MT_DEVICE_NGNRNE);
section_l2 += BLOCK_SIZE_L2;
}
tbl_base = FINAL_QBMAN_CACHED_MEM & (BLOCK_SIZE_L1 - 1);
tbl_limit = (FINAL_QBMAN_CACHED_MEM + FINAL_QBMAN_CACHED_SIZE) &
(BLOCK_SIZE_L1 - 1);
for (i = tbl_base >> SECTION_SHIFT_L2;
i < tbl_limit >> SECTION_SHIFT_L2; i++) {
section_l2 = section_base + (i << SECTION_SHIFT_L2);
set_pgtable_section(level2_table_1, i,
section_l2, MT_NORMAL);
}
/* flush new MMU table */
flush_dcache_range(gd->arch.tlb_addr,
gd->arch.tlb_addr + gd->arch.tlb_size);
/* point TTBR to the new table */
el = current_el();
asm volatile("dsb sy");
if (el == 1) {
asm volatile("msr ttbr0_el1, %0"
: : "r" ((u64)level0_table) : "memory");
} else if (el == 2) {
asm volatile("msr ttbr0_el2, %0"
: : "r" ((u64)level0_table) : "memory");
} else if (el == 3) {
asm volatile("msr ttbr0_el3, %0"
: : "r" ((u64)level0_table) : "memory");
} else {
hang();
}
asm volatile("isb");
/*
* MMU is already enabled, just need to invalidate TLB to load the
* new table. The new table is compatible with the current table, if
* MMU somehow walks through the new table before invalidation TLB,
* it still works. So we don't need to turn off MMU here.
*/
}
int arch_cpu_init(void)
{
icache_enable();
__asm_invalidate_dcache_all();
__asm_invalidate_tlb_all();
early_mmu_setup();
set_sctlr(get_sctlr() | CR_C);
return 0;
}
/*
* This function is called from lib/board.c.
* It recreates MMU table in main memory. MMU and d-cache are enabled earlier.
* There is no need to disable d-cache for this operation.
*/
void enable_caches(void)
{
final_mmu_setup();
__asm_invalidate_tlb_all();
}
#endif
static inline u32 initiator_type(u32 cluster, int init_id)
{
struct ccsr_gur *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
u32 idx = (cluster >> (init_id * 8)) & TP_CLUSTER_INIT_MASK;
u32 type = in_le32(&gur->tp_ityp[idx]);
if (type & TP_ITYP_AV)
return type;
return 0;
}
u32 cpu_mask(void)
{
struct ccsr_gur __iomem *gur = (void *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type, mask = 0;
do {
int j;
cluster = in_le32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (TP_ITYP_TYPE(type) == TP_ITYP_TYPE_ARM)
mask |= 1 << count;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return mask;
}
/*
* Return the number of cores on this SOC.
*/
int cpu_numcores(void)
{
return hweight32(cpu_mask());
}
int fsl_qoriq_core_to_cluster(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster;
do {
int j;
cluster = in_le32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
if (initiator_type(cluster, j)) {
if (count == core)
return i;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return -1; /* cannot identify the cluster */
}
u32 fsl_qoriq_core_to_type(unsigned int core)
{
struct ccsr_gur __iomem *gur =
(void __iomem *)(CONFIG_SYS_FSL_GUTS_ADDR);
int i = 0, count = 0;
u32 cluster, type;
do {
int j;
cluster = in_le32(&gur->tp_cluster[i].lower);
for (j = 0; j < TP_INIT_PER_CLUSTER; j++) {
type = initiator_type(cluster, j);
if (type) {
if (count == core)
return type;
count++;
}
}
i++;
} while ((cluster & TP_CLUSTER_EOC) != TP_CLUSTER_EOC);
return -1; /* cannot identify the cluster */
}
#ifdef CONFIG_DISPLAY_CPUINFO
int print_cpuinfo(void)
{
struct sys_info sysinfo;
char buf[32];
unsigned int i, core;
u32 type;
get_sys_info(&sysinfo);
puts("Clock Configuration:");
for_each_cpu(i, core, cpu_numcores(), cpu_mask()) {
if (!(i % 3))
puts("\n ");
type = TP_ITYP_VER(fsl_qoriq_core_to_type(core));
printf("CPU%d(%s):%-4s MHz ", core,
type == TY_ITYP_VER_A7 ? "A7 " :
(type == TY_ITYP_VER_A53 ? "A53" :
(type == TY_ITYP_VER_A57 ? "A57" : " ")),
strmhz(buf, sysinfo.freq_processor[core]));
}
printf("\n Bus: %-4s MHz ",
strmhz(buf, sysinfo.freq_systembus));
printf("DDR: %-4s MHz", strmhz(buf, sysinfo.freq_ddrbus));
printf(" DP-DDR: %-4s MHz", strmhz(buf, sysinfo.freq_ddrbus2));
puts("\n");
return 0;
}
#endif
int cpu_eth_init(bd_t *bis)
{
int error = 0;
#ifdef CONFIG_FSL_MC_ENET
error = mc_init(bis);
#endif
return error;
}
int arch_early_init_r(void)
{
int rv;
rv = fsl_lsch3_wake_seconday_cores();
if (rv)
printf("Did not wake secondary cores\n");
return 0;
}