| /* |
| * (C) Copyright 2014 Freescale Semiconductor, Inc. |
| * Author: Nitin Garg <nitin.garg@freescale.com> |
| * Ye Li <Ye.Li@freescale.com> |
| * |
| * SPDX-License-Identifier: GPL-2.0+ |
| */ |
| |
| #include <config.h> |
| #include <common.h> |
| #include <div64.h> |
| #include <fuse.h> |
| #include <asm/io.h> |
| #include <asm/arch/clock.h> |
| #include <dm.h> |
| #include <errno.h> |
| #include <malloc.h> |
| #include <thermal.h> |
| #include <imx_thermal.h> |
| |
| #define TEMPERATURE_MIN -40 |
| #define TEMPERATURE_HOT 80 |
| #define TEMPERATURE_MAX 125 |
| #define FACTOR0 10000000 |
| #define FACTOR1 15976 |
| #define FACTOR2 4297157 |
| #define MEASURE_FREQ 327 |
| |
| #define TEMPSENSE0_TEMP_CNT_SHIFT 8 |
| #define TEMPSENSE0_TEMP_CNT_MASK (0xfff << TEMPSENSE0_TEMP_CNT_SHIFT) |
| #define TEMPSENSE0_FINISHED (1 << 2) |
| #define TEMPSENSE0_MEASURE_TEMP (1 << 1) |
| #define TEMPSENSE0_POWER_DOWN (1 << 0) |
| #define MISC0_REFTOP_SELBIASOFF (1 << 3) |
| #define TEMPSENSE1_MEASURE_FREQ 0xffff |
| |
| static int read_cpu_temperature(struct udevice *dev) |
| { |
| int temperature; |
| unsigned int reg, n_meas; |
| const struct imx_thermal_plat *pdata = dev_get_platdata(dev); |
| struct anatop_regs *anatop = (struct anatop_regs *)pdata->regs; |
| unsigned int *priv = dev_get_priv(dev); |
| u32 fuse = *priv; |
| int t1, n1; |
| u32 c1, c2; |
| u64 temp64; |
| |
| /* |
| * Sensor data layout: |
| * [31:20] - sensor value @ 25C |
| * We use universal formula now and only need sensor value @ 25C |
| * slope = 0.4297157 - (0.0015976 * 25C fuse) |
| */ |
| n1 = fuse >> 20; |
| t1 = 25; /* t1 always 25C */ |
| |
| /* |
| * Derived from linear interpolation: |
| * slope = 0.4297157 - (0.0015976 * 25C fuse) |
| * slope = (FACTOR2 - FACTOR1 * n1) / FACTOR0 |
| * (Nmeas - n1) / (Tmeas - t1) = slope |
| * We want to reduce this down to the minimum computation necessary |
| * for each temperature read. Also, we want Tmeas in millicelsius |
| * and we don't want to lose precision from integer division. So... |
| * Tmeas = (Nmeas - n1) / slope + t1 |
| * milli_Tmeas = 1000 * (Nmeas - n1) / slope + 1000 * t1 |
| * milli_Tmeas = -1000 * (n1 - Nmeas) / slope + 1000 * t1 |
| * Let constant c1 = (-1000 / slope) |
| * milli_Tmeas = (n1 - Nmeas) * c1 + 1000 * t1 |
| * Let constant c2 = n1 *c1 + 1000 * t1 |
| * milli_Tmeas = c2 - Nmeas * c1 |
| */ |
| temp64 = FACTOR0; |
| temp64 *= 1000; |
| do_div(temp64, FACTOR1 * n1 - FACTOR2); |
| c1 = temp64; |
| c2 = n1 * c1 + 1000 * t1; |
| |
| /* |
| * now we only use single measure, every time we read |
| * the temperature, we will power on/down anadig thermal |
| * module |
| */ |
| writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_clr); |
| writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_set); |
| |
| /* setup measure freq */ |
| reg = readl(&anatop->tempsense1); |
| reg &= ~TEMPSENSE1_MEASURE_FREQ; |
| reg |= MEASURE_FREQ; |
| writel(reg, &anatop->tempsense1); |
| |
| /* start the measurement process */ |
| writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_clr); |
| writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr); |
| writel(TEMPSENSE0_MEASURE_TEMP, &anatop->tempsense0_set); |
| |
| /* make sure that the latest temp is valid */ |
| while ((readl(&anatop->tempsense0) & |
| TEMPSENSE0_FINISHED) == 0) |
| udelay(10000); |
| |
| /* read temperature count */ |
| reg = readl(&anatop->tempsense0); |
| n_meas = (reg & TEMPSENSE0_TEMP_CNT_MASK) |
| >> TEMPSENSE0_TEMP_CNT_SHIFT; |
| writel(TEMPSENSE0_FINISHED, &anatop->tempsense0_clr); |
| |
| /* milli_Tmeas = c2 - Nmeas * c1 */ |
| temperature = (c2 - n_meas * c1)/1000; |
| |
| /* power down anatop thermal sensor */ |
| writel(TEMPSENSE0_POWER_DOWN, &anatop->tempsense0_set); |
| writel(MISC0_REFTOP_SELBIASOFF, &anatop->ana_misc0_clr); |
| |
| return temperature; |
| } |
| |
| int imx_thermal_get_temp(struct udevice *dev, int *temp) |
| { |
| int cpu_tmp = 0; |
| |
| cpu_tmp = read_cpu_temperature(dev); |
| while (cpu_tmp > TEMPERATURE_MIN && cpu_tmp < TEMPERATURE_MAX) { |
| if (cpu_tmp >= TEMPERATURE_HOT) { |
| printf("CPU Temperature is %d C, too hot to boot, waiting...\n", |
| cpu_tmp); |
| udelay(5000000); |
| cpu_tmp = read_cpu_temperature(dev); |
| } else { |
| break; |
| } |
| } |
| |
| *temp = cpu_tmp; |
| |
| return 0; |
| } |
| |
| static const struct dm_thermal_ops imx_thermal_ops = { |
| .get_temp = imx_thermal_get_temp, |
| }; |
| |
| static int imx_thermal_probe(struct udevice *dev) |
| { |
| unsigned int fuse = ~0; |
| |
| const struct imx_thermal_plat *pdata = dev_get_platdata(dev); |
| unsigned int *priv = dev_get_priv(dev); |
| |
| /* Read Temperature calibration data fuse */ |
| fuse_read(pdata->fuse_bank, pdata->fuse_word, &fuse); |
| |
| /* Check for valid fuse */ |
| if (fuse == 0 || fuse == ~0) { |
| printf("CPU: Thermal invalid data, fuse: 0x%x\n", fuse); |
| return -EPERM; |
| } |
| |
| *priv = fuse; |
| |
| enable_thermal_clk(); |
| |
| return 0; |
| } |
| |
| U_BOOT_DRIVER(imx_thermal) = { |
| .name = "imx_thermal", |
| .id = UCLASS_THERMAL, |
| .ops = &imx_thermal_ops, |
| .probe = imx_thermal_probe, |
| .priv_auto_alloc_size = sizeof(unsigned int), |
| .flags = DM_FLAG_PRE_RELOC, |
| }; |