blob: 7440808a5b50fcbaac0cdadb646c1a4ec1e566c3 [file] [log] [blame]
#!/usr/bin/python2
#
# Copyright 2013 Rackspace Australia
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
import json
import math
import numpy
import os
import sys
def main():
for dataset in ['devstack_131007', 'devstack_150', 'trivial_500',
'trivial_6000', 'user_001', 'user_002']:
process_dataset(dataset)
def process_dataset(dataset):
with open('results.json') as f:
results = json.loads(f.read())
migrations = {}
all_times = {}
for engine in ['mysql', 'percona']:
print
print 'Dataset: %s' % dataset
print 'Engine: %s' % engine
print
for migration in sorted(results[engine][dataset]):
times = []
all_times.setdefault(migration, [])
for time in results[engine][dataset][migration]:
for i in range(results[engine][dataset][migration][time]):
times.append(int(time))
all_times[migration].append(int(time))
times = sorted(times)
emit_summary(engine, times, migrations, migration)
print
print 'Dataset: %s' % dataset
print 'Engine: combined'
print
for migration in sorted(all_times.keys()):
emit_summary('combined', all_times[migration], migrations, migration)
with open('results.txt', 'w') as f:
f.write('Migration,mysql,percona\n')
for migration in sorted(migrations.keys()):
f.write('%s' % migration)
for engine in ['mysql', 'percona']:
f.write(',%s' % migrations[migration].get(engine, ''))
f.write('\n')
# Write out the dataset config as a json blob
config_path = os.path.join('datasets',
'datasets_%s' % dataset,
omg_hard_to_predict_names(dataset))
with open(os.path.join(config_path, 'input.json')) as f:
config = json.loads(f.read())
for migration in sorted(all_times.keys()):
minimum, mean, maximum, stddev = analyse(all_times[migration])
recommend = mean + 2 * stddev
if recommend > 30.0:
config['maximum_migration_times'][migration] = math.ceil(recommend)
with open(os.path.join(config_path, 'config.json'), 'w') as f:
f.write(json.dumps(config, indent=4, sort_keys=True))
def omg_hard_to_predict_names(dataset):
if dataset.startswith('trivial'):
return 'nova_%s' % dataset
if dataset == 'devstack_150':
return 'datasets_devstack_150'
if dataset == 'devstack_131007':
return '131007_devstack_export'
return dataset
def analyse(times):
np_times = numpy.array(times)
minimum = np_times.min()
mean = np_times.mean()
maximum = np_times.max()
stddev = np_times.std()
return minimum, mean, maximum, stddev
def emit_summary(engine, times, migrations, migration):
minimum, mean, maximum, stddev = analyse(times)
failed_threshold = int(max(30.0, mean + stddev * 2))
failed = 0
for time in times:
if time > failed_threshold:
failed += 1
migrations.setdefault(migration, {})
migrations[migration][engine] = ('%.02f;%0.2f;%.02f'
% (mean - 2 * stddev,
mean,
mean + 2 * stddev))
if failed_threshold != 30 or failed > 0:
print ('%s: Values range from %s to %s seconds. %d values. '
'Mean is %.02f, stddev is %.02f.\n '
'Recommend max of %d. With this value %.02f%% of tests '
'would have failed.'
% (migration, minimum, maximum,
len(times), mean, stddev, failed_threshold,
failed * 100.0 / len(times)))
if __name__ == '__main__':
sys.path.insert(0, os.path.abspath(
os.path.join(os.path.dirname(__file__), '../')))
main()