blob: b98bcd9b6ba5551fe0432108c7d2c2a7b8fa5858 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2021 Macronix International Co., Ltd.
*
* Authors:
* zhengxunli <zhengxunli@mxic.com.tw>
*/
#include <clk.h>
#include <dm.h>
#include <errno.h>
#include <asm/io.h>
#include <malloc.h>
#include <spi.h>
#include <spi-mem.h>
#include <linux/bug.h>
#include <linux/iopoll.h>
#define HC_CFG 0x0
#define HC_CFG_IF_CFG(x) ((x) << 27)
#define HC_CFG_DUAL_SLAVE BIT(31)
#define HC_CFG_INDIVIDUAL BIT(30)
#define HC_CFG_NIO(x) (((x) / 4) << 27)
#define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2)))
#define HC_CFG_TYPE_SPI_NOR 0
#define HC_CFG_TYPE_SPI_NAND 1
#define HC_CFG_TYPE_SPI_RAM 2
#define HC_CFG_TYPE_RAW_NAND 3
#define HC_CFG_SLV_ACT(x) ((x) << 21)
#define HC_CFG_CLK_PH_EN BIT(20)
#define HC_CFG_CLK_POL_INV BIT(19)
#define HC_CFG_BIG_ENDIAN BIT(18)
#define HC_CFG_DATA_PASS BIT(17)
#define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16)
#define HC_CFG_MAN_START_EN BIT(3)
#define HC_CFG_MAN_START BIT(2)
#define HC_CFG_MAN_CS_EN BIT(1)
#define HC_CFG_MAN_CS_ASSERT BIT(0)
#define INT_STS 0x4
#define INT_STS_EN 0x8
#define INT_SIG_EN 0xc
#define INT_STS_ALL GENMASK(31, 0)
#define INT_RDY_PIN BIT(26)
#define INT_RDY_SR BIT(25)
#define INT_LNR_SUSP BIT(24)
#define INT_ECC_ERR BIT(17)
#define INT_CRC_ERR BIT(16)
#define INT_LWR_DIS BIT(12)
#define INT_LRD_DIS BIT(11)
#define INT_SDMA_INT BIT(10)
#define INT_DMA_FINISH BIT(9)
#define INT_RX_NOT_FULL BIT(3)
#define INT_RX_NOT_EMPTY BIT(2)
#define INT_TX_NOT_FULL BIT(1)
#define INT_TX_EMPTY BIT(0)
#define HC_EN 0x10
#define HC_EN_BIT BIT(0)
#define TXD(x) (0x14 + ((x) * 4))
#define RXD 0x24
#define SS_CTRL(s) (0x30 + ((s) * 4))
#define LRD_CFG 0x44
#define LWR_CFG 0x80
#define RWW_CFG 0x70
#define OP_READ BIT(23)
#define OP_DUMMY_CYC(x) ((x) << 17)
#define OP_ADDR_BYTES(x) ((x) << 14)
#define OP_CMD_BYTES(x) (((x) - 1) << 13)
#define OP_OCTA_CRC_EN BIT(12)
#define OP_DQS_EN BIT(11)
#define OP_ENHC_EN BIT(10)
#define OP_PREAMBLE_EN BIT(9)
#define OP_DATA_DDR BIT(8)
#define OP_DATA_BUSW(x) ((x) << 6)
#define OP_ADDR_DDR BIT(5)
#define OP_ADDR_BUSW(x) ((x) << 3)
#define OP_CMD_DDR BIT(2)
#define OP_CMD_BUSW(x) (x)
#define OP_BUSW_1 0
#define OP_BUSW_2 1
#define OP_BUSW_4 2
#define OP_BUSW_8 3
#define OCTA_CRC 0x38
#define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16))
#define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16)))
#define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16))
#define ONFI_DIN_CNT(s) (0x3c + (s))
#define LRD_CTRL 0x48
#define RWW_CTRL 0x74
#define LWR_CTRL 0x84
#define LMODE_EN BIT(31)
#define LMODE_SLV_ACT(x) ((x) << 21)
#define LMODE_CMD1(x) ((x) << 8)
#define LMODE_CMD0(x) (x)
#define LRD_ADDR 0x4c
#define LWR_ADDR 0x88
#define LRD_RANGE 0x50
#define LWR_RANGE 0x8c
#define AXI_SLV_ADDR 0x54
#define DMAC_RD_CFG 0x58
#define DMAC_WR_CFG 0x94
#define DMAC_CFG_PERIPH_EN BIT(31)
#define DMAC_CFG_ALLFLUSH_EN BIT(30)
#define DMAC_CFG_LASTFLUSH_EN BIT(29)
#define DMAC_CFG_QE(x) (((x) + 1) << 16)
#define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12)
#define DMAC_CFG_BURST_SZ(x) ((x) << 8)
#define DMAC_CFG_DIR_READ BIT(1)
#define DMAC_CFG_START BIT(0)
#define DMAC_RD_CNT 0x5c
#define DMAC_WR_CNT 0x98
#define SDMA_ADDR 0x60
#define DMAM_CFG 0x64
#define DMAM_CFG_START BIT(31)
#define DMAM_CFG_CONT BIT(30)
#define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2)
#define DMAM_CFG_DIR_READ BIT(1)
#define DMAM_CFG_EN BIT(0)
#define DMAM_CNT 0x68
#define LNR_TIMER_TH 0x6c
#define RDM_CFG0 0x78
#define RDM_CFG0_POLY(x) (x)
#define RDM_CFG1 0x7c
#define RDM_CFG1_RDM_EN BIT(31)
#define RDM_CFG1_SEED(x) (x)
#define LWR_SUSP_CTRL 0x90
#define LWR_SUSP_CTRL_EN BIT(31)
#define DMAS_CTRL 0x9c
#define DMAS_CTRL_EN BIT(31)
#define DMAS_CTRL_DIR_READ BIT(30)
#define DATA_STROB 0xa0
#define DATA_STROB_EDO_EN BIT(2)
#define DATA_STROB_INV_POL BIT(1)
#define DATA_STROB_DELAY_2CYC BIT(0)
#define IDLY_CODE(x) (0xa4 + ((x) * 4))
#define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8))
#define GPIO 0xc4
#define GPIO_PT(x) BIT(3 + ((x) * 16))
#define GPIO_RESET(x) BIT(2 + ((x) * 16))
#define GPIO_HOLDB(x) BIT(1 + ((x) * 16))
#define GPIO_WPB(x) BIT((x) * 16)
#define HC_VER 0xd0
#define HW_TEST(x) (0xe0 + ((x) * 4))
struct mxic_spi_priv {
struct clk *send_clk;
struct clk *send_dly_clk;
void __iomem *regs;
u32 cur_speed_hz;
};
static int mxic_spi_clk_enable(struct mxic_spi_priv *priv)
{
int ret;
ret = clk_prepare_enable(priv->send_clk);
if (ret)
return ret;
ret = clk_prepare_enable(priv->send_dly_clk);
if (ret)
goto err_send_dly_clk;
return ret;
err_send_dly_clk:
clk_disable_unprepare(priv->send_clk);
return ret;
}
static void mxic_spi_clk_disable(struct mxic_spi_priv *priv)
{
clk_disable_unprepare(priv->send_clk);
clk_disable_unprepare(priv->send_dly_clk);
}
static void mxic_spi_set_input_delay_dqs(struct mxic_spi_priv *priv,
u8 idly_code)
{
writel(IDLY_CODE_VAL(0, idly_code) |
IDLY_CODE_VAL(1, idly_code) |
IDLY_CODE_VAL(2, idly_code) |
IDLY_CODE_VAL(3, idly_code),
priv->regs + IDLY_CODE(0));
writel(IDLY_CODE_VAL(4, idly_code) |
IDLY_CODE_VAL(5, idly_code) |
IDLY_CODE_VAL(6, idly_code) |
IDLY_CODE_VAL(7, idly_code),
priv->regs + IDLY_CODE(1));
}
static int mxic_spi_clk_setup(struct mxic_spi_priv *priv, uint freq)
{
int ret;
ret = clk_set_rate(priv->send_clk, freq);
if (ret)
return ret;
ret = clk_set_rate(priv->send_dly_clk, freq);
if (ret)
return ret;
/*
* A constant delay range from 0x0 ~ 0x1F for input delay,
* the unit is 78 ps, the max input delay is 2.418 ns.
*/
mxic_spi_set_input_delay_dqs(priv, 0xf);
return 0;
}
static int mxic_spi_set_speed(struct udevice *bus, uint freq)
{
struct mxic_spi_priv *priv = dev_get_priv(bus);
int ret;
if (priv->cur_speed_hz == freq)
return 0;
mxic_spi_clk_disable(priv);
ret = mxic_spi_clk_setup(priv, freq);
if (ret)
return ret;
ret = mxic_spi_clk_enable(priv);
if (ret)
return ret;
priv->cur_speed_hz = freq;
return 0;
}
static int mxic_spi_set_mode(struct udevice *bus, uint mode)
{
struct mxic_spi_priv *priv = dev_get_priv(bus);
u32 hc_config = 0;
if (mode & SPI_CPHA)
hc_config |= HC_CFG_CLK_PH_EN;
if (mode & SPI_CPOL)
hc_config |= HC_CFG_CLK_POL_INV;
writel(hc_config, priv->regs + HC_CFG);
return 0;
}
static void mxic_spi_hw_init(struct mxic_spi_priv *priv)
{
writel(0, priv->regs + DATA_STROB);
writel(INT_STS_ALL, priv->regs + INT_STS_EN);
writel(0, priv->regs + HC_EN);
writel(0, priv->regs + LRD_CFG);
writel(0, priv->regs + LRD_CTRL);
writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
priv->regs + HC_CFG);
}
static int mxic_spi_data_xfer(struct mxic_spi_priv *priv, const void *txbuf,
void *rxbuf, unsigned int len)
{
unsigned int pos = 0;
while (pos < len) {
unsigned int nbytes = len - pos;
u32 data = 0xffffffff;
u32 sts;
int ret;
if (nbytes > 4)
nbytes = 4;
if (txbuf)
memcpy(&data, txbuf + pos, nbytes);
ret = readl_poll_timeout(priv->regs + INT_STS, sts,
sts & INT_TX_EMPTY, 1000000);
if (ret)
return ret;
writel(data, priv->regs + TXD(nbytes % 4));
if (rxbuf) {
ret = readl_poll_timeout(priv->regs + INT_STS, sts,
sts & INT_TX_EMPTY,
1000000);
if (ret)
return ret;
ret = readl_poll_timeout(priv->regs + INT_STS, sts,
sts & INT_RX_NOT_EMPTY,
1000000);
if (ret)
return ret;
data = readl(priv->regs + RXD);
data >>= (8 * (4 - nbytes));
memcpy(rxbuf + pos, &data, nbytes);
WARN_ON(readl(priv->regs + INT_STS) & INT_RX_NOT_EMPTY);
} else {
readl(priv->regs + RXD);
}
WARN_ON(readl(priv->regs + INT_STS) & INT_RX_NOT_EMPTY);
pos += nbytes;
}
return 0;
}
static bool mxic_spi_mem_supports_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
if (op->data.buswidth > 8 || op->addr.buswidth > 8 ||
op->dummy.buswidth > 8 || op->cmd.buswidth > 8)
return false;
if (op->addr.nbytes > 7)
return false;
return spi_mem_default_supports_op(slave, op);
}
static int mxic_spi_mem_exec_op(struct spi_slave *slave,
const struct spi_mem_op *op)
{
struct dm_spi_slave_plat *slave_plat = dev_get_parent_plat(slave->dev);
struct udevice *bus = slave->dev->parent;
struct mxic_spi_priv *priv = dev_get_priv(bus);
int nio = 1, i, ret;
u32 ss_ctrl;
u8 addr[8], dummy_bytes = 0;
if (slave->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL))
nio = 8;
else if (slave->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
nio = 4;
else if (slave->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
nio = 2;
writel(HC_CFG_NIO(nio) |
HC_CFG_TYPE(slave_plat->cs, HC_CFG_TYPE_SPI_NOR) |
HC_CFG_SLV_ACT(slave_plat->cs) | HC_CFG_IDLE_SIO_LVL(1) |
HC_CFG_MAN_CS_EN,
priv->regs + HC_CFG);
writel(HC_EN_BIT, priv->regs + HC_EN);
ss_ctrl = OP_CMD_BYTES(1) | OP_CMD_BUSW(fls(op->cmd.buswidth) - 1);
if (op->addr.nbytes)
ss_ctrl |= OP_ADDR_BYTES(op->addr.nbytes) |
OP_ADDR_BUSW(fls(op->addr.buswidth) - 1);
/*
* Since the SPI MXIC dummy buswidth is aligned with the data buswidth,
* the dummy byte needs to be recalculated to send out the correct
* dummy cycle.
*/
if (op->dummy.nbytes) {
dummy_bytes = op->dummy.nbytes /
op->addr.buswidth *
op->data.buswidth;
ss_ctrl |= OP_DUMMY_CYC(dummy_bytes);
}
if (op->data.nbytes) {
ss_ctrl |= OP_DATA_BUSW(fls(op->data.buswidth) - 1);
if (op->data.dir == SPI_MEM_DATA_IN)
ss_ctrl |= OP_READ;
}
writel(ss_ctrl, priv->regs + SS_CTRL(slave_plat->cs));
writel(readl(priv->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
priv->regs + HC_CFG);
ret = mxic_spi_data_xfer(priv, &op->cmd.opcode, NULL, 1);
if (ret)
goto out;
for (i = 0; i < op->addr.nbytes; i++)
addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
ret = mxic_spi_data_xfer(priv, addr, NULL, op->addr.nbytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(priv, NULL, NULL, dummy_bytes);
if (ret)
goto out;
ret = mxic_spi_data_xfer(priv,
op->data.dir == SPI_MEM_DATA_OUT ?
op->data.buf.out : NULL,
op->data.dir == SPI_MEM_DATA_IN ?
op->data.buf.in : NULL,
op->data.nbytes);
out:
writel(readl(priv->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
priv->regs + HC_CFG);
writel(0, priv->regs + HC_EN);
return ret;
}
static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
.supports_op = mxic_spi_mem_supports_op,
.exec_op = mxic_spi_mem_exec_op,
};
static int mxic_spi_claim_bus(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct mxic_spi_priv *priv = dev_get_priv(bus);
writel(readl(priv->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
priv->regs + HC_CFG);
writel(HC_EN_BIT, priv->regs + HC_EN);
writel(readl(priv->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
priv->regs + HC_CFG);
return 0;
}
static int mxic_spi_release_bus(struct udevice *dev)
{
struct udevice *bus = dev_get_parent(dev);
struct mxic_spi_priv *priv = dev_get_priv(bus);
writel(readl(priv->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
priv->regs + HC_CFG);
writel(0, priv->regs + HC_EN);
return 0;
}
static int mxic_spi_xfer(struct udevice *dev, unsigned int bitlen,
const void *dout, void *din, unsigned long flags)
{
struct udevice *bus = dev_get_parent(dev);
struct mxic_spi_priv *priv = dev_get_priv(bus);
struct spi_slave *slave = dev_get_parent_priv(dev);
unsigned int busw = OP_BUSW_1;
unsigned int len = bitlen / 8;
int ret;
if (dout && din) {
if (((slave->mode & SPI_TX_QUAD) &&
!(slave->mode & SPI_RX_QUAD)) ||
((slave->mode & SPI_TX_DUAL) &&
!(slave->mode & SPI_RX_DUAL)))
return -ENOTSUPP;
}
if (din) {
if (slave->mode & SPI_TX_QUAD)
busw = OP_BUSW_4;
else if (slave->mode & SPI_TX_DUAL)
busw = OP_BUSW_2;
} else if (dout) {
if (slave->mode & SPI_RX_QUAD)
busw = OP_BUSW_4;
else if (slave->mode & SPI_RX_DUAL)
busw = OP_BUSW_2;
}
writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
OP_DATA_BUSW(busw) | (din ? OP_READ : 0),
priv->regs + SS_CTRL(0));
ret = mxic_spi_data_xfer(priv, dout, din, len);
if (ret)
return ret;
return 0;
}
static int mxic_spi_probe(struct udevice *bus)
{
struct mxic_spi_priv *priv = dev_get_priv(bus);
priv->regs = dev_read_addr_ptr(bus);
priv->send_clk = devm_clk_get(bus, "send_clk");
if (IS_ERR(priv->send_clk))
return PTR_ERR(priv->send_clk);
priv->send_dly_clk = devm_clk_get(bus, "send_dly_clk");
if (IS_ERR(priv->send_dly_clk))
return PTR_ERR(priv->send_dly_clk);
mxic_spi_hw_init(priv);
return 0;
}
static const struct dm_spi_ops mxic_spi_ops = {
.claim_bus = mxic_spi_claim_bus,
.release_bus = mxic_spi_release_bus,
.xfer = mxic_spi_xfer,
.set_speed = mxic_spi_set_speed,
.set_mode = mxic_spi_set_mode,
.mem_ops = &mxic_spi_mem_ops,
};
static const struct udevice_id mxic_spi_ids[] = {
{ .compatible = "mxicy,mx25f0a-spi", },
{ }
};
U_BOOT_DRIVER(mxic_spi) = {
.name = "mxic_spi",
.id = UCLASS_SPI,
.of_match = mxic_spi_ids,
.ops = &mxic_spi_ops,
.priv_auto = sizeof(struct mxic_spi_priv),
.probe = mxic_spi_probe,
};