blob: bf8b2ee16a390afed94d0f19bba2f0edaaaca398 [file] [log] [blame]
/*
* (C) Copyright 2012
* Konstantin Kozhevnikov, Cogent Embedded
*
* based on nand_spl_simple code
*
* (C) Copyright 2006-2008
* Stefan Roese, DENX Software Engineering, sr@denx.de.
*
* SPDX-License-Identifier: GPL-2.0+
*/
#include <common.h>
#include <nand.h>
#include <asm/io.h>
#include <linux/mtd/nand_ecc.h>
static int nand_ecc_pos[] = CONFIG_SYS_NAND_ECCPOS;
nand_info_t nand_info[1];
static struct nand_chip nand_chip;
#define ECCSTEPS (CONFIG_SYS_NAND_PAGE_SIZE / \
CONFIG_SYS_NAND_ECCSIZE)
#define ECCTOTAL (ECCSTEPS * CONFIG_SYS_NAND_ECCBYTES)
/*
* NAND command for large page NAND devices (2k)
*/
static int nand_command(int block, int page, uint32_t offs,
u8 cmd)
{
struct nand_chip *this = nand_info[0].priv;
int page_addr = page + block * CONFIG_SYS_NAND_PAGE_COUNT;
void (*hwctrl)(struct mtd_info *mtd, int cmd,
unsigned int ctrl) = this->cmd_ctrl;
while (!this->dev_ready(&nand_info[0]))
;
/* Emulate NAND_CMD_READOOB */
if (cmd == NAND_CMD_READOOB) {
offs += CONFIG_SYS_NAND_PAGE_SIZE;
cmd = NAND_CMD_READ0;
}
/* Begin command latch cycle */
hwctrl(&nand_info[0], cmd, NAND_CTRL_CLE | NAND_CTRL_CHANGE);
if (cmd == NAND_CMD_RESET) {
hwctrl(&nand_info[0], NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
while (!this->dev_ready(&nand_info[0]))
;
return 0;
}
/* Shift the offset from byte addressing to word addressing. */
if ((this->options & NAND_BUSWIDTH_16) && !nand_opcode_8bits(cmd))
offs >>= 1;
/* Set ALE and clear CLE to start address cycle */
/* Column address */
hwctrl(&nand_info[0], offs & 0xff,
NAND_CTRL_ALE | NAND_CTRL_CHANGE); /* A[7:0] */
hwctrl(&nand_info[0], (offs >> 8) & 0xff, NAND_CTRL_ALE); /* A[11:9] */
/* Row address */
if (cmd != NAND_CMD_RNDOUT) {
hwctrl(&nand_info[0], (page_addr & 0xff),
NAND_CTRL_ALE); /* A[19:12] */
hwctrl(&nand_info[0], ((page_addr >> 8) & 0xff),
NAND_CTRL_ALE); /* A[27:20] */
#ifdef CONFIG_SYS_NAND_5_ADDR_CYCLE
/* One more address cycle for devices > 128MiB */
hwctrl(&nand_info[0], (page_addr >> 16) & 0x0f,
NAND_CTRL_ALE); /* A[31:28] */
#endif
}
hwctrl(&nand_info[0], NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
if (cmd == NAND_CMD_READ0) {
/* Latch in address */
hwctrl(&nand_info[0], NAND_CMD_READSTART,
NAND_CTRL_CLE | NAND_CTRL_CHANGE);
hwctrl(&nand_info[0], NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
/*
* Wait a while for the data to be ready
*/
while (!this->dev_ready(&nand_info[0]))
;
} else if (cmd == NAND_CMD_RNDOUT) {
hwctrl(&nand_info[0], NAND_CMD_RNDOUTSTART, NAND_CTRL_CLE |
NAND_CTRL_CHANGE);
hwctrl(&nand_info[0], NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
}
return 0;
}
static int nand_is_bad_block(int block)
{
struct nand_chip *this = nand_info[0].priv;
nand_command(block, 0, CONFIG_SYS_NAND_BAD_BLOCK_POS,
NAND_CMD_READOOB);
/*
* Read one byte (or two if it's a 16 bit chip).
*/
if (this->options & NAND_BUSWIDTH_16) {
if (readw(this->IO_ADDR_R) != 0xffff)
return 1;
} else {
if (readb(this->IO_ADDR_R) != 0xff)
return 1;
}
return 0;
}
static int nand_read_page(int block, int page, void *dst)
{
struct nand_chip *this = nand_info[0].priv;
u_char ecc_calc[ECCTOTAL];
u_char ecc_code[ECCTOTAL];
u_char oob_data[CONFIG_SYS_NAND_OOBSIZE];
int i;
int eccsize = CONFIG_SYS_NAND_ECCSIZE;
int eccbytes = CONFIG_SYS_NAND_ECCBYTES;
int eccsteps = ECCSTEPS;
uint8_t *p = dst;
uint32_t data_pos = 0;
uint8_t *oob = &oob_data[0] + nand_ecc_pos[0];
uint32_t oob_pos = eccsize * eccsteps + nand_ecc_pos[0];
nand_command(block, page, 0, NAND_CMD_READ0);
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
this->ecc.hwctl(&nand_info[0], NAND_ECC_READ);
nand_command(block, page, data_pos, NAND_CMD_RNDOUT);
this->read_buf(&nand_info[0], p, eccsize);
nand_command(block, page, oob_pos, NAND_CMD_RNDOUT);
this->read_buf(&nand_info[0], oob, eccbytes);
this->ecc.calculate(&nand_info[0], p, &ecc_calc[i]);
data_pos += eccsize;
oob_pos += eccbytes;
oob += eccbytes;
}
/* Pick the ECC bytes out of the oob data */
for (i = 0; i < ECCTOTAL; i++)
ecc_code[i] = oob_data[nand_ecc_pos[i]];
eccsteps = ECCSTEPS;
p = dst;
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
/* No chance to do something with the possible error message
* from correct_data(). We just hope that all possible errors
* are corrected by this routine.
*/
this->ecc.correct(&nand_info[0], p, &ecc_code[i], &ecc_calc[i]);
}
return 0;
}
int nand_spl_load_image(uint32_t offs, unsigned int size, void *dst)
{
unsigned int block, lastblock;
unsigned int page;
/*
* offs has to be aligned to a page address!
*/
block = offs / CONFIG_SYS_NAND_BLOCK_SIZE;
lastblock = (offs + size - 1) / CONFIG_SYS_NAND_BLOCK_SIZE;
page = (offs % CONFIG_SYS_NAND_BLOCK_SIZE) / CONFIG_SYS_NAND_PAGE_SIZE;
while (block <= lastblock) {
if (!nand_is_bad_block(block)) {
/*
* Skip bad blocks
*/
while (page < CONFIG_SYS_NAND_PAGE_COUNT) {
nand_read_page(block, page, dst);
dst += CONFIG_SYS_NAND_PAGE_SIZE;
page++;
}
page = 0;
} else {
lastblock++;
}
block++;
}
return 0;
}
/* nand_init() - initialize data to make nand usable by SPL */
void nand_init(void)
{
/*
* Init board specific nand support
*/
nand_info[0].priv = &nand_chip;
nand_chip.IO_ADDR_R = nand_chip.IO_ADDR_W =
(void __iomem *)CONFIG_SYS_NAND_BASE;
board_nand_init(&nand_chip);
if (nand_chip.select_chip)
nand_chip.select_chip(&nand_info[0], 0);
/* NAND chip may require reset after power-on */
nand_command(0, 0, 0, NAND_CMD_RESET);
}
/* Unselect after operation */
void nand_deselect(void)
{
if (nand_chip.select_chip)
nand_chip.select_chip(&nand_info[0], -1);
}