blob: 24fcb9373f83d0ed021036e331918a0af35e1d99 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2020 MediaTek Inc.
*
* Author: Weijie Gao <weijie.gao@mediatek.com>
*/
#include <cpu_func.h>
#include <dm.h>
#include <clk.h>
#include <malloc.h>
#include <miiphy.h>
#include <misc.h>
#include <net.h>
#include <reset.h>
#include <asm/addrspace.h>
#include <asm/cache.h>
#include <asm/gpio.h>
#include <dm/device_compat.h>
#include <linux/bitfield.h>
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/ethtool.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/mdio.h>
#include <linux/mii.h>
#include <mach/mt7620-sysc.h>
/* Frame Engine block */
#define GDMA_BASE 0x600
#define PDMA_BASE 0x800
/* GDMA registers */
#define GDMA_FWD_CFG 0x00
#define GDMA_DST_PORT GENMASK(2, 0)
#define GDMA_DST_PORT_CPU 0
#define GDMA_MAC_ADRL 0x08
#define GDMA_MAC_ADRH 0x0c
/* PDMA registers */
#define TX_BASE_PTR0 0x000
#define TX_MAX_CNT0 0x004
#define TX_CTX_IDX0 0x008
#define TX_DTX_IDX0 0x00c
#define RX_BASE_PTR0 0x100
#define RX_MAX_CNT0 0x104
#define RX_CALC_IDX0 0x108
#define RX_DRX_IDX0 0x10c
#define PDMA_GLO_CFG 0x204
#define TX_WB_DDONE BIT(6)
#define PDMA_BT_SIZE GENMASK(5, 4)
#define PDMA_BT_SIZE_32B 1
#define RX_DMA_BUSY BIT(3)
#define RX_DMA_EN BIT(2)
#define TX_DMA_BUSY BIT(1)
#define TX_DMA_EN BIT(0)
#define PDMA_RST_IDX 0x208
#define RST_DRX_IDX0 BIT(16)
#define RST_DTX_IDX0 BIT(0)
/* Built-in giga ethernet switch block */
/* ARL registers */
#define GSW_MFC 0x0010
#define BC_FFP GENMASK(31, 24)
#define UNM_FFP GENMASK(23, 16)
#define UNU_FFP GENMASK(15, 8)
#define CPU_EN BIT(7)
#define CPU_PORT GENMASK(6, 4)
/* Port registers */
#define GSW_PCR(p) (0x2004 + (p) * 0x100)
#define PORT_MATRIX GENMASK(23, 16)
#define GSW_PVC(p) (0x2010 + (p) * 0x100)
#define STAG_VPID GENMASK(31, 16)
#define VLAN_ATTR GENMASK(7, 6)
#define VLAN_ATTR_USER 0
/* MAC registers */
#define GSW_PMCR(p) (0x3000 + (p) * 0x100)
#define IPG_CFG GENMASK(19, 18)
#define IPG_96BIT_WITH_SHORT_IPG 1
#define MAC_MODE BIT(16)
#define FORCE_MODE BIT(15)
#define MAC_TX_EN BIT(14)
#define MAC_RX_EN BIT(13)
#define BKOFF_EN BIT(9)
#define BACKPR_EN BIT(8)
#define FORCE_EEE1G BIT(7)
#define FORCE_EEE100 BIT(6)
#define FORCE_RX_FC BIT(5)
#define FORCE_TX_FC BIT(4)
#define FORCE_SPEED GENMASK(3, 2)
#define FORCE_SPEED_1000 2
#define FORCE_SPEED_100 1
#define FORCE_SPEED_10 0
#define FORCE_DUPLEX BIT(1)
#define FORCE_LINK BIT(0)
/* GMAC registers */
#define GSW_PPSC 0x7000
#define PHY_AP_EN BIT(31)
#define PHY_PRE_EN BIT(30)
#define PHY_MDC_CFG GENMASK(29, 24)
#define EPHY_AP_EN BIT(23)
#define EE_AN_EN BIT(16)
#define PHY_AP_END_ADDR GENMASK(12, 8)
#define PHY_AP_START_ADDR GENMASK(4, 0)
#define GSW_PIAC 0x7004
#define PHY_ACS_ST BIT(31)
#define MDIO_REG_ADDR GENMASK(29, 25)
#define MDIO_PHY_ADDR GENMASK(24, 20)
#define MDIO_CMD GENMASK(19, 18)
#define MDIO_CMD_WRITE 1
#define MDIO_CMD_READ 2
#define MDIO_ST GENMASK(17, 16)
#define MDIO_RW_DATA GENMASK(15, 0)
#define GSW_GPC1 0x7014
#define PHY_DIS GENMASK(28, 24)
#define PHY_BASE GENMASK(20, 16)
#define TX_CLK_MODE BIT(3)
#define RX_CLK_MODE BIT(2)
/* MII Registers for MDIO clause 45 indirect access */
#define MII_MMD_ACC_CTL_REG 0x0d
#define MMD_OP_MODE GENMASK(15, 14)
#define MMD_ADDR 0
#define MMD_DATA 1
#define MMD_DATA_RW_POST_INC 2
#define MMD_DATA_W_POST_INC 3
#define MMD_DEVAD GENMASK(4, 0)
#define MII_MMD_ADDR_DATA_REG 0x0e
/* MT7530 internal register access */
#define MT7530_REG_PAGE_ADDR GENMASK(15, 6)
#define MT7530_REG_ADDR GENMASK(5, 2)
/* MT7530 system control registers*/
#define MT7530_SYS_CTRL 0x7000
#define SW_SYS_RST BIT(1)
#define SW_REG_RST BIT(0)
#define MT7530_MHWTRAP 0x7804
#define P5_INTF_SEL_GMAC5 BIT(13)
#define P5_INTF_DIS BIT(6)
struct pdma_txd_info1 {
u32 SDP0;
};
struct pdma_txd_info2 {
u32 SDL1 : 14;
u32 LS1 : 1;
u32 BURST : 1;
u32 SDL0 : 14;
u32 LS0 : 1;
u32 DDONE : 1;
};
struct pdma_txd_info3 {
u32 SDP1;
};
struct pdma_txd_info4 {
u32 VPRI_VIDX : 8;
u32 SIDX : 4;
u32 INSP : 1;
u32 RESV : 2;
u32 UDF : 5;
u32 FP_BMAP : 8;
u32 TSO : 1;
u32 TUI_CO : 3;
};
struct pdma_tx_desc {
struct pdma_txd_info1 txd_info1;
struct pdma_txd_info2 txd_info2;
struct pdma_txd_info3 txd_info3;
struct pdma_txd_info4 txd_info4;
};
struct pdma_rxd_info1 {
u32 PDP0;
};
struct pdma_rxd_info2 {
u32 PLEN1 : 14;
u32 LS1 : 1;
u32 UN_USED : 1;
u32 PLEN0 : 14;
u32 LS0 : 1;
u32 DDONE : 1;
};
struct pdma_rxd_info3 {
u32 PDP1;
};
struct pdma_rxd_info4 {
u32 FOE_ENTRY : 14;
u32 CRSN : 5;
u32 SP : 3;
u32 L4F : 1;
u32 L4VLD : 1;
u32 TACK : 1;
u32 IP4F : 1;
u32 IP4 : 1;
u32 IP6 : 1;
u32 UN_USED : 4;
};
struct pdma_rx_desc {
struct pdma_rxd_info1 rxd_info1;
struct pdma_rxd_info2 rxd_info2;
struct pdma_rxd_info3 rxd_info3;
struct pdma_rxd_info4 rxd_info4;
};
struct mt7620_gsw_port_cfg {
phy_interface_t mode;
bool force_mode;
bool duplex;
u32 speed;
int phy_addr;
};
struct mt7620_eth_priv {
struct udevice *dev;
void __iomem *fe_base;
void __iomem *gsw_base;
struct mii_dev *mdio_bus;
struct pdma_tx_desc *tx_ring_noc;
struct pdma_rx_desc *rx_ring_noc;
int rx_dma_owner_idx0;
int tx_cpu_owner_idx0;
void *pkt_buf;
void *tx_ring;
void *rx_ring;
struct reset_ctl_bulk rsts;
struct clk_bulk clks;
struct udevice *sysc;
u32 ephy_num;
bool port5_mt7530;
struct gpio_desc gpio_swrst;
struct mt7620_gsw_port_cfg port_cfg[3];
};
#define PDMA_TIMEOUT 100000
#define NUM_TX_DESC 64
#define NUM_RX_DESC 128
#define NUM_FE_PHYS 5
#define NUM_PORTS 7
#define CPU_PORT_NUM 6
#define NUM_MT7530_PHYS 5
static void pdma_write(struct mt7620_eth_priv *priv, u32 reg, u32 val)
{
writel(val, priv->fe_base + PDMA_BASE + reg);
}
static void gdma_write(struct mt7620_eth_priv *priv, u32 reg, u32 val)
{
writel(val, priv->fe_base + GDMA_BASE + reg);
}
static void gdma_rmw(struct mt7620_eth_priv *priv, u32 reg, u32 clr, u32 set)
{
clrsetbits_le32(priv->fe_base + GDMA_BASE + reg, clr, set);
}
static u32 gsw_read(struct mt7620_eth_priv *priv, u32 reg)
{
return readl(priv->gsw_base + reg);
}
static void gsw_write(struct mt7620_eth_priv *priv, u32 reg, u32 val)
{
writel(val, priv->gsw_base + reg);
}
static void gsw_rmw(struct mt7620_eth_priv *priv, u32 reg, u32 clr, u32 set)
{
clrsetbits_le32(priv->gsw_base + reg, clr, set);
}
static int mt7620_mdio_rw(struct mt7620_eth_priv *priv, u32 phy, u32 reg,
u32 data, u32 cmd)
{
int ret;
u32 val;
val = FIELD_PREP(MDIO_ST, 1) | FIELD_PREP(MDIO_CMD, cmd) |
FIELD_PREP(MDIO_PHY_ADDR, phy) |
FIELD_PREP(MDIO_REG_ADDR, reg);
if (cmd == MDIO_CMD_WRITE)
val |= FIELD_PREP(MDIO_RW_DATA, data);
gsw_write(priv, GSW_PIAC, val);
gsw_write(priv, GSW_PIAC, val | PHY_ACS_ST);
ret = readl_poll_timeout(priv->gsw_base + GSW_PIAC, val,
!(val & PHY_ACS_ST), 10000);
if (ret) {
dev_err(priv->dev, "mt7620_eth: MDIO access timeout\n");
return ret;
}
if (cmd == MDIO_CMD_READ) {
val = gsw_read(priv, GSW_PIAC);
return FIELD_GET(MDIO_RW_DATA, val);
}
return 0;
}
static int mt7620_mii_read(struct mt7620_eth_priv *priv, u32 phy, u32 reg)
{
return mt7620_mdio_rw(priv, phy, reg, 0, MDIO_CMD_READ);
}
static int mt7620_mii_write(struct mt7620_eth_priv *priv, u32 phy, u32 reg,
u16 val)
{
return mt7620_mdio_rw(priv, phy, reg, val, MDIO_CMD_WRITE);
}
static int mt7620_mdio_read(struct mii_dev *bus, int addr, int devad, int reg)
{
struct mt7620_eth_priv *priv = bus->priv;
int ret;
if (devad < 0)
return mt7620_mdio_rw(priv, addr, reg, 0, MDIO_CMD_READ);
ret = mt7620_mdio_rw(priv, addr, MII_MMD_ACC_CTL_REG,
FIELD_PREP(MMD_OP_MODE, MMD_ADDR) |
FIELD_PREP(MMD_DEVAD, devad), MDIO_CMD_WRITE);
if (ret)
return ret;
ret = mt7620_mdio_rw(priv, addr, MII_MMD_ADDR_DATA_REG, reg,
MDIO_CMD_WRITE);
if (ret)
return ret;
ret = mt7620_mdio_rw(priv, addr, MII_MMD_ACC_CTL_REG,
FIELD_PREP(MMD_OP_MODE, MMD_DATA) |
FIELD_PREP(MMD_DEVAD, devad), MDIO_CMD_WRITE);
if (ret)
return ret;
return mt7620_mdio_rw(priv, addr, MII_MMD_ADDR_DATA_REG, 0,
MDIO_CMD_READ);
}
static int mt7620_mdio_write(struct mii_dev *bus, int addr, int devad, int reg,
u16 val)
{
struct mt7620_eth_priv *priv = bus->priv;
int ret;
if (devad < 0)
return mt7620_mdio_rw(priv, addr, reg, val, MDIO_CMD_WRITE);
ret = mt7620_mdio_rw(priv, addr, MII_MMD_ACC_CTL_REG,
FIELD_PREP(MMD_OP_MODE, MMD_ADDR) |
FIELD_PREP(MMD_DEVAD, devad), MDIO_CMD_WRITE);
if (ret)
return ret;
ret = mt7620_mdio_rw(priv, addr, MII_MMD_ADDR_DATA_REG, reg,
MDIO_CMD_WRITE);
if (ret)
return ret;
ret = mt7620_mdio_rw(priv, addr, MII_MMD_ACC_CTL_REG,
FIELD_PREP(MMD_OP_MODE, MMD_DATA) |
FIELD_PREP(MMD_DEVAD, devad), MDIO_CMD_WRITE);
if (ret)
return ret;
return mt7620_mdio_rw(priv, addr, MII_MMD_ADDR_DATA_REG, val,
MDIO_CMD_WRITE);
}
static int mt7620_mdio_register(struct udevice *dev)
{
struct mt7620_eth_priv *priv = dev_get_priv(dev);
struct mii_dev *mdio_bus = mdio_alloc();
int ret;
if (!mdio_bus)
return -ENOMEM;
mdio_bus->read = mt7620_mdio_read;
mdio_bus->write = mt7620_mdio_write;
snprintf(mdio_bus->name, sizeof(mdio_bus->name), dev->name);
mdio_bus->priv = (void *)priv;
ret = mdio_register(mdio_bus);
if (ret)
return ret;
priv->mdio_bus = mdio_bus;
return 0;
}
static int mt7530_reg_read(struct mt7620_eth_priv *priv, u32 reg, u32 *data)
{
int ret, low_word, high_word;
/* Write page address */
ret = mt7620_mii_write(priv, 0x1f, 0x1f,
FIELD_GET(MT7530_REG_PAGE_ADDR, reg));
if (ret)
return ret;
/* Read low word */
low_word = mt7620_mii_read(priv, 0x1f, FIELD_GET(MT7530_REG_ADDR, reg));
if (low_word < 0)
return low_word;
/* Read high word */
high_word = mt7620_mii_read(priv, 0x1f, 0x10);
if (high_word < 0)
return high_word;
if (data)
*data = ((u32)high_word << 16) | ((u32)low_word & 0xffff);
return 0;
}
static int mt7530_reg_write(struct mt7620_eth_priv *priv, u32 reg, u32 data)
{
int ret;
/* Write page address */
ret = mt7620_mii_write(priv, 0x1f, 0x1f,
FIELD_GET(MT7530_REG_PAGE_ADDR, reg));
if (ret)
return ret;
/* Write low word */
ret = mt7620_mii_write(priv, 0x1f, FIELD_GET(MT7530_REG_ADDR, reg),
data & 0xffff);
if (ret)
return ret;
/* Write high word */
return mt7620_mii_write(priv, 0x1f, 0x10, data >> 16);
}
static void mt7620_phy_restart_an(struct mt7620_eth_priv *priv, u32 phy)
{
u16 val;
val = mt7620_mii_read(priv, phy, MII_BMCR);
val |= BMCR_ANRESTART;
mt7620_mii_write(priv, phy, MII_BMCR, val);
}
static void mt7620_gsw_ephy_init(struct mt7620_eth_priv *priv)
{
struct mt7620_sysc_chip_rev chip_rev;
int ret;
u32 i;
ret = misc_ioctl(priv->sysc, MT7620_SYSC_IOCTL_GET_CHIP_REV, &chip_rev);
if (ret) {
/* Assume MT7620A if misc_ioctl() failed */
dev_warn(priv->dev, "mt7620_eth: failed to get chip rev\n");
chip_rev.bga = 1;
}
/* global, page 4 */
mt7620_mii_write(priv, 1, 31, 0x4000);
mt7620_mii_write(priv, 1, 17, 0x7444);
if (chip_rev.bga)
mt7620_mii_write(priv, 1, 19, 0x0114);
else
mt7620_mii_write(priv, 1, 19, 0x0117);
mt7620_mii_write(priv, 1, 22, 0x10cf);
mt7620_mii_write(priv, 1, 25, 0x6212);
mt7620_mii_write(priv, 1, 26, 0x0777);
mt7620_mii_write(priv, 1, 29, 0x4000);
mt7620_mii_write(priv, 1, 28, 0xc077);
mt7620_mii_write(priv, 1, 24, 0x0000);
/* global, page 3 */
mt7620_mii_write(priv, 1, 31, 0x3000);
mt7620_mii_write(priv, 1, 17, 0x4838);
/* global, page 2 */
mt7620_mii_write(priv, 1, 31, 0x2000);
if (chip_rev.bga) {
mt7620_mii_write(priv, 1, 21, 0x0515);
mt7620_mii_write(priv, 1, 22, 0x0053);
mt7620_mii_write(priv, 1, 23, 0x00bf);
mt7620_mii_write(priv, 1, 24, 0x0aaf);
mt7620_mii_write(priv, 1, 25, 0x0fad);
mt7620_mii_write(priv, 1, 26, 0x0fc1);
} else {
mt7620_mii_write(priv, 1, 21, 0x0517);
mt7620_mii_write(priv, 1, 22, 0x0fd2);
mt7620_mii_write(priv, 1, 23, 0x00bf);
mt7620_mii_write(priv, 1, 24, 0x0aab);
mt7620_mii_write(priv, 1, 25, 0x00ae);
mt7620_mii_write(priv, 1, 26, 0x0fff);
}
/* global, page 1 */
mt7620_mii_write(priv, 1, 31, 0x1000);
mt7620_mii_write(priv, 1, 17, 0xe7f8);
/* local, page 0 */
mt7620_mii_write(priv, 1, 31, 0x8000);
for (i = 0; i < priv->ephy_num; i++)
mt7620_mii_write(priv, i, 30, 0xa000);
for (i = 0; i < priv->ephy_num; i++)
mt7620_mii_write(priv, i, 4, 0x05e1);
/* local, page 2 */
mt7620_mii_write(priv, 1, 31, 0xa000);
mt7620_mii_write(priv, 0, 16, 0x1111);
mt7620_mii_write(priv, 1, 16, 0x1010);
mt7620_mii_write(priv, 2, 16, 0x1515);
mt7620_mii_write(priv, 3, 16, 0x0f0f);
if (priv->ephy_num == NUM_FE_PHYS)
mt7620_mii_write(priv, 4, 16, 0x1313);
/* Restart auto-negotiation */
for (i = 0; i < priv->ephy_num; i++)
mt7620_phy_restart_an(priv, i);
if (priv->port_cfg[0].phy_addr > 0)
mt7620_phy_restart_an(priv, priv->port_cfg[0].phy_addr);
if (priv->port_cfg[1].phy_addr > 0)
mt7620_phy_restart_an(priv, priv->port_cfg[1].phy_addr);
}
static int mt7620_setup_gmac_mode(struct mt7620_eth_priv *priv, u32 gmac,
phy_interface_t mode)
{
enum mt7620_sysc_ge_mode ge_mode;
unsigned long req;
int ret;
switch (gmac) {
case 1:
req = MT7620_SYSC_IOCTL_SET_GE1_MODE;
break;
case 2:
req = MT7620_SYSC_IOCTL_SET_GE2_MODE;
break;
default:
/* Should not reach here */
return -EINVAL;
}
switch (mode) {
case PHY_INTERFACE_MODE_MII:
ge_mode = MT7620_SYSC_GE_MII;
break;
case PHY_INTERFACE_MODE_RMII:
ge_mode = MT7620_SYSC_GE_RMII;
break;
case PHY_INTERFACE_MODE_RGMII:
ge_mode = MT7620_SYSC_GE_RGMII;
break;
case PHY_INTERFACE_MODE_NONE:
if (gmac == 2)
ge_mode = MT7620_SYSC_GE_ESW_PHY;
else
ge_mode = MT7620_SYSC_GE_RGMII;
break;
default:
/* Should not reach here */
return -EINVAL;
}
ret = misc_ioctl(priv->sysc, req, &ge_mode);
if (ret)
dev_warn(priv->dev, "mt7620_eth: failed to set GE%u mode\n",
gmac);
return 0;
}
static void mt7620_gsw_setup_port(struct mt7620_eth_priv *priv, u32 port,
struct mt7620_gsw_port_cfg *port_cfg)
{
u32 pmcr;
if (port_cfg->mode == PHY_INTERFACE_MODE_NONE) {
if (port == 5) {
gsw_write(priv, GSW_PMCR(port), FORCE_MODE);
return;
}
port_cfg->force_mode = port == CPU_PORT_NUM ? true : false;
}
pmcr = FIELD_PREP(IPG_CFG, IPG_96BIT_WITH_SHORT_IPG) | MAC_MODE |
MAC_TX_EN | MAC_RX_EN | BKOFF_EN | BACKPR_EN;
if (port_cfg->force_mode) {
pmcr |= FORCE_MODE | FORCE_RX_FC | FORCE_TX_FC |
FIELD_PREP(FORCE_SPEED, port_cfg->speed) | FORCE_LINK;
if (port_cfg->duplex)
pmcr |= FORCE_DUPLEX;
}
gsw_write(priv, GSW_PMCR(port), pmcr);
}
static void mt7620_gsw_set_port_isolation(struct mt7620_eth_priv *priv)
{
u32 i;
for (i = 0; i < NUM_PORTS; i++) {
/* Set port matrix mode */
if (i != CPU_PORT_NUM)
gsw_write(priv, GSW_PCR(i),
FIELD_PREP(PORT_MATRIX, 0x40));
else
gsw_write(priv, GSW_PCR(i),
FIELD_PREP(PORT_MATRIX, 0x3f));
/* Set port mode to user port */
gsw_write(priv, GSW_PVC(i), FIELD_PREP(STAG_VPID, 0x8100) |
FIELD_PREP(VLAN_ATTR, VLAN_ATTR_USER));
}
}
static void mt7620_gsw_setup_phy_polling(struct mt7620_eth_priv *priv)
{
int phy_addr_st, phy_addr_end;
if (priv->port_cfg[0].mode == PHY_INTERFACE_MODE_NONE)
priv->ephy_num = NUM_FE_PHYS;
else
priv->ephy_num = NUM_FE_PHYS - 1;
if (priv->port_cfg[0].phy_addr < 0 && priv->port_cfg[1].phy_addr < 0)
return;
if (priv->port_cfg[0].phy_addr > 0 && priv->port_cfg[1].phy_addr > 0) {
phy_addr_st = priv->port_cfg[0].phy_addr;
phy_addr_end = priv->port_cfg[1].phy_addr;
} else if (priv->port_cfg[0].phy_addr > 0) {
phy_addr_st = priv->port_cfg[0].phy_addr;
phy_addr_end = priv->port_cfg[0].phy_addr + 1;
} else {
phy_addr_st = 4;
phy_addr_end = priv->port_cfg[1].phy_addr;
}
gsw_rmw(priv, GSW_PPSC, PHY_AP_END_ADDR | PHY_AP_START_ADDR,
PHY_AP_EN | FIELD_PREP(PHY_AP_START_ADDR, phy_addr_st) |
FIELD_PREP(PHY_AP_END_ADDR, phy_addr_end));
}
static void mt7530_gsw_set_port_isolation(struct mt7620_eth_priv *priv)
{
u32 i;
for (i = 0; i < NUM_PORTS; i++) {
/* Set port matrix mode */
if (i != CPU_PORT_NUM)
mt7530_reg_write(priv, GSW_PCR(i),
FIELD_PREP(PORT_MATRIX, 0x40));
else
mt7530_reg_write(priv, GSW_PCR(i),
FIELD_PREP(PORT_MATRIX, 0x3f));
/* Set port mode to user port */
mt7530_reg_write(priv, GSW_PVC(i),
FIELD_PREP(STAG_VPID, 0x8100) |
FIELD_PREP(VLAN_ATTR, VLAN_ATTR_USER));
}
}
static void mt7620_gsw_config_mt7530(struct mt7620_eth_priv *priv)
{
u16 phy_val;
u32 i, val;
/* Disable internal PHY, set PHY base to 12 */
gsw_write(priv, GSW_GPC1, PHY_DIS | FIELD_PREP(PHY_BASE, 12) |
TX_CLK_MODE | RX_CLK_MODE);
/* MT7530 reset deassert */
dm_gpio_set_value(&priv->gpio_swrst, 1);
mdelay(1000);
/* Turn off PHYs */
for (i = 0; i < NUM_MT7530_PHYS; i++) {
phy_val = mt7620_mii_read(priv, i, MII_BMCR);
phy_val |= BMCR_PDOWN;
mt7620_mii_write(priv, i, MII_BMCR, phy_val);
}
/* Force MAC link down before reset */
mt7530_reg_write(priv, GSW_PMCR(5), FORCE_MODE);
mt7530_reg_write(priv, GSW_PMCR(6), FORCE_MODE);
/* MT7530 soft reset */
mt7530_reg_write(priv, MT7530_SYS_CTRL, SW_SYS_RST | SW_REG_RST);
udelay(100);
/* MT7530 port6 force to 1G (connects to MT7620 GSW port5) */
mt7530_reg_write(priv, GSW_PMCR(6),
FIELD_PREP(IPG_CFG, IPG_96BIT_WITH_SHORT_IPG) |
MAC_MODE | FORCE_MODE | MAC_TX_EN | MAC_RX_EN |
BKOFF_EN | BACKPR_EN | FORCE_RX_FC | FORCE_TX_FC |
FIELD_PREP(FORCE_SPEED, FORCE_SPEED_1000) |
FORCE_DUPLEX | FORCE_LINK);
/* Disable MT7530 port5 */
mt7530_reg_read(priv, MT7530_MHWTRAP, &val);
val |= P5_INTF_SEL_GMAC5 | P5_INTF_DIS;
mt7530_reg_write(priv, MT7530_MHWTRAP, val);
/* Isolate each ports */
mt7530_gsw_set_port_isolation(priv);
/* Turn on PHYs */
for (i = 0; i < NUM_MT7530_PHYS; i++) {
phy_val = mt7620_mii_read(priv, i, MII_BMCR);
phy_val &= ~BMCR_PDOWN;
mt7620_mii_write(priv, i, MII_BMCR, phy_val);
}
/* Restart auto-negotiation */
for (i = 0; i < NUM_MT7530_PHYS; i++)
mt7620_phy_restart_an(priv, i);
}
static void mt7620_gsw_init(struct mt7620_eth_priv *priv)
{
/* If port5 connects to MT7530 Giga-switch, reset it first */
if (priv->port5_mt7530)
dm_gpio_set_value(&priv->gpio_swrst, 0);
/* Set forward control */
gsw_write(priv, GSW_MFC, FIELD_PREP(BC_FFP, 0x7f) |
FIELD_PREP(UNM_FFP, 0x7f) | FIELD_PREP(UNU_FFP, 0x7f) |
CPU_EN | FIELD_PREP(CPU_PORT, CPU_PORT_NUM));
/* Set GMAC mode (GMAC1 -> Port5, GMAC2 -> Port4) */
mt7620_setup_gmac_mode(priv, 1, priv->port_cfg[1].mode);
mt7620_setup_gmac_mode(priv, 2, priv->port_cfg[0].mode);
/* port_cfg[2] is CPU port */
priv->port_cfg[2].force_mode = true;
priv->port_cfg[2].duplex = true;
priv->port_cfg[2].speed = FORCE_SPEED_1000;
/* Configure GSW MAC port */
mt7620_gsw_setup_port(priv, 4, &priv->port_cfg[0]);
mt7620_gsw_setup_port(priv, 5, &priv->port_cfg[1]);
mt7620_gsw_setup_port(priv, 6, &priv->port_cfg[2]);
/* Isolate each port */
mt7620_gsw_set_port_isolation(priv);
/* Polling external phy if exists */
mt7620_gsw_setup_phy_polling(priv);
/* Configure ephy */
mt7620_gsw_ephy_init(priv);
/* If port5 connects to MT7530 Giga-switch, do initialization */
if (priv->port5_mt7530)
mt7620_gsw_config_mt7530(priv);
}
static void mt7620_eth_fifo_init(struct mt7620_eth_priv *priv)
{
uintptr_t pkt_base = (uintptr_t)priv->pkt_buf;
int i;
memset(priv->tx_ring, 0, NUM_TX_DESC * sizeof(struct pdma_tx_desc));
memset(priv->rx_ring, 0, NUM_RX_DESC * sizeof(struct pdma_rx_desc));
memset(priv->pkt_buf, 0, (NUM_TX_DESC + NUM_RX_DESC) * PKTSIZE_ALIGN);
priv->tx_ring_noc = (void *)CKSEG1ADDR((uintptr_t)priv->tx_ring);
priv->rx_ring_noc = (void *)CKSEG1ADDR((uintptr_t)priv->rx_ring);
priv->rx_dma_owner_idx0 = 0;
priv->tx_cpu_owner_idx0 = 0;
for (i = 0; i < NUM_TX_DESC; i++) {
priv->tx_ring_noc[i].txd_info2.LS0 = 1;
priv->tx_ring_noc[i].txd_info2.DDONE = 1;
priv->tx_ring_noc[i].txd_info4.FP_BMAP = GDMA_DST_PORT_CPU;
priv->tx_ring_noc[i].txd_info1.SDP0 = CPHYSADDR(pkt_base);
pkt_base += PKTSIZE_ALIGN;
}
for (i = 0; i < NUM_RX_DESC; i++) {
priv->rx_ring_noc[i].rxd_info2.PLEN0 = PKTSIZE_ALIGN;
priv->rx_ring_noc[i].rxd_info1.PDP0 = CPHYSADDR(pkt_base);
pkt_base += PKTSIZE_ALIGN;
}
pdma_write(priv, TX_BASE_PTR0, CPHYSADDR(priv->tx_ring_noc));
pdma_write(priv, TX_MAX_CNT0, NUM_TX_DESC);
pdma_write(priv, TX_CTX_IDX0, priv->tx_cpu_owner_idx0);
pdma_write(priv, RX_BASE_PTR0, CPHYSADDR(priv->rx_ring_noc));
pdma_write(priv, RX_MAX_CNT0, NUM_RX_DESC);
pdma_write(priv, RX_CALC_IDX0, NUM_RX_DESC - 1);
pdma_write(priv, PDMA_RST_IDX, RST_DTX_IDX0 | RST_DRX_IDX0);
}
static int mt7620_eth_start(struct udevice *dev)
{
struct mt7620_eth_priv *priv = dev_get_priv(dev);
mt7620_eth_fifo_init(priv);
gdma_rmw(priv, GDMA_FWD_CFG, GDMA_DST_PORT,
FIELD_PREP(GDMA_DST_PORT, GDMA_DST_PORT_CPU));
pdma_write(priv, PDMA_GLO_CFG,
FIELD_PREP(PDMA_BT_SIZE, PDMA_BT_SIZE_32B) |
TX_WB_DDONE | RX_DMA_EN | TX_DMA_EN);
udelay(500);
return 0;
}
static void mt7620_eth_stop(struct udevice *dev)
{
struct mt7620_eth_priv *priv = dev_get_priv(dev);
u32 val;
int ret;
pdma_write(priv, PDMA_GLO_CFG,
FIELD_PREP(PDMA_BT_SIZE, PDMA_BT_SIZE_32B));
udelay(500);
ret = readl_poll_timeout(priv->fe_base + PDMA_BASE + PDMA_GLO_CFG,
val, !(val & (RX_DMA_BUSY | TX_DMA_BUSY)),
PDMA_TIMEOUT);
if (ret)
dev_warn(dev, "mt7620_eth: PDMA is still busy\n");
}
static int mt7620_eth_write_hwaddr(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
struct mt7620_eth_priv *priv = dev_get_priv(dev);
unsigned char *mac = pdata->enetaddr;
u32 macaddr_lsb, macaddr_msb;
macaddr_msb = ((u32)mac[0] << 8) | (u32)mac[1];
macaddr_lsb = ((u32)mac[2] << 24) | ((u32)mac[3] << 16) |
((u32)mac[4] << 8) | (u32)mac[5];
gdma_write(priv, GDMA_MAC_ADRH, macaddr_msb);
gdma_write(priv, GDMA_MAC_ADRL, macaddr_lsb);
return 0;
}
static int mt7620_eth_send(struct udevice *dev, void *packet, int length)
{
struct mt7620_eth_priv *priv = dev_get_priv(dev);
u32 idx = priv->tx_cpu_owner_idx0;
void *pkt_base;
if (!priv->tx_ring_noc[idx].txd_info2.DDONE) {
printf("mt7620_eth: TX DMA descriptor ring is full\n");
return -EPERM;
}
pkt_base = (void *)CKSEG0ADDR(priv->tx_ring_noc[idx].txd_info1.SDP0);
memcpy(pkt_base, packet, length);
flush_dcache_range((ulong)pkt_base, (ulong)pkt_base + length);
priv->tx_ring_noc[idx].txd_info2.SDL0 = length;
priv->tx_ring_noc[idx].txd_info2.DDONE = 0;
priv->tx_cpu_owner_idx0 = (priv->tx_cpu_owner_idx0 + 1) % NUM_TX_DESC;
pdma_write(priv, TX_CTX_IDX0, priv->tx_cpu_owner_idx0);
return 0;
}
static int mt7620_eth_recv(struct udevice *dev, int flags, uchar **packetp)
{
struct mt7620_eth_priv *priv = dev_get_priv(dev);
u32 idx = priv->rx_dma_owner_idx0, length;
uchar *pkt_base;
if (!priv->rx_ring_noc[idx].rxd_info2.DDONE) {
debug("mt7620_eth: RX DMA descriptor ring is empty\n");
return -EAGAIN;
}
length = priv->rx_ring_noc[idx].rxd_info2.PLEN0;
pkt_base = (void *)CKSEG0ADDR(priv->rx_ring_noc[idx].rxd_info1.PDP0);
invalidate_dcache_range((ulong)pkt_base, (ulong)pkt_base + length);
if (packetp)
*packetp = pkt_base;
return length;
}
static int mt7620_eth_free_pkt(struct udevice *dev, uchar *packet, int length)
{
struct mt7620_eth_priv *priv = dev_get_priv(dev);
u32 idx = priv->rx_dma_owner_idx0;
priv->rx_ring_noc[idx].rxd_info2.DDONE = 0;
priv->rx_ring_noc[idx].rxd_info2.LS0 = 0;
priv->rx_ring_noc[idx].rxd_info2.PLEN0 = PKTSIZE_ALIGN;
pdma_write(priv, RX_CALC_IDX0, idx);
priv->rx_dma_owner_idx0 = (priv->rx_dma_owner_idx0 + 1) % NUM_RX_DESC;
return 0;
}
static const struct eth_ops mt7620_eth_ops = {
.start = mt7620_eth_start,
.stop = mt7620_eth_stop,
.send = mt7620_eth_send,
.recv = mt7620_eth_recv,
.free_pkt = mt7620_eth_free_pkt,
.write_hwaddr = mt7620_eth_write_hwaddr,
};
static int mt7620_eth_alloc_rings_pkts(struct mt7620_eth_priv *priv)
{
priv->tx_ring = memalign(ARCH_DMA_MINALIGN,
NUM_TX_DESC * sizeof(struct pdma_tx_desc));
if (!priv->tx_ring) {
dev_err(priv->dev, "mt7620_eth: unable to alloc tx ring\n");
return -ENOMEM;
}
priv->rx_ring = memalign(ARCH_DMA_MINALIGN,
NUM_RX_DESC * sizeof(struct pdma_rx_desc));
if (!priv->rx_ring) {
dev_err(priv->dev, "mt7620_eth: unable to alloc rx ring\n");
goto cleanup;
}
priv->pkt_buf = memalign(ARCH_DMA_MINALIGN,
(NUM_TX_DESC + NUM_RX_DESC) * PKTSIZE_ALIGN);
if (!priv->pkt_buf) {
dev_err(priv->dev, "mt7620_eth: unable to alloc pkt buffer\n");
goto cleanup;
}
return 0;
cleanup:
if (priv->tx_ring)
free(priv->tx_ring);
if (priv->rx_ring)
free(priv->rx_ring);
return -ENOMEM;
}
static void mt7620_eth_free_rings_pkts(struct mt7620_eth_priv *priv)
{
free(priv->tx_ring);
free(priv->rx_ring);
free(priv->pkt_buf);
}
static int mt7620_eth_probe(struct udevice *dev)
{
struct mt7620_eth_priv *priv = dev_get_priv(dev);
u32 pcie_mode = MT7620_SYSC_PCIE_RC_MODE;
int ret;
misc_ioctl(priv->sysc, MT7620_SYSC_IOCTL_SET_PCIE_MODE, &pcie_mode);
clk_enable_bulk(&priv->clks);
reset_assert_bulk(&priv->rsts);
udelay(100);
reset_deassert_bulk(&priv->rsts);
udelay(1000);
ret = mt7620_eth_alloc_rings_pkts(priv);
if (ret)
return ret;
ret = mt7620_mdio_register(dev);
if (ret)
dev_warn(dev, "mt7620_eth: failed to register MDIO bus\n");
mt7620_gsw_init(priv);
return 0;
}
static int mt7620_eth_remove(struct udevice *dev)
{
struct mt7620_eth_priv *priv = dev_get_priv(dev);
mt7620_eth_stop(dev);
mt7620_eth_free_rings_pkts(priv);
return 0;
}
static int mt7620_eth_parse_gsw_port(struct mt7620_eth_priv *priv, u32 idx,
ofnode node)
{
ofnode subnode;
int speed, ret;
u32 phy_addr;
priv->port_cfg[idx].mode = ofnode_read_phy_mode(node);
switch (priv->port_cfg[idx].mode) {
case PHY_INTERFACE_MODE_MII:
case PHY_INTERFACE_MODE_RMII:
case PHY_INTERFACE_MODE_RGMII:
case PHY_INTERFACE_MODE_NONE:
break;
default:
dev_err(priv->dev, "mt7620_eth: unsupported phy-mode\n");
return -ENOTSUPP;
}
subnode = ofnode_find_subnode(node, "fixed-link");
if (ofnode_valid(subnode)) {
priv->port_cfg[idx].force_mode = 1;
priv->port_cfg[idx].duplex = ofnode_read_bool(subnode,
"full-duplex");
speed = ofnode_read_u32_default(subnode, "speed", 0);
switch (speed) {
case SPEED_10:
priv->port_cfg[idx].speed = FORCE_SPEED_10;
break;
case SPEED_100:
priv->port_cfg[idx].speed = FORCE_SPEED_100;
break;
case SPEED_1000:
priv->port_cfg[idx].speed = FORCE_SPEED_1000;
break;
default:
dev_err(priv->dev,
"mt7620_eth: invalid speed for fixed-link\n");
return -EINVAL;
}
if (idx == 1 && ofnode_read_bool(subnode, "mediatek,mt7530")) {
priv->port5_mt7530 = true;
ret = gpio_request_by_name_nodev(subnode,
"mediatek,mt7530-reset", 0, &priv->gpio_swrst,
GPIOD_IS_OUT);
if (ret) {
dev_err(priv->dev,
"mt7620_eth: missing mt7530 reset gpio\n");
return ret;
}
}
}
ret = ofnode_read_u32(node, "phy-addr", &phy_addr);
if (!ret) {
if (phy_addr > 31 || (idx == 0 && phy_addr < 3) ||
(idx == 1 && phy_addr < 4)) {
dev_err(priv->dev, "mt7620_eth: invalid phy address\n");
return -EINVAL;
}
priv->port_cfg[idx].phy_addr = phy_addr;
} else {
priv->port_cfg[idx].phy_addr = -1;
}
return 0;
}
static int mt7620_eth_parse_gsw_cfg(struct udevice *dev)
{
struct mt7620_eth_priv *priv = dev_get_priv(dev);
ofnode subnode;
int ret;
subnode = ofnode_find_subnode(dev_ofnode(dev), "port4");
if (ofnode_valid(subnode)) {
ret = mt7620_eth_parse_gsw_port(priv, 0, subnode);
if (ret)
return ret;
} else {
priv->port_cfg[0].mode = PHY_INTERFACE_MODE_NONE;
}
subnode = ofnode_find_subnode(dev_ofnode(dev), "port5");
if (ofnode_valid(subnode))
return mt7620_eth_parse_gsw_port(priv, 1, subnode);
priv->port_cfg[1].mode = PHY_INTERFACE_MODE_NONE;
return 0;
}
static int mt7620_eth_of_to_plat(struct udevice *dev)
{
struct eth_pdata *pdata = dev_get_plat(dev);
struct mt7620_eth_priv *priv = dev_get_priv(dev);
struct ofnode_phandle_args sysc_args;
int ret;
pdata->iobase = dev_read_addr(dev);
priv->dev = dev;
ret = ofnode_parse_phandle_with_args(dev_ofnode(dev), "mediatek,sysc", NULL,
0, 0, &sysc_args);
if (ret) {
dev_err(dev, "mt7620_eth: sysc property not found\n");
return ret;
}
ret = uclass_get_device_by_ofnode(UCLASS_MISC, sysc_args.node,
&priv->sysc);
if (ret) {
dev_err(dev, "mt7620_eth: failed to sysc device\n");
return ret;
}
priv->fe_base = dev_remap_addr_name(dev, "fe");
if (!priv->fe_base) {
dev_err(dev, "mt7620_eth: failed to map fe registers\n");
return -EINVAL;
}
priv->gsw_base = dev_remap_addr_name(dev, "esw");
if (!priv->gsw_base) {
dev_err(dev, "mt7620_eth: failed to map esw registers\n");
return -EINVAL;
}
ret = reset_get_bulk(dev, &priv->rsts);
if (ret) {
dev_err(dev, "mt7620_eth: failed to get resetctl\n");
return ret;
}
ret = clk_get_bulk(dev, &priv->clks);
if (ret) {
dev_err(dev, "mt7620_eth: failed to get clocks\n");
return ret;
}
return mt7620_eth_parse_gsw_cfg(dev);
}
static const struct udevice_id mt7620_eth_ids[] = {
{ .compatible = "mediatek,mt7620-eth" },
{}
};
U_BOOT_DRIVER(mt7620_eth) = {
.name = "mt7620-eth",
.id = UCLASS_ETH,
.of_match = mt7620_eth_ids,
.of_to_plat = mt7620_eth_of_to_plat,
.plat_auto = sizeof(struct eth_pdata),
.probe = mt7620_eth_probe,
.remove = mt7620_eth_remove,
.ops = &mt7620_eth_ops,
.priv_auto = sizeof(struct mt7620_eth_priv),
};