| /* |
| * (C) Copyright 2001 |
| * Wolfgang Denk, DENX Software Engineering, wd@denx.de. |
| * Keith Outwater, keith_outwater@mvsi.com |
| * |
| * See file CREDITS for list of people who contributed to this |
| * project. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, |
| * MA 02111-1307 USA |
| */ |
| |
| #include <common.h> |
| #include <mpc8xx.h> |
| |
| #if defined(CONFIG_ENV_IS_IN_FLASH) |
| # ifndef CONFIG_ENV_ADDR |
| # define CONFIG_ENV_ADDR (CFG_FLASH_BASE + CONFIG_ENV_OFFSET) |
| # endif |
| # ifndef CONFIG_ENV_SIZE |
| # define CONFIG_ENV_SIZE CONFIG_ENV_SECT_SIZE |
| # endif |
| # ifndef CONFIG_ENV_SECT_SIZE |
| # define CONFIG_ENV_SECT_SIZE CONFIG_ENV_SIZE |
| # endif |
| #endif |
| |
| /* |
| * Use buffered writes to flash by default - they are about 32x faster than |
| * single byte writes. |
| */ |
| #ifndef CFG_GEN860T_FLASH_USE_WRITE_BUFFER |
| #define CFG_GEN860T_FLASH_USE_WRITE_BUFFER |
| #endif |
| |
| /* |
| * Max time to wait (in mS) for flash device to allocate a write buffer. |
| */ |
| #ifndef CFG_FLASH_ALLOC_BUFFER_TOUT |
| #define CFG_FLASH_ALLOC_BUFFER_TOUT 100 |
| #endif |
| |
| /* |
| * These functions support a single Intel StrataFlash device (28F128J3A) |
| * in byte mode only!. The flash routines are very basic and simple |
| * since there isn't really any remapping necessary. |
| */ |
| |
| /* |
| * Intel SCS (Scalable Command Set) command definitions |
| * (taken from 28F128J3A datasheet) |
| */ |
| #define SCS_READ_CMD 0xff |
| #define SCS_READ_ID_CMD 0x90 |
| #define SCS_QUERY_CMD 0x98 |
| #define SCS_READ_STATUS_CMD 0x70 |
| #define SCS_CLEAR_STATUS_CMD 0x50 |
| #define SCS_WRITE_BUF_CMD 0xe8 |
| #define SCS_PROGRAM_CMD 0x40 |
| #define SCS_BLOCK_ERASE_CMD 0x20 |
| #define SCS_BLOCK_ERASE_RESUME_CMD 0xd0 |
| #define SCS_PROGRAM_RESUME_CMD 0xd0 |
| #define SCS_BLOCK_ERASE_SUSPEND_CMD 0xb0 |
| #define SCS_SET_BLOCK_LOCK_CMD 0x60 |
| #define SCS_CLR_BLOCK_LOCK_CMD 0x60 |
| |
| /* |
| * SCS status/extended status register bit definitions |
| */ |
| #define SCS_SR7 0x80 |
| #define SCS_XSR7 0x80 |
| |
| /*---------------------------------------------------------------------*/ |
| #if 0 |
| #define DEBUG_FLASH |
| #endif |
| |
| #ifdef DEBUG_FLASH |
| #define PRINTF(fmt,args...) printf(fmt ,##args) |
| #else |
| #define PRINTF(fmt,args...) |
| #endif |
| /*---------------------------------------------------------------------*/ |
| |
| flash_info_t flash_info[CFG_MAX_FLASH_BANKS]; |
| |
| /*----------------------------------------------------------------------- |
| * Functions |
| */ |
| static ulong flash_get_size (vu_char *addr, flash_info_t *info); |
| static int write_data8 (flash_info_t *info, ulong dest, uchar data); |
| static void flash_get_offsets (ulong base, flash_info_t *info); |
| |
| /*----------------------------------------------------------------------- |
| * Initialize the flash memory. |
| */ |
| unsigned long |
| flash_init (void) |
| { |
| volatile immap_t *immap = (immap_t *)CFG_IMMR; |
| volatile memctl8xx_t *memctl = &immap->im_memctl; |
| unsigned long size_b0; |
| int i; |
| |
| for (i= 0; i < CFG_MAX_FLASH_BANKS; ++i) { |
| flash_info[i].flash_id = FLASH_UNKNOWN; |
| } |
| |
| /* |
| * The gen860t board only has one FLASH memory device, so the |
| * FLASH Bank configuration is done statically. |
| */ |
| PRINTF("\n## Get flash bank 1 size @ 0x%08x\n", FLASH_BASE0_PRELIM); |
| size_b0 = flash_get_size((vu_char *)FLASH_BASE0_PRELIM, &flash_info[0]); |
| if (flash_info[0].flash_id == FLASH_UNKNOWN) { |
| printf ("## Unknown FLASH on Bank 0: " |
| "ID 0x%lx, Size = 0x%08lx = %ld MB\n", |
| flash_info[0].flash_id,size_b0, size_b0 << 20); |
| } |
| |
| PRINTF("## Before remap:\n" |
| " BR0: 0x%08x OR0: 0x%08x\n BR1: 0x%08x OR1: 0x%08x\n", |
| memctl->memc_br0, memctl->memc_or0, |
| memctl->memc_br1, memctl->memc_or1); |
| |
| /* |
| * Remap FLASH according to real size |
| */ |
| memctl->memc_or0 |= (-size_b0 & 0xFFFF8000); |
| memctl->memc_br0 |= (CFG_FLASH_BASE & BR_BA_MSK); |
| |
| PRINTF("## After remap:\n" |
| " BR0: 0x%08x OR0: 0x%08x\n", memctl->memc_br0, memctl->memc_or0); |
| |
| /* |
| * Re-do sizing to get full correct info |
| */ |
| size_b0 = flash_get_size ((vu_char *)CFG_FLASH_BASE, &flash_info[0]); |
| flash_get_offsets (CFG_FLASH_BASE, &flash_info[0]); |
| flash_info[0].size = size_b0; |
| |
| #if CFG_MONITOR_BASE >= CFG_FLASH_BASE |
| /* |
| * Monitor protection is ON by default |
| */ |
| flash_protect(FLAG_PROTECT_SET, |
| CFG_MONITOR_BASE, |
| CFG_MONITOR_BASE + monitor_flash_len - 1, |
| &flash_info[0]); |
| #endif |
| |
| #ifdef CONFIG_ENV_IS_IN_FLASH |
| /* |
| * Environment protection ON by default |
| */ |
| flash_protect(FLAG_PROTECT_SET, |
| CONFIG_ENV_ADDR, |
| CONFIG_ENV_ADDR + CONFIG_ENV_SECT_SIZE - 1, |
| &flash_info[0]); |
| #endif |
| |
| PRINTF("## Final Flash bank size: 0x%08lx\n",size_b0); |
| return (size_b0); |
| } |
| |
| |
| /*----------------------------------------------------------------------- |
| * Fill in the FLASH offset table |
| */ |
| static void |
| flash_get_offsets (ulong base, flash_info_t *info) |
| { |
| int i; |
| |
| if (info->flash_id == FLASH_UNKNOWN) { |
| return; |
| } |
| |
| switch (info->flash_id & FLASH_VENDMASK) { |
| case FLASH_MAN_INTEL: |
| for (i = 0; i < info->sector_count; i++) { |
| info->start[i] = base; |
| base += 1024 * 128; |
| } |
| return; |
| |
| default: |
| printf ("Don't know sector offsets for FLASH" |
| " type 0x%lx\n", info->flash_id); |
| return; |
| } |
| } |
| |
| |
| /*----------------------------------------------------------------------- |
| * Display FLASH device info |
| */ |
| void |
| flash_print_info (flash_info_t *info) |
| { |
| int i; |
| |
| if (info->flash_id == FLASH_UNKNOWN) { |
| printf ("Missing or unknown FLASH type\n"); |
| return; |
| } |
| |
| switch (info->flash_id & FLASH_VENDMASK) { |
| case FLASH_MAN_INTEL: |
| printf ("Intel "); |
| break; |
| default: |
| printf ("Unknown Vendor "); |
| break; |
| } |
| |
| switch (info->flash_id & FLASH_TYPEMASK) { |
| case FLASH_28F128J3A: |
| printf ("28F128J3A (128Mbit = 128K x 128)\n"); |
| break; |
| default: |
| printf ("Unknown Chip Type\n"); |
| break; |
| } |
| |
| if (info->size >= (1024 * 1024)) { |
| i = 20; |
| } else { |
| i = 10; |
| } |
| printf (" Size: %ld %cB in %d Sectors\n", |
| info->size >> i, |
| (i == 20) ? 'M' : 'k', |
| info->sector_count); |
| |
| printf (" Sector Start Addresses:"); |
| for (i=0; i<info->sector_count; ++i) { |
| if ((i % 5) == 0) |
| printf ("\n "); |
| printf (" %08lX%s", |
| info->start[i], |
| info->protect[i] ? " (RO)" : " " |
| ); |
| } |
| printf ("\n"); |
| return; |
| } |
| |
| |
| /*----------------------------------------------------------------------- |
| * Get size and other information for a FLASH device. |
| * NOTE: The following code cannot be run from FLASH! |
| */ |
| static |
| ulong flash_get_size (vu_char *addr, flash_info_t *info) |
| { |
| #define NO_FLASH 0 |
| |
| vu_char value[2]; |
| |
| /* |
| * Try to read the manufacturer ID |
| */ |
| addr[0] = SCS_READ_CMD; |
| addr[0] = SCS_READ_ID_CMD; |
| value[0] = addr[0]; |
| value[1] = addr[2]; |
| addr[0] = SCS_READ_CMD; |
| |
| PRINTF("Manuf. ID @ 0x%08lx: 0x%02x\n", (ulong)addr, value[0]); |
| switch (value[0]) { |
| case (INTEL_MANUFACT & 0xff): |
| info->flash_id = FLASH_MAN_INTEL; |
| break; |
| default: |
| info->flash_id = FLASH_UNKNOWN; |
| info->sector_count = 0; |
| info->size = 0; |
| return (NO_FLASH); |
| } |
| |
| /* |
| * Read the device ID |
| */ |
| PRINTF("Device ID @ 0x%08lx: 0x%02x\n", (ulong)(&addr[2]), value[1]); |
| switch (value[1]) { |
| case (INTEL_ID_28F128J3A & 0xff): |
| info->flash_id += FLASH_28F128J3A; |
| info->sector_count = 128; |
| info->size = 16 * 1024 * 1024; |
| break; |
| |
| default: |
| info->flash_id = FLASH_UNKNOWN; |
| return (NO_FLASH); |
| } |
| |
| if (info->sector_count > CFG_MAX_FLASH_SECT) { |
| printf ("** ERROR: sector count %d > max (%d) **\n", |
| info->sector_count, CFG_MAX_FLASH_SECT); |
| info->sector_count = CFG_MAX_FLASH_SECT; |
| } |
| return (info->size); |
| } |
| |
| |
| /*----------------------------------------------------------------------- |
| * Erase the specified sectors in the specified FLASH device |
| */ |
| int |
| flash_erase(flash_info_t *info, int s_first, int s_last) |
| { |
| int flag, prot, sect; |
| ulong start, now, last; |
| |
| if ((s_first < 0) || (s_first > s_last)) { |
| if (info->flash_id == FLASH_UNKNOWN) { |
| printf ("- missing\n"); |
| } else { |
| printf ("- no sectors to erase\n"); |
| } |
| return 1; |
| } |
| |
| if ((info->flash_id & FLASH_VENDMASK) != FLASH_MAN_INTEL) { |
| printf ("Can erase only Intel flash types - aborted\n"); |
| return 1; |
| } |
| |
| prot = 0; |
| for (sect=s_first; sect<=s_last; ++sect) { |
| if (info->protect[sect]) { |
| prot++; |
| } |
| } |
| |
| if (prot) { |
| printf ("- Warning: %d protected sectors will not be erased!\n", |
| prot); |
| } else { |
| printf ("\n"); |
| } |
| |
| start = get_timer (0); |
| last = start; |
| |
| /* |
| * Start erase on unprotected sectors |
| */ |
| for (sect = s_first; sect<=s_last; sect++) { |
| if (info->protect[sect] == 0) { /* not protected */ |
| vu_char *addr = (uchar *)(info->start[sect]); |
| vu_char status; |
| |
| /* |
| * Disable interrupts which might cause a timeout |
| */ |
| flag = disable_interrupts(); |
| |
| *addr = SCS_CLEAR_STATUS_CMD; |
| *addr = SCS_BLOCK_ERASE_CMD; |
| *addr = SCS_BLOCK_ERASE_RESUME_CMD; |
| |
| /* |
| * Re-enable interrupts if necessary |
| */ |
| if (flag) |
| enable_interrupts(); |
| |
| /* |
| * Wait at least 80us - let's wait 1 ms |
| */ |
| udelay (1000); |
| |
| while (((status = *addr) & SCS_SR7) != SCS_SR7) { |
| if ((now=get_timer(start)) > CFG_FLASH_ERASE_TOUT) { |
| printf ("Timeout\n"); |
| *addr = SCS_BLOCK_ERASE_SUSPEND_CMD; |
| *addr = SCS_READ_CMD; |
| return 1; |
| } |
| |
| /* |
| * Show that we're waiting |
| */ |
| if ((now - last) > 1000) { /* 1 second */ |
| putc ('.'); |
| last = now; |
| } |
| } |
| *addr = SCS_READ_CMD; |
| } |
| } |
| printf (" done\n"); |
| return 0; |
| } |
| |
| |
| #ifdef CFG_GEN860T_FLASH_USE_WRITE_BUFFER |
| /* |
| * Allocate a flash buffer, fill it with data and write it to the flash. |
| * 0 - OK |
| * 1 - Timeout on buffer request |
| * |
| * NOTE: After the last call to this function, WSM status needs to be checked! |
| */ |
| static int |
| write_flash_buffer8(flash_info_t *info_p, vu_char *src_p, vu_char *dest_p, |
| uint count) |
| { |
| vu_char *block_addr_p = NULL; |
| vu_char *start_addr_p = NULL; |
| ulong blocksize = info_p->size / (ulong)info_p->sector_count; |
| |
| int i; |
| uint time = get_timer(0); |
| |
| PRINTF("%s:%d: src: 0x%p dest: 0x%p count: %d\n", |
| __FUNCTION__, __LINE__, src_p, dest_p, count); |
| |
| /* |
| * What block are we in? We already know that the source address is |
| * in the flash address range, but we also can't cross a block boundary. |
| * We assume that the block does not cross a boundary (we'll check before |
| * calling this function). |
| */ |
| for (i = 0; i < info_p->sector_count; ++i) { |
| if ( ((ulong)dest_p >= info_p->start[i]) && |
| ((ulong)dest_p < (info_p->start[i] + blocksize)) ) { |
| PRINTF("%s:%d: Dest addr 0x%p is in block %d @ 0x%.8lx\n", |
| __FUNCTION__, __LINE__, dest_p, i, info_p->start[i]); |
| block_addr_p = (vu_char *)info_p->start[i]; |
| break; |
| } |
| } |
| |
| /* |
| * Request a buffer |
| */ |
| *block_addr_p = SCS_WRITE_BUF_CMD; |
| while ((*block_addr_p & SCS_XSR7) != SCS_XSR7) { |
| if (get_timer(time) > CFG_FLASH_ALLOC_BUFFER_TOUT) { |
| PRINTF("%s:%d: Buffer allocation timeout @ 0x%p (waited %d mS)\n", |
| __FUNCTION__, __LINE__, block_addr_p, |
| CFG_FLASH_ALLOC_BUFFER_TOUT); |
| return 1; |
| } |
| *block_addr_p = SCS_WRITE_BUF_CMD; |
| } |
| |
| /* |
| * Fill the buffer with data |
| */ |
| start_addr_p = dest_p; |
| *block_addr_p = count - 1; /* flash device wants count - 1 */ |
| PRINTF("%s:%d: Fill buffer at block addr 0x%p\n", |
| __FUNCTION__, __LINE__, block_addr_p); |
| for (i = 0; i < count; i++) { |
| *start_addr_p++ = *src_p++; |
| } |
| |
| /* |
| * Flush buffer to flash |
| */ |
| *block_addr_p = SCS_PROGRAM_RESUME_CMD; |
| #if 1 |
| time = get_timer(0); |
| while ((*block_addr_p & SCS_SR7) != SCS_SR7) { |
| if (get_timer(time) > CFG_FLASH_WRITE_TOUT) { |
| PRINTF("%s:%d: Write timeout @ 0x%p (waited %d mS)\n", |
| __FUNCTION__, __LINE__, block_addr_p, CFG_FLASH_WRITE_TOUT); |
| return 1; |
| } |
| } |
| |
| #endif |
| return 0; |
| } |
| #endif |
| |
| |
| /*----------------------------------------------------------------------- |
| * Copy memory to flash, returns: |
| * 0 - OK |
| * 1 - write timeout |
| * 2 - Flash not erased |
| * 4 - Flash not identified |
| */ |
| int |
| write_buff(flash_info_t *info_p, uchar *src_p, ulong addr, ulong count) |
| { |
| int rc = 0; |
| #ifdef CFG_GEN860T_FLASH_USE_WRITE_BUFFER |
| #define FLASH_WRITE_BUF_SIZE 0x00000020 /* 32 bytes */ |
| int i; |
| uint bufs; |
| ulong buf_count; |
| vu_char *sp; |
| vu_char *dp; |
| #else |
| ulong wp; |
| #endif |
| |
| PRINTF("\n%s:%d: src: 0x%.8lx dest: 0x%.8lx size: %d (0x%.8lx)\n", |
| __FUNCTION__, __LINE__, (ulong)src_p, addr, (uint)count, count); |
| |
| if (info_p->flash_id == FLASH_UNKNOWN) { |
| return 4; |
| } |
| |
| #ifdef CFG_GEN860T_FLASH_USE_WRITE_BUFFER |
| sp = src_p; |
| dp = (uchar *)addr; |
| |
| /* |
| * For maximum performance, we want to align the start address to |
| * the beginning of a write buffer boundary (i.e. A4-A0 of the |
| * start address = 0). See how many bytes are required to get to a |
| * write-buffer-aligned address. If that number is non-zero, do |
| * non buffered writes of the non-aligned data. By doing non-buffered |
| * writes, we avoid the problem of crossing a block (sector) boundary |
| * with buffered writes. |
| */ |
| buf_count = FLASH_WRITE_BUF_SIZE - (addr & (FLASH_WRITE_BUF_SIZE - 1)); |
| if (buf_count == FLASH_WRITE_BUF_SIZE) { /* already on a boundary */ |
| buf_count = 0; |
| } |
| if (buf_count > count) { /* not a full buffers worth of data to write */ |
| buf_count = count; |
| } |
| count -= buf_count; |
| |
| PRINTF("%s:%d: Write buffer alignment count = %ld\n", |
| __FUNCTION__, __LINE__, buf_count); |
| while (buf_count-- >= 1) { |
| if ((rc = write_data8(info_p, (ulong)dp++, *sp++)) != 0) { |
| return (rc); |
| } |
| } |
| |
| PRINTF("%s:%d: count = %ld\n", __FUNCTION__, __LINE__, count); |
| if (count == 0) { /* all done */ |
| PRINTF("%s:%d: Less than 1 buffer (%d) worth of bytes\n", |
| __FUNCTION__, __LINE__, FLASH_WRITE_BUF_SIZE); |
| return (rc); |
| } |
| |
| /* |
| * Now that we are write buffer aligned, write full or partial buffers. |
| * The fact that we are write buffer aligned automatically avoids |
| * crossing a block address during a write buffer operation. |
| */ |
| bufs = count / FLASH_WRITE_BUF_SIZE; |
| PRINTF("%s:%d: %d (0x%x) buffers to write\n", __FUNCTION__, __LINE__, |
| bufs, bufs); |
| while (bufs >= 1) { |
| rc = write_flash_buffer8(info_p, sp, dp, FLASH_WRITE_BUF_SIZE); |
| if (rc != 0) { |
| PRINTF("%s:%d: ** Error writing buf %d\n", |
| __FUNCTION__, __LINE__, bufs); |
| return (rc); |
| } |
| bufs--; |
| sp += FLASH_WRITE_BUF_SIZE; |
| dp += FLASH_WRITE_BUF_SIZE; |
| } |
| |
| /* |
| * Do the leftovers |
| */ |
| i = count % FLASH_WRITE_BUF_SIZE; |
| PRINTF("%s:%d: %d (0x%x) leftover bytes\n", __FUNCTION__, __LINE__, i, i); |
| if (i > 0) { |
| rc = write_flash_buffer8(info_p, sp, dp, i); |
| } |
| |
| sp = (vu_char*)info_p->start[0]; |
| *sp = SCS_READ_CMD; |
| return (rc); |
| |
| #else |
| wp = addr; |
| while (count-- >= 1) { |
| if((rc = write_data8(info_p, wp++, *src_p++)) != 0) |
| return (rc); |
| } |
| return 0; |
| #endif |
| } |
| |
| |
| /*----------------------------------------------------------------------- |
| * Write a byte to Flash, returns: |
| * 0 - OK |
| * 1 - write timeout |
| * 2 - Flash not erased |
| */ |
| static int |
| write_data8 (flash_info_t *info, ulong dest, uchar data) |
| { |
| vu_char *addr = (vu_char *)dest; |
| vu_char status; |
| ulong start; |
| int flag; |
| |
| /* Check if Flash is (sufficiently) erased */ |
| if ((*addr & data) != data) { |
| return (2); |
| } |
| /* Disable interrupts which might cause a timeout here */ |
| flag = disable_interrupts(); |
| |
| *addr = SCS_PROGRAM_CMD; |
| *addr = data; |
| |
| /* re-enable interrupts if necessary */ |
| if (flag) |
| enable_interrupts(); |
| |
| start = get_timer (0); |
| |
| while (((status = *addr) & SCS_SR7) != SCS_SR7) { |
| if (get_timer(start) > CFG_FLASH_WRITE_TOUT) { |
| *addr = SCS_READ_CMD; |
| return (1); |
| } |
| } |
| *addr = SCS_READ_CMD; |
| return (0); |
| } |
| |
| /* vim: set ts=4 sw=4 tw=78: */ |