| /* |
| * Freescale i.MX28 image generator |
| * |
| * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com> |
| * on behalf of DENX Software Engineering GmbH |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <endian.h> |
| #include <fcntl.h> |
| #include <sys/stat.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include "compiler.h" |
| |
| /* Taken from <linux/kernel.h> */ |
| #define __round_mask(x, y) ((__typeof__(x))((y)-1)) |
| #define round_down(x, y) ((x) & ~__round_mask(x, y)) |
| |
| /* |
| * Default BCB layout. |
| * |
| * TWEAK this if you have blown any OCOTP fuses. |
| */ |
| #define STRIDE_PAGES 64 |
| #define STRIDE_COUNT 4 |
| |
| /* |
| * Layout for 256Mb big NAND with 2048b page size, 64b OOB size and |
| * 128kb erase size. |
| * |
| * TWEAK this if you have different kind of NAND chip. |
| */ |
| static uint32_t nand_writesize = 2048; |
| static uint32_t nand_oobsize = 64; |
| static uint32_t nand_erasesize = 128 * 1024; |
| |
| /* |
| * Sector on which the SigmaTel boot partition (0x53) starts. |
| */ |
| static uint32_t sd_sector = 2048; |
| |
| /* |
| * Each of the U-Boot bootstreams is at maximum 1MB big. |
| * |
| * TWEAK this if, for some wild reason, you need to boot bigger image. |
| */ |
| #define MAX_BOOTSTREAM_SIZE (1 * 1024 * 1024) |
| |
| /* i.MX28 NAND controller-specific constants. DO NOT TWEAK! */ |
| #define MXS_NAND_DMA_DESCRIPTOR_COUNT 4 |
| #define MXS_NAND_CHUNK_DATA_CHUNK_SIZE 512 |
| #define MXS_NAND_METADATA_SIZE 10 |
| #define MXS_NAND_BITS_PER_ECC_LEVEL 13 |
| #define MXS_NAND_COMMAND_BUFFER_SIZE 32 |
| |
| struct mx28_nand_fcb { |
| uint32_t checksum; |
| uint32_t fingerprint; |
| uint32_t version; |
| struct { |
| uint8_t data_setup; |
| uint8_t data_hold; |
| uint8_t address_setup; |
| uint8_t dsample_time; |
| uint8_t nand_timing_state; |
| uint8_t rea; |
| uint8_t rloh; |
| uint8_t rhoh; |
| } timing; |
| uint32_t page_data_size; |
| uint32_t total_page_size; |
| uint32_t sectors_per_block; |
| uint32_t number_of_nands; /* Ignored */ |
| uint32_t total_internal_die; /* Ignored */ |
| uint32_t cell_type; /* Ignored */ |
| uint32_t ecc_block_n_ecc_type; |
| uint32_t ecc_block_0_size; |
| uint32_t ecc_block_n_size; |
| uint32_t ecc_block_0_ecc_type; |
| uint32_t metadata_bytes; |
| uint32_t num_ecc_blocks_per_page; |
| uint32_t ecc_block_n_ecc_level_sdk; /* Ignored */ |
| uint32_t ecc_block_0_size_sdk; /* Ignored */ |
| uint32_t ecc_block_n_size_sdk; /* Ignored */ |
| uint32_t ecc_block_0_ecc_level_sdk; /* Ignored */ |
| uint32_t num_ecc_blocks_per_page_sdk; /* Ignored */ |
| uint32_t metadata_bytes_sdk; /* Ignored */ |
| uint32_t erase_threshold; |
| uint32_t boot_patch; |
| uint32_t patch_sectors; |
| uint32_t firmware1_starting_sector; |
| uint32_t firmware2_starting_sector; |
| uint32_t sectors_in_firmware1; |
| uint32_t sectors_in_firmware2; |
| uint32_t dbbt_search_area_start_address; |
| uint32_t badblock_marker_byte; |
| uint32_t badblock_marker_start_bit; |
| uint32_t bb_marker_physical_offset; |
| }; |
| |
| struct mx28_nand_dbbt { |
| uint32_t checksum; |
| uint32_t fingerprint; |
| uint32_t version; |
| uint32_t number_bb; |
| uint32_t number_2k_pages_bb; |
| }; |
| |
| struct mx28_nand_bbt { |
| uint32_t nand; |
| uint32_t number_bb; |
| uint32_t badblock[510]; |
| }; |
| |
| struct mx28_sd_drive_info { |
| uint32_t chip_num; |
| uint32_t drive_type; |
| uint32_t tag; |
| uint32_t first_sector_number; |
| uint32_t sector_count; |
| }; |
| |
| struct mx28_sd_config_block { |
| uint32_t signature; |
| uint32_t primary_boot_tag; |
| uint32_t secondary_boot_tag; |
| uint32_t num_copies; |
| struct mx28_sd_drive_info drv_info[1]; |
| }; |
| |
| static inline uint32_t mx28_nand_ecc_chunk_cnt(uint32_t page_data_size) |
| { |
| return page_data_size / MXS_NAND_CHUNK_DATA_CHUNK_SIZE; |
| } |
| |
| static inline uint32_t mx28_nand_ecc_size_in_bits(uint32_t ecc_strength) |
| { |
| return ecc_strength * MXS_NAND_BITS_PER_ECC_LEVEL; |
| } |
| |
| static inline uint32_t mx28_nand_get_ecc_strength(uint32_t page_data_size, |
| uint32_t page_oob_size) |
| { |
| int ecc_strength; |
| |
| /* |
| * Determine the ECC layout with the formula: |
| * ECC bits per chunk = (total page spare data bits) / |
| * (bits per ECC level) / (chunks per page) |
| * where: |
| * total page spare data bits = |
| * (page oob size - meta data size) * (bits per byte) |
| */ |
| ecc_strength = ((page_oob_size - MXS_NAND_METADATA_SIZE) * 8) |
| / (MXS_NAND_BITS_PER_ECC_LEVEL * |
| mx28_nand_ecc_chunk_cnt(page_data_size)); |
| |
| return round_down(ecc_strength, 2); |
| } |
| |
| static inline uint32_t mx28_nand_get_mark_offset(uint32_t page_data_size, |
| uint32_t ecc_strength) |
| { |
| uint32_t chunk_data_size_in_bits; |
| uint32_t chunk_ecc_size_in_bits; |
| uint32_t chunk_total_size_in_bits; |
| uint32_t block_mark_chunk_number; |
| uint32_t block_mark_chunk_bit_offset; |
| uint32_t block_mark_bit_offset; |
| |
| chunk_data_size_in_bits = MXS_NAND_CHUNK_DATA_CHUNK_SIZE * 8; |
| chunk_ecc_size_in_bits = mx28_nand_ecc_size_in_bits(ecc_strength); |
| |
| chunk_total_size_in_bits = |
| chunk_data_size_in_bits + chunk_ecc_size_in_bits; |
| |
| /* Compute the bit offset of the block mark within the physical page. */ |
| block_mark_bit_offset = page_data_size * 8; |
| |
| /* Subtract the metadata bits. */ |
| block_mark_bit_offset -= MXS_NAND_METADATA_SIZE * 8; |
| |
| /* |
| * Compute the chunk number (starting at zero) in which the block mark |
| * appears. |
| */ |
| block_mark_chunk_number = |
| block_mark_bit_offset / chunk_total_size_in_bits; |
| |
| /* |
| * Compute the bit offset of the block mark within its chunk, and |
| * validate it. |
| */ |
| block_mark_chunk_bit_offset = block_mark_bit_offset - |
| (block_mark_chunk_number * chunk_total_size_in_bits); |
| |
| if (block_mark_chunk_bit_offset > chunk_data_size_in_bits) |
| return 1; |
| |
| /* |
| * Now that we know the chunk number in which the block mark appears, |
| * we can subtract all the ECC bits that appear before it. |
| */ |
| block_mark_bit_offset -= |
| block_mark_chunk_number * chunk_ecc_size_in_bits; |
| |
| return block_mark_bit_offset; |
| } |
| |
| static inline uint32_t mx28_nand_mark_byte_offset(void) |
| { |
| uint32_t ecc_strength; |
| ecc_strength = mx28_nand_get_ecc_strength(nand_writesize, nand_oobsize); |
| return mx28_nand_get_mark_offset(nand_writesize, ecc_strength) >> 3; |
| } |
| |
| static inline uint32_t mx28_nand_mark_bit_offset(void) |
| { |
| uint32_t ecc_strength; |
| ecc_strength = mx28_nand_get_ecc_strength(nand_writesize, nand_oobsize); |
| return mx28_nand_get_mark_offset(nand_writesize, ecc_strength) & 0x7; |
| } |
| |
| static uint32_t mx28_nand_block_csum(uint8_t *block, uint32_t size) |
| { |
| uint32_t csum = 0; |
| int i; |
| |
| for (i = 0; i < size; i++) |
| csum += block[i]; |
| |
| return csum ^ 0xffffffff; |
| } |
| |
| static struct mx28_nand_fcb *mx28_nand_get_fcb(uint32_t size) |
| { |
| struct mx28_nand_fcb *fcb; |
| uint32_t bcb_size_bytes; |
| uint32_t stride_size_bytes; |
| uint32_t bootstream_size_pages; |
| uint32_t fw1_start_page; |
| uint32_t fw2_start_page; |
| |
| fcb = malloc(nand_writesize); |
| if (!fcb) { |
| printf("MX28 NAND: Unable to allocate FCB\n"); |
| return NULL; |
| } |
| |
| memset(fcb, 0, nand_writesize); |
| |
| fcb->fingerprint = 0x20424346; |
| fcb->version = 0x01000000; |
| |
| /* |
| * FIXME: These here are default values as found in kobs-ng. We should |
| * probably retrieve the data from NAND or something. |
| */ |
| fcb->timing.data_setup = 80; |
| fcb->timing.data_hold = 60; |
| fcb->timing.address_setup = 25; |
| fcb->timing.dsample_time = 6; |
| |
| fcb->page_data_size = nand_writesize; |
| fcb->total_page_size = nand_writesize + nand_oobsize; |
| fcb->sectors_per_block = nand_erasesize / nand_writesize; |
| |
| fcb->num_ecc_blocks_per_page = (nand_writesize / 512) - 1; |
| fcb->ecc_block_0_size = 512; |
| fcb->ecc_block_n_size = 512; |
| fcb->metadata_bytes = 10; |
| fcb->ecc_block_n_ecc_type = mx28_nand_get_ecc_strength( |
| nand_writesize, nand_oobsize) >> 1; |
| fcb->ecc_block_0_ecc_type = mx28_nand_get_ecc_strength( |
| nand_writesize, nand_oobsize) >> 1; |
| if (fcb->ecc_block_n_ecc_type == 0) { |
| printf("MX28 NAND: Unsupported NAND geometry\n"); |
| goto err; |
| } |
| |
| fcb->boot_patch = 0; |
| fcb->patch_sectors = 0; |
| |
| fcb->badblock_marker_byte = mx28_nand_mark_byte_offset(); |
| fcb->badblock_marker_start_bit = mx28_nand_mark_bit_offset(); |
| fcb->bb_marker_physical_offset = nand_writesize; |
| |
| stride_size_bytes = STRIDE_PAGES * nand_writesize; |
| bcb_size_bytes = stride_size_bytes * STRIDE_COUNT; |
| |
| bootstream_size_pages = (size + (nand_writesize - 1)) / |
| nand_writesize; |
| |
| fw1_start_page = 2 * bcb_size_bytes / nand_writesize; |
| fw2_start_page = (2 * bcb_size_bytes + MAX_BOOTSTREAM_SIZE) / |
| nand_writesize; |
| |
| fcb->firmware1_starting_sector = fw1_start_page; |
| fcb->firmware2_starting_sector = fw2_start_page; |
| fcb->sectors_in_firmware1 = bootstream_size_pages; |
| fcb->sectors_in_firmware2 = bootstream_size_pages; |
| |
| fcb->dbbt_search_area_start_address = STRIDE_PAGES * STRIDE_COUNT; |
| |
| return fcb; |
| |
| err: |
| free(fcb); |
| return NULL; |
| } |
| |
| static struct mx28_nand_dbbt *mx28_nand_get_dbbt(void) |
| { |
| struct mx28_nand_dbbt *dbbt; |
| |
| dbbt = malloc(nand_writesize); |
| if (!dbbt) { |
| printf("MX28 NAND: Unable to allocate DBBT\n"); |
| return NULL; |
| } |
| |
| memset(dbbt, 0, nand_writesize); |
| |
| dbbt->fingerprint = 0x54424244; |
| dbbt->version = 0x1; |
| |
| return dbbt; |
| } |
| |
| static inline uint8_t mx28_nand_parity_13_8(const uint8_t b) |
| { |
| uint32_t parity = 0, tmp; |
| |
| tmp = ((b >> 6) ^ (b >> 5) ^ (b >> 3) ^ (b >> 2)) & 1; |
| parity |= tmp << 0; |
| |
| tmp = ((b >> 7) ^ (b >> 5) ^ (b >> 4) ^ (b >> 2) ^ (b >> 1)) & 1; |
| parity |= tmp << 1; |
| |
| tmp = ((b >> 7) ^ (b >> 6) ^ (b >> 5) ^ (b >> 1) ^ (b >> 0)) & 1; |
| parity |= tmp << 2; |
| |
| tmp = ((b >> 7) ^ (b >> 4) ^ (b >> 3) ^ (b >> 0)) & 1; |
| parity |= tmp << 3; |
| |
| tmp = ((b >> 6) ^ (b >> 4) ^ (b >> 3) ^ |
| (b >> 2) ^ (b >> 1) ^ (b >> 0)) & 1; |
| parity |= tmp << 4; |
| |
| return parity; |
| } |
| |
| static uint8_t *mx28_nand_fcb_block(struct mx28_nand_fcb *fcb) |
| { |
| uint8_t *block; |
| uint8_t *ecc; |
| int i; |
| |
| block = malloc(nand_writesize + nand_oobsize); |
| if (!block) { |
| printf("MX28 NAND: Unable to allocate FCB block\n"); |
| return NULL; |
| } |
| |
| memset(block, 0, nand_writesize + nand_oobsize); |
| |
| /* Update the FCB checksum */ |
| fcb->checksum = mx28_nand_block_csum(((uint8_t *)fcb) + 4, 508); |
| |
| /* Figure 12-11. in iMX28RM, rev. 1, says FCB is at offset 12 */ |
| memcpy(block + 12, fcb, sizeof(struct mx28_nand_fcb)); |
| |
| /* ECC is at offset 12 + 512 */ |
| ecc = block + 12 + 512; |
| |
| /* Compute the ECC parity */ |
| for (i = 0; i < sizeof(struct mx28_nand_fcb); i++) |
| ecc[i] = mx28_nand_parity_13_8(block[i + 12]); |
| |
| return block; |
| } |
| |
| static int mx28_nand_write_fcb(struct mx28_nand_fcb *fcb, uint8_t *buf) |
| { |
| uint32_t offset; |
| uint8_t *fcbblock; |
| int ret = 0; |
| int i; |
| |
| fcbblock = mx28_nand_fcb_block(fcb); |
| if (!fcbblock) |
| return -1; |
| |
| for (i = 0; i < STRIDE_PAGES * STRIDE_COUNT; i += STRIDE_PAGES) { |
| offset = i * nand_writesize; |
| memcpy(buf + offset, fcbblock, nand_writesize + nand_oobsize); |
| /* Mark the NAND page is OK. */ |
| buf[offset + nand_writesize] = 0xff; |
| } |
| |
| free(fcbblock); |
| return ret; |
| } |
| |
| static int mx28_nand_write_dbbt(struct mx28_nand_dbbt *dbbt, uint8_t *buf) |
| { |
| uint32_t offset; |
| int i = STRIDE_PAGES * STRIDE_COUNT; |
| |
| for (; i < 2 * STRIDE_PAGES * STRIDE_COUNT; i += STRIDE_PAGES) { |
| offset = i * nand_writesize; |
| memcpy(buf + offset, dbbt, sizeof(struct mx28_nand_dbbt)); |
| } |
| |
| return 0; |
| } |
| |
| static int mx28_nand_write_firmware(struct mx28_nand_fcb *fcb, int infd, |
| uint8_t *buf) |
| { |
| int ret; |
| off_t size; |
| uint32_t offset1, offset2; |
| |
| size = lseek(infd, 0, SEEK_END); |
| lseek(infd, 0, SEEK_SET); |
| |
| offset1 = fcb->firmware1_starting_sector * nand_writesize; |
| offset2 = fcb->firmware2_starting_sector * nand_writesize; |
| |
| ret = read(infd, buf + offset1, size); |
| if (ret != size) |
| return -1; |
| |
| memcpy(buf + offset2, buf + offset1, size); |
| |
| return 0; |
| } |
| |
| static void usage(void) |
| { |
| printf( |
| "Usage: mxsboot [ops] <type> <infile> <outfile>\n" |
| "Augment BootStream file with a proper header for i.MX28 boot\n" |
| "\n" |
| " <type> type of image:\n" |
| " \"nand\" for NAND image\n" |
| " \"sd\" for SD image\n" |
| " <infile> input file, the u-boot.sb bootstream\n" |
| " <outfile> output file, the bootable image\n" |
| "\n"); |
| printf( |
| "For NAND boot, these options are accepted:\n" |
| " -w <size> NAND page size\n" |
| " -o <size> NAND OOB size\n" |
| " -e <size> NAND erase size\n" |
| "\n" |
| "For SD boot, these options are accepted:\n" |
| " -p <sector> Sector where the SGTL partition starts\n" |
| ); |
| } |
| |
| static int mx28_create_nand_image(int infd, int outfd) |
| { |
| struct mx28_nand_fcb *fcb; |
| struct mx28_nand_dbbt *dbbt; |
| int ret = -1; |
| uint8_t *buf; |
| int size; |
| ssize_t wr_size; |
| |
| size = nand_writesize * 512 + 2 * MAX_BOOTSTREAM_SIZE; |
| |
| buf = malloc(size); |
| if (!buf) { |
| printf("Can not allocate output buffer of %d bytes\n", size); |
| goto err0; |
| } |
| |
| memset(buf, 0, size); |
| |
| fcb = mx28_nand_get_fcb(MAX_BOOTSTREAM_SIZE); |
| if (!fcb) { |
| printf("Unable to compile FCB\n"); |
| goto err1; |
| } |
| |
| dbbt = mx28_nand_get_dbbt(); |
| if (!dbbt) { |
| printf("Unable to compile DBBT\n"); |
| goto err2; |
| } |
| |
| ret = mx28_nand_write_fcb(fcb, buf); |
| if (ret) { |
| printf("Unable to write FCB to buffer\n"); |
| goto err3; |
| } |
| |
| ret = mx28_nand_write_dbbt(dbbt, buf); |
| if (ret) { |
| printf("Unable to write DBBT to buffer\n"); |
| goto err3; |
| } |
| |
| ret = mx28_nand_write_firmware(fcb, infd, buf); |
| if (ret) { |
| printf("Unable to write firmware to buffer\n"); |
| goto err3; |
| } |
| |
| wr_size = write(outfd, buf, size); |
| if (wr_size != size) { |
| ret = -1; |
| goto err3; |
| } |
| |
| ret = 0; |
| |
| err3: |
| free(dbbt); |
| err2: |
| free(fcb); |
| err1: |
| free(buf); |
| err0: |
| return ret; |
| } |
| |
| static int mx28_create_sd_image(int infd, int outfd) |
| { |
| int ret = -1; |
| uint32_t *buf; |
| int size; |
| off_t fsize; |
| ssize_t wr_size; |
| struct mx28_sd_config_block *cb; |
| |
| fsize = lseek(infd, 0, SEEK_END); |
| lseek(infd, 0, SEEK_SET); |
| size = fsize + 4 * 512; |
| |
| buf = malloc(size); |
| if (!buf) { |
| printf("Can not allocate output buffer of %d bytes\n", size); |
| goto err0; |
| } |
| |
| ret = read(infd, (uint8_t *)buf + 4 * 512, fsize); |
| if (ret != fsize) { |
| ret = -1; |
| goto err1; |
| } |
| |
| cb = (struct mx28_sd_config_block *)buf; |
| |
| cb->signature = htole32(0x00112233); |
| cb->primary_boot_tag = htole32(0x1); |
| cb->secondary_boot_tag = htole32(0x1); |
| cb->num_copies = htole32(1); |
| cb->drv_info[0].chip_num = htole32(0x0); |
| cb->drv_info[0].drive_type = htole32(0x0); |
| cb->drv_info[0].tag = htole32(0x1); |
| cb->drv_info[0].first_sector_number = htole32(sd_sector + 4); |
| cb->drv_info[0].sector_count = htole32((size - 4) / 512); |
| |
| wr_size = write(outfd, buf, size); |
| if (wr_size != size) { |
| ret = -1; |
| goto err1; |
| } |
| |
| ret = 0; |
| |
| err1: |
| free(buf); |
| err0: |
| return ret; |
| } |
| |
| static int parse_ops(int argc, char **argv) |
| { |
| int i; |
| int tmp; |
| char *end; |
| enum param { |
| PARAM_WRITE, |
| PARAM_OOB, |
| PARAM_ERASE, |
| PARAM_PART, |
| PARAM_SD, |
| PARAM_NAND |
| }; |
| int type; |
| |
| if (argc < 4) |
| return -1; |
| |
| for (i = 1; i < argc; i++) { |
| if (!strncmp(argv[i], "-w", 2)) |
| type = PARAM_WRITE; |
| else if (!strncmp(argv[i], "-o", 2)) |
| type = PARAM_OOB; |
| else if (!strncmp(argv[i], "-e", 2)) |
| type = PARAM_ERASE; |
| else if (!strncmp(argv[i], "-p", 2)) |
| type = PARAM_PART; |
| else /* SD/MMC */ |
| break; |
| |
| tmp = strtol(argv[++i], &end, 10); |
| if (tmp % 2) |
| return -1; |
| if (tmp <= 0) |
| return -1; |
| |
| if (type == PARAM_WRITE) |
| nand_writesize = tmp; |
| if (type == PARAM_OOB) |
| nand_oobsize = tmp; |
| if (type == PARAM_ERASE) |
| nand_erasesize = tmp; |
| if (type == PARAM_PART) |
| sd_sector = tmp; |
| } |
| |
| if (strcmp(argv[i], "sd") && strcmp(argv[i], "nand")) |
| return -1; |
| |
| if (i + 3 != argc) |
| return -1; |
| |
| return i; |
| } |
| |
| int main(int argc, char **argv) |
| { |
| int infd, outfd; |
| int ret = 0; |
| int offset; |
| |
| offset = parse_ops(argc, argv); |
| if (offset < 0) { |
| usage(); |
| ret = 1; |
| goto err1; |
| } |
| |
| infd = open(argv[offset + 1], O_RDONLY); |
| if (infd < 0) { |
| printf("Input BootStream file can not be opened\n"); |
| ret = 2; |
| goto err1; |
| } |
| |
| outfd = open(argv[offset + 2], O_CREAT | O_TRUNC | O_WRONLY, |
| S_IRUSR | S_IWUSR); |
| if (outfd < 0) { |
| printf("Output file can not be created\n"); |
| ret = 3; |
| goto err2; |
| } |
| |
| if (!strcmp(argv[offset], "sd")) |
| ret = mx28_create_sd_image(infd, outfd); |
| else if (!strcmp(argv[offset], "nand")) |
| ret = mx28_create_nand_image(infd, outfd); |
| |
| close(outfd); |
| err2: |
| close(infd); |
| err1: |
| return ret; |
| } |