blob: dede40722c715b408a469e33ea7e7089d5ca4214 [file] [log] [blame]
/**
* @file tree_data.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief Data tree functions
*
* Copyright (c) 2015 - 2022 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE
#include "tree_data.h"
#include <assert.h>
#include <ctype.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "diff.h"
#include "hash_table.h"
#include "in.h"
#include "in_internal.h"
#include "log.h"
#include "ly_common.h"
#include "parser_data.h"
#include "parser_internal.h"
#include "path.h"
#include "plugins.h"
#include "plugins_exts/metadata.h"
#include "plugins_internal.h"
#include "plugins_types.h"
#include "set.h"
#include "tree.h"
#include "tree_data_internal.h"
#include "tree_data_sorted.h"
#include "tree_edit.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "validation.h"
#include "xml.h"
#include "xpath.h"
static LY_ERR lyd_compare_siblings_(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options,
ly_bool parental_schemas_checked);
static LYD_FORMAT
lyd_parse_get_format(const struct ly_in *in, LYD_FORMAT format)
{
if (!format && (in->type == LY_IN_FILEPATH)) {
/* unknown format - try to detect it from filename's suffix */
const char *path = in->method.fpath.filepath;
size_t len = strlen(path);
/* ignore trailing whitespaces */
for ( ; len > 0 && isspace(path[len - 1]); len--) {}
if ((len >= LY_XML_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_XML_SUFFIX_LEN], LY_XML_SUFFIX, LY_XML_SUFFIX_LEN)) {
format = LYD_XML;
} else if ((len >= LY_JSON_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_JSON_SUFFIX_LEN], LY_JSON_SUFFIX, LY_JSON_SUFFIX_LEN)) {
format = LYD_JSON;
} else if ((len >= LY_LYB_SUFFIX_LEN + 1) &&
!strncmp(&path[len - LY_LYB_SUFFIX_LEN], LY_LYB_SUFFIX, LY_LYB_SUFFIX_LEN)) {
format = LYD_LYB;
} /* else still unknown */
}
return format;
}
/**
* @brief Parse YANG data into a data tree.
*
* @param[in] ctx libyang context.
* @param[in] ext Optional extenion instance to parse data following the schema tree specified in the extension instance
* @param[in] parent Parent to connect the parsed nodes to, if any.
* @param[in,out] first_p Pointer to the first parsed node.
* @param[in] in Input handle to read the input from.
* @param[in] format Expected format of the data in @p in.
* @param[in] parse_opts Options for parser.
* @param[in] val_opts Options for validation.
* @param[out] op Optional pointer to the parsed operation, if any.
* @return LY_ERR value.
*/
static LY_ERR
lyd_parse(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent, struct lyd_node **first_p,
struct ly_in *in, LYD_FORMAT format, uint32_t parse_opts, uint32_t val_opts, struct lyd_node **op)
{
LY_ERR r = LY_SUCCESS, rc = LY_SUCCESS;
struct lyd_ctx *lydctx = NULL;
struct ly_set parsed = {0};
uint32_t i, int_opts = 0;
const struct ly_err_item *eitem;
ly_bool subtree_sibling = 0;
assert(ctx && (parent || first_p));
format = lyd_parse_get_format(in, format);
if (first_p) {
*first_p = NULL;
}
/* remember input position */
in->func_start = in->current;
/* set internal options */
if (!(parse_opts & LYD_PARSE_SUBTREE)) {
int_opts = LYD_INTOPT_WITH_SIBLINGS;
}
/* parse the data */
switch (format) {
case LYD_XML:
r = lyd_parse_xml(ctx, ext, parent, first_p, in, parse_opts, val_opts, int_opts, &parsed,
&subtree_sibling, &lydctx);
break;
case LYD_JSON:
r = lyd_parse_json(ctx, ext, parent, first_p, in, parse_opts, val_opts, int_opts, &parsed,
&subtree_sibling, &lydctx);
break;
case LYD_LYB:
r = lyd_parse_lyb(ctx, ext, parent, first_p, in, parse_opts, val_opts, int_opts, &parsed,
&subtree_sibling, &lydctx);
break;
case LYD_UNKNOWN:
LOGARG(ctx, format);
r = LY_EINVAL;
break;
}
if (r) {
rc = r;
if ((r != LY_EVALID) || !lydctx || !(lydctx->val_opts & LYD_VALIDATE_MULTI_ERROR)) {
goto cleanup;
}
eitem = ly_err_last(ctx);
assert(eitem);
if (eitem->vecode == LYVE_SYNTAX) {
/* cannot get more errors on a syntax error */
goto cleanup;
}
}
if (parent && parsed.count) {
/* use the first parsed node */
if (first_p) {
*first_p = parsed.dnodes[0];
} else {
first_p = &parsed.dnodes[0];
}
}
if (!(parse_opts & LYD_PARSE_ONLY)) {
/* validate data */
r = lyd_validate(first_p, NULL, ctx, val_opts, 0, &lydctx->node_when, &lydctx->node_types, &lydctx->meta_types,
&lydctx->ext_node, &lydctx->ext_val, NULL);
LY_CHECK_ERR_GOTO(r, rc = r, cleanup);
}
/* set the operation node */
if (op) {
*op = lydctx->op_node;
}
cleanup:
if (lydctx) {
lydctx->free(lydctx);
}
if (rc) {
if (parent) {
/* free all the parsed subtrees */
for (i = 0; i < parsed.count; ++i) {
lyd_free_tree(parsed.dnodes[i]);
}
} else {
/* free everything */
lyd_free_all(*first_p);
*first_p = NULL;
}
} else if (subtree_sibling) {
rc = LY_ENOT;
}
ly_set_erase(&parsed, NULL);
return rc;
}
LIBYANG_API_DEF LY_ERR
lyd_parse_ext_data(const struct lysc_ext_instance *ext, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format,
uint32_t parse_options, uint32_t validate_options, struct lyd_node **tree)
{
const struct ly_ctx *ctx = ext ? ext->module->ctx : NULL;
LY_CHECK_ARG_RET(ctx, ext, in, parent || tree, LY_EINVAL);
LY_CHECK_ARG_RET(ctx, !(parse_options & ~LYD_PARSE_OPTS_MASK), LY_EINVAL);
LY_CHECK_ARG_RET(ctx, !(validate_options & ~LYD_VALIDATE_OPTS_MASK), LY_EINVAL);
return lyd_parse(ctx, ext, parent, tree, in, format, parse_options, validate_options, NULL);
}
LIBYANG_API_DEF LY_ERR
lyd_parse_data(const struct ly_ctx *ctx, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format,
uint32_t parse_options, uint32_t validate_options, struct lyd_node **tree)
{
LY_CHECK_ARG_RET(ctx, ctx, in, parent || tree, LY_EINVAL);
LY_CHECK_ARG_RET(ctx, !(parse_options & ~LYD_PARSE_OPTS_MASK), LY_EINVAL);
LY_CHECK_ARG_RET(ctx, !(validate_options & ~LYD_VALIDATE_OPTS_MASK), LY_EINVAL);
return lyd_parse(ctx, NULL, parent, tree, in, format, parse_options, validate_options, NULL);
}
LIBYANG_API_DEF LY_ERR
lyd_parse_data_mem(const struct ly_ctx *ctx, const char *data, LYD_FORMAT format, uint32_t parse_options,
uint32_t validate_options, struct lyd_node **tree)
{
LY_ERR ret;
struct ly_in *in;
LY_CHECK_RET(ly_in_new_memory(data, &in));
ret = lyd_parse_data(ctx, NULL, in, format, parse_options, validate_options, tree);
ly_in_free(in, 0);
return ret;
}
LIBYANG_API_DEF LY_ERR
lyd_parse_data_fd(const struct ly_ctx *ctx, int fd, LYD_FORMAT format, uint32_t parse_options, uint32_t validate_options,
struct lyd_node **tree)
{
LY_ERR ret;
struct ly_in *in;
LY_CHECK_RET(ly_in_new_fd(fd, &in));
ret = lyd_parse_data(ctx, NULL, in, format, parse_options, validate_options, tree);
ly_in_free(in, 0);
return ret;
}
LIBYANG_API_DEF LY_ERR
lyd_parse_data_path(const struct ly_ctx *ctx, const char *path, LYD_FORMAT format, uint32_t parse_options,
uint32_t validate_options, struct lyd_node **tree)
{
LY_ERR ret;
struct ly_in *in;
LY_CHECK_RET(ly_in_new_filepath(path, 0, &in));
ret = lyd_parse_data(ctx, NULL, in, format, parse_options, validate_options, tree);
ly_in_free(in, 0);
return ret;
}
/**
* @brief Parse YANG data into an operation data tree, in case the extension instance is specified, keep the searching
* for schema nodes locked inside the extension instance.
*
* At least one of @p parent, @p tree, or @p op must always be set.
*
* Specific @p data_type values have different parameter meaning as mentioned for ::lyd_parse_op().
*
* @param[in] ctx libyang context.
* @param[in] ext Extension instance providing the specific schema tree to match with the data being parsed.
* @param[in] parent Optional parent to connect the parsed nodes to.
* @param[in] in Input handle to read the input from.
* @param[in] format Expected format of the data in @p in.
* @param[in] data_type Expected operation to parse (@ref datatype).
* @param[out] tree Optional full parsed data tree. If @p parent is set, set to NULL.
* @param[out] op Optional parsed operation node.
* @return LY_ERR value.
* @return LY_ENOT if @p data_type is a NETCONF message and the root XML element is not the expected one.
*/
static LY_ERR
lyd_parse_op_(const struct ly_ctx *ctx, const struct lysc_ext_instance *ext, struct lyd_node *parent,
struct ly_in *in, LYD_FORMAT format, enum lyd_type data_type, struct lyd_node **tree, struct lyd_node **op)
{
LY_ERR rc = LY_SUCCESS;
struct lyd_ctx *lydctx = NULL;
struct ly_set parsed = {0};
struct lyd_node *first = NULL, *envp = NULL;
uint32_t i, parse_opts, val_opts, int_opts = 0;
ly_bool proto_msg = 0;
if (!ctx) {
ctx = LYD_CTX(parent);
}
if (tree) {
*tree = NULL;
}
if (op) {
*op = NULL;
}
format = lyd_parse_get_format(in, format);
/* remember input position */
in->func_start = in->current;
/* set parse and validation opts */
parse_opts = LYD_PARSE_ONLY | LYD_PARSE_STRICT;
val_opts = 0;
switch (data_type) {
case LYD_TYPE_RPC_NETCONF:
case LYD_TYPE_NOTIF_NETCONF:
LY_CHECK_ARG_RET(ctx, format == LYD_XML, !parent, tree, op, LY_EINVAL);
proto_msg = 1;
break;
case LYD_TYPE_REPLY_NETCONF:
LY_CHECK_ARG_RET(ctx, format == LYD_XML, parent, parent->schema, parent->schema->nodetype & (LYS_RPC | LYS_ACTION),
tree, !op, LY_EINVAL);
proto_msg = 1;
break;
case LYD_TYPE_RPC_RESTCONF:
case LYD_TYPE_REPLY_RESTCONF:
LY_CHECK_ARG_RET(ctx, parent, parent->schema, parent->schema->nodetype & (LYS_RPC | LYS_ACTION), tree, !op, LY_EINVAL);
proto_msg = 1;
break;
case LYD_TYPE_NOTIF_RESTCONF:
LY_CHECK_ARG_RET(ctx, format == LYD_JSON, !parent, tree, op, LY_EINVAL);
proto_msg = 1;
break;
/* set internal opts */
case LYD_TYPE_RPC_YANG:
int_opts = LYD_INTOPT_RPC | LYD_INTOPT_ACTION | (parent ? LYD_INTOPT_WITH_SIBLINGS : LYD_INTOPT_NO_SIBLINGS);
break;
case LYD_TYPE_NOTIF_YANG:
int_opts = LYD_INTOPT_NOTIF | (parent ? LYD_INTOPT_WITH_SIBLINGS : LYD_INTOPT_NO_SIBLINGS);
break;
case LYD_TYPE_REPLY_YANG:
int_opts = LYD_INTOPT_REPLY | (parent ? LYD_INTOPT_WITH_SIBLINGS : LYD_INTOPT_NO_SIBLINGS);
break;
case LYD_TYPE_DATA_YANG:
LOGINT(ctx);
rc = LY_EINT;
goto cleanup;
}
/* parse a full protocol message */
if (proto_msg) {
if (format == LYD_XML) {
/* parse the NETCONF (or RESTCONF XML) message */
rc = lyd_parse_xml_netconf(ctx, ext, parent, &first, in, parse_opts, val_opts, data_type, &envp, &parsed, &lydctx);
} else {
/* parse the RESTCONF message */
rc = lyd_parse_json_restconf(ctx, ext, parent, &first, in, parse_opts, val_opts, data_type, &envp, &parsed, &lydctx);
}
if (rc) {
if (envp) {
/* special situation when the envelopes were parsed successfully */
*tree = envp;
}
goto cleanup;
}
/* set out params correctly */
if (envp) {
/* special out param meaning */
*tree = envp;
} else {
*tree = parent ? NULL : first;
}
if (op) {
*op = lydctx->op_node;
}
goto cleanup;
}
/* parse the data */
switch (format) {
case LYD_XML:
rc = lyd_parse_xml(ctx, ext, parent, &first, in, parse_opts, val_opts, int_opts, &parsed, NULL, &lydctx);
break;
case LYD_JSON:
rc = lyd_parse_json(ctx, ext, parent, &first, in, parse_opts, val_opts, int_opts, &parsed, NULL, &lydctx);
break;
case LYD_LYB:
rc = lyd_parse_lyb(ctx, ext, parent, &first, in, parse_opts, val_opts, int_opts, &parsed, NULL, &lydctx);
break;
case LYD_UNKNOWN:
LOGARG(ctx, format);
rc = LY_EINVAL;
break;
}
LY_CHECK_GOTO(rc, cleanup);
/* set out params correctly */
if (tree) {
*tree = parent ? NULL : first;
}
if (op) {
*op = lydctx->op_node;
}
cleanup:
if (lydctx) {
lydctx->free(lydctx);
}
if (rc) {
/* free all the parsed nodes */
if (parsed.count) {
i = parsed.count;
do {
--i;
lyd_free_tree(parsed.dnodes[i]);
} while (i);
}
if (tree && !envp) {
*tree = NULL;
}
if (op) {
*op = NULL;
}
}
ly_set_erase(&parsed, NULL);
return rc;
}
LIBYANG_API_DEF LY_ERR
lyd_parse_op(const struct ly_ctx *ctx, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format,
enum lyd_type data_type, struct lyd_node **tree, struct lyd_node **op)
{
LY_CHECK_ARG_RET(ctx, ctx || parent, in, data_type, parent || tree || op, LY_EINVAL);
return lyd_parse_op_(ctx, NULL, parent, in, format, data_type, tree, op);
}
LIBYANG_API_DEF LY_ERR
lyd_parse_ext_op(const struct lysc_ext_instance *ext, struct lyd_node *parent, struct ly_in *in, LYD_FORMAT format,
enum lyd_type data_type, struct lyd_node **tree, struct lyd_node **op)
{
const struct ly_ctx *ctx = ext ? ext->module->ctx : NULL;
LY_CHECK_ARG_RET(ctx, ext, in, data_type, parent || tree || op, LY_EINVAL);
return lyd_parse_op_(ctx, ext, parent, in, format, data_type, tree, op);
}
struct lyd_node *
lyd_insert_get_next_anchor(const struct lyd_node *first_sibling, const struct lyd_node *new_node)
{
const struct lysc_node *schema, *sparent;
struct lyd_node *match = NULL;
ly_bool found;
uint32_t getnext_opts;
assert(new_node);
if (!first_sibling || !new_node->schema || (LYD_CTX(first_sibling) != LYD_CTX(new_node))) {
/* insert at the end, no next anchor */
return NULL;
}
getnext_opts = 0;
if (new_node->schema->flags & LYS_IS_OUTPUT) {
getnext_opts = LYS_GETNEXT_OUTPUT;
}
if (first_sibling->parent && first_sibling->parent->schema && first_sibling->parent->children_ht) {
/* find the anchor using hashes */
sparent = first_sibling->parent->schema;
schema = lys_getnext(new_node->schema, sparent, NULL, getnext_opts);
while (schema) {
/* keep trying to find the first existing instance of the closest following schema sibling,
* otherwise return NULL - inserting at the end */
if (!lyd_find_sibling_schema(first_sibling, schema, &match)) {
break;
}
schema = lys_getnext(schema, sparent, NULL, getnext_opts);
}
} else {
/* find the anchor without hashes */
match = (struct lyd_node *)first_sibling;
sparent = lysc_data_parent(new_node->schema);
if (!sparent) {
/* we are in top-level, skip all the data from preceding modules */
LY_LIST_FOR(match, match) {
if (!match->schema || (strcmp(lyd_owner_module(match)->name, lyd_owner_module(new_node)->name) >= 0)) {
break;
}
}
}
/* get the first schema sibling */
schema = lys_getnext(NULL, sparent, new_node->schema->module->compiled, getnext_opts);
if (!schema) {
/* must be a top-level extension instance data, no anchor */
return NULL;
}
found = 0;
LY_LIST_FOR(match, match) {
if (!match->schema || (lyd_owner_module(match) != lyd_owner_module(new_node))) {
/* we have found an opaque node, which must be at the end, so use it OR
* modules do not match, so we must have traversed all the data from new_node module (if any),
* we have found the first node of the next module, that is what we want */
break;
}
/* skip schema nodes until we find the instantiated one */
while (!found) {
if (new_node->schema == schema) {
/* we have found the schema of the new node, continue search to find the first
* data node with a different schema (after our schema) */
found = 1;
break;
}
if (match->schema == schema) {
/* current node (match) is a data node still before the new node, continue search in data */
break;
}
schema = lys_getnext(schema, sparent, new_node->schema->module->compiled, getnext_opts);
if (!schema) {
/* must be a top-level extension instance data, no anchor */
return NULL;
}
}
if (found && (match->schema != new_node->schema)) {
/* find the next node after we have found our node schema data instance */
break;
}
}
}
return match;
}
void
lyd_insert_after_node(struct lyd_node **first_sibling_p, struct lyd_node *sibling, struct lyd_node *node)
{
struct lyd_node_inner *par;
struct lyd_node *first_sibling;
assert(!node->next && (node->prev == node));
if (sibling->next) {
/* sibling had a succeeding node */
sibling->next->prev = node;
node->next = sibling->next;
} else {
/* sibling was last, find first sibling and change its prev */
if (first_sibling_p && *first_sibling_p) {
assert(!(*first_sibling_p)->prev->next);
(*first_sibling_p)->prev = node;
} else {
first_sibling = lyd_first_sibling(sibling);
first_sibling->prev = node;
if (first_sibling_p) {
*first_sibling_p = first_sibling;
}
}
}
node->prev = sibling;
sibling->next = node;
node->parent = sibling->parent;
for (par = node->parent; par; par = par->parent) {
if ((par->flags & LYD_DEFAULT) && !(node->flags & LYD_DEFAULT)) {
/* remove default flags from NP containers */
par->flags &= ~LYD_DEFAULT;
}
}
}
void
lyd_insert_before_node(struct lyd_node *sibling, struct lyd_node *node)
{
struct lyd_node_inner *par;
assert(!node->next && (node->prev == node));
node->next = sibling;
/* covers situation of sibling being first */
node->prev = sibling->prev;
sibling->prev = node;
if (node->prev->next) {
/* sibling had a preceding node */
node->prev->next = node;
} else if (sibling->parent) {
/* sibling was first and we must also change parent child pointer */
sibling->parent->child = node;
}
node->parent = sibling->parent;
for (par = node->parent; par; par = par->parent) {
if ((par->flags & LYD_DEFAULT) && !(node->flags & LYD_DEFAULT)) {
/* remove default flags from NP containers */
par->flags &= ~LYD_DEFAULT;
}
}
}
/**
* @brief Insert node as the first and only child of a parent.
*
* Handles inserting into NP containers and key-less lists.
*
* @param[in] parent Parent to insert into.
* @param[in] node Node to insert.
*/
static void
lyd_insert_only_child(struct lyd_node *parent, struct lyd_node *node)
{
struct lyd_node_inner *par;
assert(parent && !lyd_child(parent) && !node->next && (node->prev == node));
assert(!parent->schema || (parent->schema->nodetype & LYD_NODE_INNER));
par = (struct lyd_node_inner *)parent;
par->child = node;
node->parent = par;
for ( ; par; par = par->parent) {
if ((par->flags & LYD_DEFAULT) && !(node->flags & LYD_DEFAULT)) {
/* remove default flags from NP containers */
par->flags &= ~LYD_DEFAULT;
}
}
}
/**
* @brief Learn whether a list instance has all the keys.
*
* @param[in] list List instance to check.
* @return non-zero if all the keys were found,
* @return 0 otherwise.
*/
static int
lyd_insert_has_keys(const struct lyd_node *list)
{
const struct lyd_node *key;
const struct lysc_node *skey = NULL;
assert(list->schema->nodetype == LYS_LIST);
key = lyd_child(list);
while ((skey = lys_getnext(skey, list->schema, NULL, 0)) && (skey->flags & LYS_KEY)) {
if (!key || (key->schema != skey)) {
/* key missing */
return 0;
}
key = key->next;
}
/* all keys found */
return 1;
}
/**
* @brief Get the first subsequent data node that contains a different schema definition.
*
* @param[in] first_sibling First sibling, NULL if no top-level sibling exist yet.
* @param[in] node Node to be inserted.
* @return Subsequent data node with a different schema.
*/
static struct lyd_node *
lyd_insert_node_find_anchor(struct lyd_node *first_sibling, struct lyd_node *node)
{
struct lyd_node *anchor;
if (first_sibling && (first_sibling->flags & LYD_EXT)) {
return NULL;
}
/* find the anchor, so we can insert somewhere before it */
anchor = lyd_insert_get_next_anchor(first_sibling, node);
/* cannot insert data node after opaque nodes */
if (!anchor && node->schema && first_sibling && !first_sibling->prev->schema) {
anchor = first_sibling->prev;
while ((anchor != first_sibling) && !anchor->prev->schema) {
anchor = anchor->prev;
}
}
return anchor;
}
/**
* @brief Insert @p node as the last node.
*
* @param[in] parent Parent to insert into, NULL for top-level sibling.
* @param[in,out] first_sibling First sibling, NULL if no top-level sibling exist yet.
* Can be also NULL if @p parent is set.
* @param[in] node Individual node (without siblings) to insert.
*/
static void
lyd_insert_node_last(struct lyd_node *parent, struct lyd_node **first_sibling, struct lyd_node *node)
{
assert(first_sibling && node);
if (*first_sibling) {
lyd_insert_after_node(first_sibling, (*first_sibling)->prev, node);
} else if (parent) {
lyd_insert_only_child(parent, node);
*first_sibling = node;
} else {
*first_sibling = node;
}
}
void
lyd_insert_node_ordby_schema(struct lyd_node *parent, struct lyd_node **first_sibling, struct lyd_node *node)
{
struct lyd_node *anchor;
assert(first_sibling && node);
if ((anchor = lyd_insert_node_find_anchor(*first_sibling, node))) {
lyd_insert_before_node(anchor, node);
*first_sibling = *first_sibling != anchor ? *first_sibling : node;
} else if (*first_sibling && node->schema && !(*first_sibling)->prev->schema) {
/* cannot insert data node after opaque nodes */
anchor = (*first_sibling)->prev;
while ((anchor != *first_sibling) && !anchor->prev->schema) {
anchor = anchor->prev;
}
lyd_insert_before_node(anchor, node);
*first_sibling = *first_sibling != anchor ? *first_sibling : node;
} else {
lyd_insert_node_last(parent, first_sibling, node);
}
}
void
lyd_insert_node(struct lyd_node *parent, struct lyd_node **first_sibling_p, struct lyd_node *node, uint32_t order)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_node *first_sibling, *leader;
/* inserting list without its keys is not supported */
assert((parent || first_sibling_p) && node && (node->hash || !node->schema));
assert(!parent || !parent->schema ||
(parent->schema->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_RPC | LYS_ACTION | LYS_NOTIF)));
if (!parent && first_sibling_p && (*first_sibling_p)) {
parent = lyd_parent(*first_sibling_p);
}
first_sibling = parent ? lyd_child(parent) : *first_sibling_p;
if ((order == LYD_INSERT_NODE_LAST) || !node->schema || (first_sibling && (first_sibling->flags & LYD_EXT))) {
lyd_insert_node_last(parent, &first_sibling, node);
} else if (order == LYD_INSERT_NODE_LAST_BY_SCHEMA) {
lyd_insert_node_ordby_schema(parent, &first_sibling, node);
} else if (lyds_is_supported(node) &&
(lyd_find_sibling_schema(first_sibling, node->schema, &leader) == LY_SUCCESS)) {
ret = lyds_insert(&first_sibling, &leader, node);
if (ret) {
/* The operation on the sorting tree unexpectedly failed due to some internal issue,
* but insert the node anyway although the nodes will not be sorted.
*/
LOGWRN(LYD_CTX(node), "Data in \"%s\" are not sorted.", node->schema->name);
lyd_insert_node_ordby_schema(parent, &first_sibling, node);
}
} else {
lyd_insert_node_ordby_schema(parent, &first_sibling, node);
}
/* insert into parent HT */
lyd_insert_hash(node);
/* finish hashes for our parent, if needed and possible */
if (node->schema && (node->schema->flags & LYS_KEY) && parent && parent->schema && lyd_insert_has_keys(parent)) {
lyd_hash(parent);
/* now we can insert even the list into its parent HT */
lyd_insert_hash(parent);
}
if (first_sibling_p) {
*first_sibling_p = first_sibling;
}
#ifndef NDEBUG
if ((order == LYD_INSERT_NODE_LAST) && lyds_is_supported(node) &&
(node->prev->schema == node->schema) && (lyds_compare_single(node->prev, node) > 0)) {
LOGWRN(LYD_CTX(node), "Data in \"%s\" are not sorted, inserted node should not be added to the end.",
node->schema->name);
}
#endif
}
/**
* @brief Check that @p node can be unlinked.
*
* @param[in] node Node to check
* @return LY_ERR value.
*/
static LY_ERR
lyd_unlink_check(struct lyd_node *node)
{
if (!node) {
return LY_SUCCESS;
}
if (lysc_is_key(node->schema) && node->parent) {
LOGERR(LYD_CTX(node), LY_EINVAL, "Cannot unlink a list key \"%s\", unlink the list instance instead.",
LYD_NAME(node));
return LY_EINVAL;
}
return LY_SUCCESS;
}
/**
* @brief Move schema instances before anchor or as the last.
*
* The nodes will remain sorted according to the schema.
*
* @param[in] first_dst First sibling, destination.
* @param[in] node Starting node, all following nodes with the same schema will be moved.
* @param[out] next_p Next node that has a different schema or NULL.
* @return LY_ERR value.
*/
static LY_ERR
lyd_move_nodes_ordby_schema(struct lyd_node **first_dst, struct lyd_node *node, struct lyd_node **next_p)
{
struct lyd_node *second, *anchor, *iter, *next, *dst, *src, *first_src = NULL;
assert(first_dst && *first_dst && !(*first_dst)->prev->next && node && next_p);
if ((anchor = lyd_insert_node_find_anchor(*first_dst, node))) {
/* move the first node to the correct place according to the schema */
LY_CHECK_RET(lyd_unlink_check(node));
second = node->next;
lyd_unlink_ignore_lyds(&first_src, node);
lyd_insert_before_node(anchor, node);
lyd_insert_hash(node);
*first_dst = *first_dst != anchor ? *first_dst : node;
if (!second || (node->schema != second->schema)) {
/* no more nodes to move */
*next_p = second;
return LY_SUCCESS;
}
dst = node;
src = second;
} else {
/* just move all instances to the end */
dst = (*first_dst)->prev;
src = node;
}
/* move the rest of source instances after @p node */
LY_LIST_FOR_SAFE(src, next, iter) {
LY_CHECK_RET(lyd_unlink_check(iter));
if (iter->schema != src->schema) {
break;
}
lyd_unlink_ignore_lyds(&first_src, iter);
lyd_insert_after_node(first_dst, dst, iter);
lyd_insert_hash(iter);
dst = iter;
}
*next_p = iter;
return LY_SUCCESS;
}
/**
* @brief Move nodes regardless of schema.
*
* The destination for the move is NULL, or a childless parent.
*
* @param[in] parent Parent to insert into, NULL for top-level sibling.
* @param[in] first_src First sibling, all following nodes will be moved.
* @return LY_ERR value.
*/
static LY_ERR
lyd_move_nodes_at_once(struct lyd_node *parent, struct lyd_node *first_src)
{
struct lyd_node *start, *next, *iter, *first_dst;
assert(!lyd_child(parent) && first_src && !first_src->prev->next && !first_src->parent);
LY_CHECK_RET(lyd_unlink_check(first_src));
/* move the first node */
start = first_src->next;
first_dst = first_src;
if (parent) {
lyd_unlink_ignore_lyds(&first_src, first_dst);
lyd_insert_only_child(parent, first_dst);
lyd_insert_hash(first_dst);
} else {
lyd_unlink_ignore_lyds(&first_src, first_dst);
}
/* move the rest of the nodes */
LY_LIST_FOR_SAFE(start, next, iter) {
LY_CHECK_RET(lyd_unlink_check(iter));
lyd_unlink_ignore_lyds(&first_src, iter);
lyd_insert_after_node(&first_dst, first_dst->prev, iter);
lyd_insert_hash(iter);
}
return LY_SUCCESS;
}
/**
* @brief Move the nodes in parts according to the schema.
*
* @param[in,out] first_dst First sibling, destination.
* @param[in] first_src First sibling, all following nodes will be moved.
* @return LY_ERR value.
*/
static LY_ERR
lyd_move_nodes_by_schema(struct lyd_node **first_dst, struct lyd_node *first_src)
{
LY_ERR ret;
struct lyd_node *next, *iter, *leader;
assert(first_dst && *first_dst && !(*first_dst)->prev->next && first_src &&
!first_src->prev->next && !first_src->parent);
for (iter = first_src; iter; iter = next) {
if (lyds_is_supported(iter) &&
(lyd_find_sibling_schema(*first_dst, iter->schema, &leader) == LY_SUCCESS)) {
ret = lyds_merge(first_dst, &leader, &first_src, iter, &next);
if (ret) {
/* The operation on the sorting tree unexpectedly failed due to some internal issue,
* but insert the node anyway although the nodes will not be sorted.
*/
LOGWRN(LYD_CTX(first_src), "Data in \"%s\" are not sorted.", leader->schema->name);
LY_CHECK_RET(lyd_move_nodes_ordby_schema(first_dst, next, &next));
}
} else {
LY_CHECK_RET(lyd_move_nodes_ordby_schema(first_dst, iter, &next));
}
}
return LY_SUCCESS;
}
/**
* @brief Move a nodes into parent/siblings.
*
* @param[in] parent Parent to insert into, NULL for top-level sibling.
* @param[in,out] first_dst_p First sibling, NULL if no top-level sibling exist yet.
* Can be also NULL if @p parent is set.
* @param[in] first_src First sibling, all following nodes will be moved.
* @return LY_ERR value.
*/
static LY_ERR
lyd_move_nodes(struct lyd_node *parent, struct lyd_node **first_dst_p, struct lyd_node *first_src)
{
LY_ERR ret;
struct lyd_node *first_dst;
assert((parent || first_dst_p) && first_src && !first_src->prev->next);
if (!first_dst_p || !*first_dst_p) {
first_dst = lyd_child(parent);
} else {
first_dst = *first_dst_p;
}
if (first_dst) {
ret = lyd_move_nodes_by_schema(&first_dst, first_src);
} else {
ret = lyd_move_nodes_at_once(parent, first_src);
first_dst = first_src;
}
if (first_dst_p) {
*first_dst_p = first_dst;
}
return ret;
}
/**
* @brief Check schema place of a node to be inserted.
*
* @param[in] parent Schema node of the parent data node.
* @param[in] sibling Schema node of a sibling data node.
* @param[in] schema Schema node if the data node to be inserted.
* @return LY_SUCCESS on success.
* @return LY_EINVAL if the place is invalid.
*/
static LY_ERR
lyd_insert_check_schema(const struct lysc_node *parent, const struct lysc_node *sibling, const struct lysc_node *schema)
{
const struct lysc_node *par2;
assert(!parent || !(parent->nodetype & (LYS_CASE | LYS_CHOICE)));
assert(!sibling || !(sibling->nodetype & (LYS_CASE | LYS_CHOICE)));
assert(!schema || !(schema->nodetype & (LYS_CASE | LYS_CHOICE)));
if (!schema || (!parent && !sibling)) {
/* opaque nodes can be inserted wherever */
return LY_SUCCESS;
}
if (!parent) {
parent = lysc_data_parent(sibling);
}
/* find schema parent */
par2 = lysc_data_parent(schema);
if (parent) {
/* inner node */
if (par2 != parent) {
LOGERR(schema->module->ctx, LY_EINVAL, "Cannot insert, parent of \"%s\" is not \"%s\".", schema->name,
parent->name);
return LY_EINVAL;
}
} else {
/* top-level node */
if (par2) {
LOGERR(schema->module->ctx, LY_EINVAL, "Cannot insert, node \"%s\" is not top-level.", schema->name);
return LY_EINVAL;
}
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_insert_child(struct lyd_node *parent, struct lyd_node *node)
{
LY_CHECK_ARG_RET(NULL, parent, node, !parent->schema || (parent->schema->nodetype & LYD_NODE_INNER), LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(LYD_CTX(parent), LYD_CTX(node), LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(parent->schema, NULL, node->schema));
if (node->parent || node->prev->next || !node->next) {
LY_CHECK_RET(lyd_unlink_tree(node));
lyd_insert_node(parent, NULL, node, LYD_INSERT_NODE_DEFAULT);
} else {
LY_CHECK_RET(lyd_move_nodes(parent, NULL, node));
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyplg_ext_insert(struct lyd_node *parent, struct lyd_node *first)
{
struct lyd_node *iter;
LY_CHECK_ARG_RET(NULL, parent, first, !first->parent, !first->prev->next,
!parent->schema || (parent->schema->nodetype & LYD_NODE_INNER), LY_EINVAL);
if (first->schema && (first->schema->flags & LYS_KEY)) {
LOGERR(LYD_CTX(parent), LY_EINVAL, "Cannot insert key \"%s\".", first->schema->name);
return LY_EINVAL;
}
while (first) {
iter = first->next;
lyd_unlink(first);
lyd_insert_node(parent, NULL, first, LYD_INSERT_NODE_LAST);
first = iter;
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_insert_sibling(struct lyd_node *sibling, struct lyd_node *node, struct lyd_node **first)
{
struct lyd_node *first_sibling;
LY_CHECK_ARG_RET(NULL, node, LY_EINVAL);
if (sibling) {
LY_CHECK_RET(lyd_insert_check_schema(NULL, sibling->schema, node->schema));
}
first_sibling = lyd_first_sibling(sibling);
if (node->parent || node->prev->next || !node->next) {
LY_CHECK_RET(lyd_unlink_tree(node));
lyd_insert_node(NULL, &first_sibling, node, LYD_INSERT_NODE_DEFAULT);
} else {
LY_CHECK_RET(lyd_move_nodes(NULL, &first_sibling, node));
}
if (first) {
*first = first_sibling;
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_insert_before(struct lyd_node *sibling, struct lyd_node *node)
{
LY_CHECK_ARG_RET(NULL, sibling, node, sibling != node, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(LYD_CTX(sibling), LYD_CTX(node), LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(NULL, sibling->schema, node->schema));
if (node->schema && (!(node->schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) || !(node->schema->flags & LYS_ORDBY_USER))) {
LOGERR(LYD_CTX(sibling), LY_EINVAL, "Can be used only for user-ordered nodes.");
return LY_EINVAL;
}
if (node->schema && sibling->schema && (node->schema != sibling->schema)) {
LOGERR(LYD_CTX(sibling), LY_EINVAL, "Cannot insert before a different schema node instance.");
return LY_EINVAL;
}
lyd_unlink(node);
lyd_insert_before_node(sibling, node);
lyd_insert_hash(node);
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_insert_after(struct lyd_node *sibling, struct lyd_node *node)
{
LY_CHECK_ARG_RET(NULL, sibling, node, sibling != node, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(LYD_CTX(sibling), LYD_CTX(node), LY_EINVAL);
LY_CHECK_RET(lyd_insert_check_schema(NULL, sibling->schema, node->schema));
if (node->schema && (!(node->schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) || !(node->schema->flags & LYS_ORDBY_USER))) {
LOGERR(LYD_CTX(sibling), LY_EINVAL, "Can be used only for user-ordered nodes.");
return LY_EINVAL;
}
if (node->schema && sibling->schema && (node->schema != sibling->schema)) {
LOGERR(LYD_CTX(sibling), LY_EINVAL, "Cannot insert after a different schema node instance.");
return LY_EINVAL;
}
lyd_unlink(node);
lyd_insert_after_node(NULL, sibling, node);
lyd_insert_hash(node);
return LY_SUCCESS;
}
void
lyd_unlink_ignore_lyds(struct lyd_node **first_sibling_p, struct lyd_node *node)
{
struct lyd_node *first_sibling;
/* update hashes while still linked into the tree */
lyd_unlink_hash(node);
/* unlink leafref nodes */
if (node->schema && (node->schema->nodetype & LYD_NODE_TERM)) {
lyd_free_leafref_nodes((struct lyd_node_term *)node);
}
/* unlink from siblings */
if (node->next) {
node->next->prev = node->prev;
if (node->prev->next) {
node->prev->next = node->next;
} else if (first_sibling_p) {
/* unlinking the first node */
*first_sibling_p = node->next;
}
} else {
/* unlinking the last node */
/* update the "last" pointer from the first node */
if (first_sibling_p && *first_sibling_p) {
(*first_sibling_p)->prev = node->prev;
} else {
first_sibling = lyd_first_sibling(node);
first_sibling->prev = node->prev;
if (first_sibling_p) {
*first_sibling_p = first_sibling;
}
}
node->prev->next = NULL;
}
/* unlink from parent */
if (node->parent) {
if (node->parent->child == node) {
/* the node is the first child */
node->parent->child = node->next;
}
/* check for NP container whether its last non-default node is not being unlinked */
lyd_cont_set_dflt(lyd_parent(node));
node->parent = NULL;
}
node->next = NULL;
node->prev = node;
}
void
lyd_unlink(struct lyd_node *node)
{
struct lyd_node *leader;
if (!node) {
return;
}
/* unlink from the lyds tree */
if (lyds_is_supported(node)) {
if (!node->prev->next || (node->prev->schema != node->schema)) {
leader = node;
} else {
lyd_find_sibling_val(node, node->schema, NULL, 0, &leader);
assert(leader);
}
lyds_unlink(&leader, node);
}
/* unlink data tree */
lyd_unlink_ignore_lyds(NULL, node);
}
LIBYANG_API_DEF LY_ERR
lyd_unlink_siblings(struct lyd_node *node)
{
struct lyd_node *next, *iter, *leader, *start, *first_sibling = NULL;
if (lyds_is_supported(node) && node->prev->next && (node->prev->schema == node->schema)) {
/* unlink starts at the non-first item in the (leaf-)list */
lyd_find_sibling_val(node, node->schema, NULL, 0, &leader);
lyds_split(&first_sibling, leader, node, &start);
} else {
/* unlink @p node */
LY_CHECK_RET(lyd_unlink_check(node));
start = node->next;
lyd_unlink_ignore_lyds(&first_sibling, node);
}
/* continue unlinking the rest */
LY_LIST_FOR_SAFE(start, next, iter) {
LY_CHECK_RET(lyd_unlink_check(iter));
lyd_unlink_ignore_lyds(&first_sibling, iter);
lyd_insert_after_node(&node, node->prev, iter);
lyd_insert_hash(iter);
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_unlink_tree(struct lyd_node *node)
{
LY_CHECK_RET(lyd_unlink_check(node));
lyd_unlink(node);
return LY_SUCCESS;
}
void
lyd_insert_meta(struct lyd_node *parent, struct lyd_meta *meta, ly_bool clear_dflt)
{
struct lyd_meta *last, *iter;
assert(parent);
if (!meta) {
return;
}
for (iter = meta; iter; iter = iter->next) {
iter->parent = parent;
}
/* insert as the last attribute */
if (parent->meta) {
for (last = parent->meta; last->next; last = last->next) {}
last->next = meta;
} else {
parent->meta = meta;
}
/* remove default flags from NP containers */
while (clear_dflt && parent && (parent->schema->nodetype == LYS_CONTAINER) && (parent->flags & LYD_DEFAULT)) {
parent->flags &= ~LYD_DEFAULT;
parent = lyd_parent(parent);
}
}
void
lyd_unlink_meta_single(struct lyd_meta *meta)
{
struct lyd_meta *iter;
if (!meta) {
return;
}
if (meta->parent && (meta->parent->meta == meta)) {
meta->parent->meta = meta->next;
} else if (meta->parent) {
for (iter = meta->parent->meta; iter->next && (iter->next != meta); iter = iter->next) {}
if (iter->next) {
iter->next = meta->next;
}
}
meta->next = NULL;
meta->parent = NULL;
}
/**
* @brief Get the annotation definition in the module.
*
* @param[in] mod Metadata module (with the annotation definition).
* @param[in] name Attribute name.
* @param[in] name_len Length of @p name, must be set correctly.
* @return compiled YANG extension instance on success.
*/
static struct lysc_ext_instance *
lyd_get_meta_annotation(const struct lys_module *mod, const char *name, size_t name_len)
{
LY_ARRAY_COUNT_TYPE u;
struct lyplg_ext *plugin;
if (!mod) {
return NULL;
}
LY_ARRAY_FOR(mod->compiled->exts, u) {
plugin = mod->compiled->exts[u].def->plugin;
if (plugin && !strncmp(plugin->id, "ly2 metadata", 12) &&
!ly_strncmp(mod->compiled->exts[u].argument, name, name_len)) {
return &mod->compiled->exts[u];
}
}
return NULL;
}
LY_ERR
lyd_create_meta(struct lyd_node *parent, struct lyd_meta **meta, const struct lys_module *mod, const char *name,
size_t name_len, const char *value, size_t value_len, ly_bool is_utf8, ly_bool store_only, ly_bool *dynamic,
LY_VALUE_FORMAT format, void *prefix_data, uint32_t hints, const struct lysc_node *ctx_node, ly_bool clear_dflt,
ly_bool *incomplete)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_ext_instance *ant = NULL;
const struct lysc_type *ant_type;
struct lyd_meta *mt, *last;
assert((parent || meta) && mod);
ant = lyd_get_meta_annotation(mod, name, name_len);
if (!ant) {
/* attribute is not defined as a metadata annotation (RFC 7952) */
LOGVAL(mod->ctx, LYVE_REFERENCE, "Annotation definition for attribute \"%s:%.*s\" not found.",
mod->name, (int)name_len, name);
ret = LY_EINVAL;
goto cleanup;
}
mt = calloc(1, sizeof *mt);
LY_CHECK_ERR_GOTO(!mt, LOGMEM(mod->ctx); ret = LY_EMEM, cleanup);
mt->parent = parent;
mt->annotation = ant;
lyplg_ext_get_storage(ant, LY_STMT_TYPE, sizeof ant_type, (const void **)&ant_type);
ret = lyd_value_store(mod->ctx, &mt->value, ant_type, value, value_len, is_utf8, store_only, dynamic, format, prefix_data, hints,
ctx_node, incomplete);
LY_CHECK_ERR_GOTO(ret, free(mt), cleanup);
ret = lydict_insert(mod->ctx, name, name_len, &mt->name);
LY_CHECK_ERR_GOTO(ret, free(mt), cleanup);
/* insert as the last attribute */
if (parent) {
lyd_insert_meta(parent, mt, clear_dflt);
} else if (*meta) {
for (last = *meta; last->next; last = last->next) {}
last->next = mt;
}
if (meta) {
*meta = mt;
}
cleanup:
return ret;
}
void
lyd_insert_attr(struct lyd_node *parent, struct lyd_attr *attr)
{
struct lyd_attr *last, *iter;
struct lyd_node_opaq *opaq;
assert(parent && !parent->schema);
if (!attr) {
return;
}
opaq = (struct lyd_node_opaq *)parent;
for (iter = attr; iter; iter = iter->next) {
iter->parent = opaq;
}
/* insert as the last attribute */
if (opaq->attr) {
for (last = opaq->attr; last->next; last = last->next) {}
last->next = attr;
} else {
opaq->attr = attr;
}
}
LY_ERR
lyd_create_attr(struct lyd_node *parent, struct lyd_attr **attr, const struct ly_ctx *ctx, const char *name, size_t name_len,
const char *prefix, size_t prefix_len, const char *module_key, size_t module_key_len, const char *value,
size_t value_len, ly_bool *dynamic, LY_VALUE_FORMAT format, void *val_prefix_data, uint32_t hints)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_attr *at, *last;
assert(ctx && (parent || attr) && (!parent || !parent->schema));
assert(name && name_len && format);
if (!value_len && (!dynamic || !*dynamic)) {
value = "";
}
at = calloc(1, sizeof *at);
LY_CHECK_ERR_RET(!at, LOGMEM(ctx); ly_free_prefix_data(format, val_prefix_data), LY_EMEM);
LY_CHECK_GOTO(ret = lydict_insert(ctx, name, name_len, &at->name.name), finish);
if (prefix_len) {
LY_CHECK_GOTO(ret = lydict_insert(ctx, prefix, prefix_len, &at->name.prefix), finish);
}
if (module_key_len) {
LY_CHECK_GOTO(ret = lydict_insert(ctx, module_key, module_key_len, &at->name.module_ns), finish);
}
if (dynamic && *dynamic) {
ret = lydict_insert_zc(ctx, (char *)value, &at->value);
LY_CHECK_GOTO(ret, finish);
*dynamic = 0;
} else {
LY_CHECK_GOTO(ret = lydict_insert(ctx, value, value_len, &at->value), finish);
}
at->format = format;
at->val_prefix_data = val_prefix_data;
at->hints = hints;
/* insert as the last attribute */
if (parent) {
lyd_insert_attr(parent, at);
} else if (*attr) {
for (last = *attr; last->next; last = last->next) {}
last->next = at;
}
finish:
if (ret) {
lyd_free_attr_single(ctx, at);
} else if (attr) {
*attr = at;
}
return LY_SUCCESS;
}
/**
* @brief Check the equality of the two schemas from different contexts.
*
* @param schema1 of first node.
* @param schema2 of second node.
* @return 1 if the schemas are equal otherwise 0.
*/
static ly_bool
lyd_compare_schema_equal(const struct lysc_node *schema1, const struct lysc_node *schema2)
{
if (!schema1 && !schema2) {
return 1;
} else if (!schema1 || !schema2) {
return 0;
}
assert(schema1->module->ctx != schema2->module->ctx);
if (schema1->nodetype != schema2->nodetype) {
return 0;
}
if (strcmp(schema1->name, schema2->name)) {
return 0;
}
if (strcmp(schema1->module->name, schema2->module->name)) {
return 0;
}
return 1;
}
/**
* @brief Check the equality of the schemas for all parent nodes.
*
* Both nodes must be from different contexts.
*
* @param node1 Data of first node.
* @param node2 Data of second node.
* @return 1 if the all related parental schemas are equal otherwise 0.
*/
static ly_bool
lyd_compare_schema_parents_equal(const struct lyd_node *node1, const struct lyd_node *node2)
{
const struct lysc_node *parent1, *parent2;
assert(node1 && node2);
for (parent1 = node1->schema->parent, parent2 = node2->schema->parent;
parent1 && parent2;
parent1 = parent1->parent, parent2 = parent2->parent) {
if (!lyd_compare_schema_equal(parent1, parent2)) {
return 0;
}
}
if (parent1 || parent2) {
return 0;
}
return 1;
}
/**
* @brief Compare 2 nodes values including opaque node values.
*
* @param[in] node1 First node to compare.
* @param[in] node2 Second node to compare.
* @return LY_SUCCESS if equal.
* @return LY_ENOT if not equal.
* @return LY_ERR on error.
*/
static LY_ERR
lyd_compare_single_value(const struct lyd_node *node1, const struct lyd_node *node2)
{
const struct lyd_node_opaq *opaq1 = NULL, *opaq2 = NULL;
const char *val1, *val2, *col;
const struct lys_module *mod;
char *val_dyn = NULL;
LY_ERR rc = LY_SUCCESS;
if (!node1->schema) {
opaq1 = (struct lyd_node_opaq *)node1;
}
if (!node2->schema) {
opaq2 = (struct lyd_node_opaq *)node2;
}
if (opaq1 && opaq2 && (opaq1->format == LY_VALUE_XML) && (opaq2->format == LY_VALUE_XML)) {
/* opaque XML and opaque XML node */
if (lyxml_value_compare(LYD_CTX(node1), opaq1->value, opaq1->val_prefix_data, LYD_CTX(node2), opaq2->value,
opaq2->val_prefix_data)) {
return LY_ENOT;
}
return LY_SUCCESS;
}
/* get their values */
if (opaq1 && ((opaq1->format == LY_VALUE_XML) || (opaq1->format == LY_VALUE_STR_NS)) && (col = strchr(opaq1->value, ':'))) {
/* XML value with a prefix, try to transform it into a JSON (canonical) value */
mod = ly_resolve_prefix(LYD_CTX(node1), opaq1->value, col - opaq1->value, opaq1->format, opaq1->val_prefix_data);
if (!mod) {
/* unable to compare */
return LY_ENOT;
}
if (asprintf(&val_dyn, "%s%s", mod->name, col) == -1) {
LOGMEM(LYD_CTX(node1));
return LY_EMEM;
}
val1 = val_dyn;
} else {
val1 = lyd_get_value(node1);
}
if (opaq2 && ((opaq2->format == LY_VALUE_XML) || (opaq2->format == LY_VALUE_STR_NS)) && (col = strchr(opaq2->value, ':'))) {
mod = ly_resolve_prefix(LYD_CTX(node2), opaq2->value, col - opaq2->value, opaq2->format, opaq2->val_prefix_data);
if (!mod) {
return LY_ENOT;
}
assert(!val_dyn);
if (asprintf(&val_dyn, "%s%s", mod->name, col) == -1) {
LOGMEM(LYD_CTX(node2));
return LY_EMEM;
}
val2 = val_dyn;
} else {
val2 = lyd_get_value(node2);
}
/* compare values */
if (strcmp(val1, val2)) {
rc = LY_ENOT;
}
free(val_dyn);
return rc;
}
/**
* @brief Compare 2 data nodes if they are equivalent regarding the schema tree.
*
* Works correctly even if @p node1 and @p node2 have different contexts.
*
* @param[in] node1 The first node to compare.
* @param[in] node2 The second node to compare.
* @param[in] options Various @ref datacompareoptions.
* @param[in] parental_schemas_checked Flag set if parent schemas were checked for match.
* @return LY_SUCCESS if the nodes are equivalent.
* @return LY_ENOT if the nodes are not equivalent.
*/
static LY_ERR
lyd_compare_single_schema(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options,
ly_bool parental_schemas_checked)
{
if (LYD_CTX(node1) == LYD_CTX(node2)) {
/* same contexts */
if (options & LYD_COMPARE_OPAQ) {
if (lyd_node_schema(node1) != lyd_node_schema(node2)) {
return LY_ENOT;
}
} else {
if (node1->schema != node2->schema) {
return LY_ENOT;
}
}
} else {
/* different contexts */
if (!lyd_compare_schema_equal(node1->schema, node2->schema)) {
return LY_ENOT;
}
if (!parental_schemas_checked) {
if (!lyd_compare_schema_parents_equal(node1, node2)) {
return LY_ENOT;
}
parental_schemas_checked = 1;
}
}
return LY_SUCCESS;
}
/**
* @brief Compare 2 data nodes if they are equivalent regarding the data they contain.
*
* Works correctly even if @p node1 and @p node2 have different contexts.
*
* @param[in] node1 The first node to compare.
* @param[in] node2 The second node to compare.
* @param[in] options Various @ref datacompareoptions.
* @return LY_SUCCESS if the nodes are equivalent.
* @return LY_ENOT if the nodes are not equivalent.
*/
static LY_ERR
lyd_compare_single_data(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options)
{
const struct lyd_node *iter1, *iter2;
struct lyd_node_any *any1, *any2;
int len1, len2;
LY_ERR r;
if (!(options & LYD_COMPARE_OPAQ) && (node1->hash != node2->hash)) {
return LY_ENOT;
}
/* equal hashes do not mean equal nodes, they can be just in collision so the nodes must be checked explicitly */
if (!node1->schema || !node2->schema) {
if (!(options & LYD_COMPARE_OPAQ) && ((node1->schema && !node2->schema) || (!node1->schema && node2->schema))) {
return LY_ENOT;
}
if ((!node1->schema && !node2->schema) || (node1->schema && (node1->schema->nodetype & LYD_NODE_TERM)) ||
(node2->schema && (node2->schema->nodetype & LYD_NODE_TERM))) {
/* compare values only if there are any to compare */
if ((r = lyd_compare_single_value(node1, node2))) {
return r;
}
}
if (options & LYD_COMPARE_FULL_RECURSION) {
return lyd_compare_siblings_(lyd_child(node1), lyd_child(node2), options, 1);
}
return LY_SUCCESS;
} else {
switch (node1->schema->nodetype) {
case LYS_LEAF:
case LYS_LEAFLIST:
if (options & LYD_COMPARE_DEFAULTS) {
if ((node1->flags & LYD_DEFAULT) != (node2->flags & LYD_DEFAULT)) {
return LY_ENOT;
}
}
if ((r = lyd_compare_single_value(node1, node2))) {
return r;
}
return LY_SUCCESS;
case LYS_CONTAINER:
case LYS_RPC:
case LYS_ACTION:
case LYS_NOTIF:
/* implicit container is always equal to a container with non-default descendants */
if (options & LYD_COMPARE_FULL_RECURSION) {
return lyd_compare_siblings_(lyd_child(node1), lyd_child(node2), options, 1);
}
return LY_SUCCESS;
case LYS_LIST:
iter1 = lyd_child(node1);
iter2 = lyd_child(node2);
if (options & LYD_COMPARE_FULL_RECURSION) {
return lyd_compare_siblings_(iter1, iter2, options, 1);
} else if (node1->schema->flags & LYS_KEYLESS) {
/* always equal */
return LY_SUCCESS;
}
/* lists with keys, their equivalence is based on their keys */
for (const struct lysc_node *key = lysc_node_child(node1->schema);
key && (key->flags & LYS_KEY);
key = key->next) {
if (!iter1 || !iter2) {
return (iter1 == iter2) ? LY_SUCCESS : LY_ENOT;
}
r = lyd_compare_single_schema(iter1, iter2, options, 1);
LY_CHECK_RET(r);
r = lyd_compare_single_data(iter1, iter2, options);
LY_CHECK_RET(r);
iter1 = iter1->next;
iter2 = iter2->next;
}
return LY_SUCCESS;
case LYS_ANYXML:
case LYS_ANYDATA:
any1 = (struct lyd_node_any *)node1;
any2 = (struct lyd_node_any *)node2;
if (any1->value_type != any2->value_type) {
return LY_ENOT;
}
switch (any1->value_type) {
case LYD_ANYDATA_DATATREE:
return lyd_compare_siblings_(any1->value.tree, any2->value.tree, options, 1);
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_XML:
case LYD_ANYDATA_JSON:
if ((!any1->value.str && any2->value.str) || (any1->value.str && !any2->value.str)) {
return LY_ENOT;
} else if (!any1->value.str && !any2->value.str) {
return LY_SUCCESS;
}
len1 = strlen(any1->value.str);
len2 = strlen(any2->value.str);
if ((len1 != len2) || strcmp(any1->value.str, any2->value.str)) {
return LY_ENOT;
}
return LY_SUCCESS;
case LYD_ANYDATA_LYB:
len1 = lyd_lyb_data_length(any1->value.mem);
len2 = lyd_lyb_data_length(any2->value.mem);
if ((len1 == -1) || (len2 == -1) || (len1 != len2) || memcmp(any1->value.mem, any2->value.mem, len1)) {
return LY_ENOT;
}
return LY_SUCCESS;
}
}
}
LOGINT(LYD_CTX(node1));
return LY_EINT;
}
/**
* @brief Compare all siblings at a node level.
*
* @param[in] node1 First sibling list.
* @param[in] node2 Second sibling list.
* @param[in] options Various @ref datacompareoptions.
* @param[in] parental_schemas_checked Flag set if parent schemas were checked for match.
* @return LY_SUCCESS if equal.
* @return LY_ENOT if not equal.
* @return LY_ERR on error.
*/
static LY_ERR
lyd_compare_siblings_(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options,
ly_bool parental_schemas_checked)
{
LY_ERR r;
const struct lyd_node *iter2;
while (node1 && node2) {
/* schema match */
r = lyd_compare_single_schema(node1, node2, options, parental_schemas_checked);
LY_CHECK_RET(r);
if (node1->schema && (((node1->schema->nodetype == LYS_LIST) && !(node1->schema->flags & LYS_KEYLESS)) ||
((node1->schema->nodetype == LYS_LEAFLIST) && (node1->schema->flags & LYS_CONFIG_W))) &&
(node1->schema->flags & LYS_ORDBY_SYSTEM)) {
/* find a matching instance in case they are ordered differently */
r = lyd_find_sibling_first(node2, node1, (struct lyd_node **)&iter2);
if (r == LY_ENOTFOUND) {
/* no matching instance, data not equal */
r = LY_ENOT;
}
LY_CHECK_RET(r);
} else {
/* compare with the current node */
iter2 = node2;
}
/* data match */
r = lyd_compare_single_data(node1, iter2, options | LYD_COMPARE_FULL_RECURSION);
LY_CHECK_RET(r);
node1 = node1->next;
node2 = node2->next;
}
return (node1 || node2) ? LY_ENOT : LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_compare_single(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options)
{
LY_ERR r;
if (!node1 || !node2) {
return (node1 == node2) ? LY_SUCCESS : LY_ENOT;
}
/* schema match */
if ((r = lyd_compare_single_schema(node1, node2, options, 0))) {
return r;
}
/* data match */
return lyd_compare_single_data(node1, node2, options);
}
LIBYANG_API_DEF LY_ERR
lyd_compare_siblings(const struct lyd_node *node1, const struct lyd_node *node2, uint32_t options)
{
return lyd_compare_siblings_(node1, node2, options, 0);
}
LIBYANG_API_DEF LY_ERR
lyd_compare_meta(const struct lyd_meta *meta1, const struct lyd_meta *meta2)
{
const struct ly_ctx *ctx;
if (!meta1 || !meta2) {
if (meta1 == meta2) {
return LY_SUCCESS;
} else {
return LY_ENOT;
}
}
ctx = meta1->annotation->module->ctx;
if ((ctx != meta2->annotation->module->ctx) || (meta1->annotation != meta2->annotation)) {
return LY_ENOT;
}
return meta1->value.realtype->plugin->compare(ctx, &meta1->value, &meta2->value);
}
/**
* @brief Create a copy of the attribute.
*
* @param[in] attr Attribute to copy.
* @param[in] node Opaque where to append the new attribute.
* @param[out] dup Optional created attribute copy.
* @return LY_ERR value.
*/
static LY_ERR
lyd_dup_attr_single(const struct lyd_attr *attr, struct lyd_node *node, struct lyd_attr **dup)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_attr *a, *last;
struct lyd_node_opaq *opaq = (struct lyd_node_opaq *)node;
LY_CHECK_ARG_RET(NULL, attr, node, !node->schema, LY_EINVAL);
/* create a copy */
a = calloc(1, sizeof *attr);
LY_CHECK_ERR_RET(!a, LOGMEM(LYD_CTX(node)), LY_EMEM);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->name.name, 0, &a->name.name), finish);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->name.prefix, 0, &a->name.prefix), finish);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->name.module_ns, 0, &a->name.module_ns), finish);
LY_CHECK_GOTO(ret = lydict_insert(LYD_CTX(node), attr->value, 0, &a->value), finish);
a->hints = attr->hints;
a->format = attr->format;
if (attr->val_prefix_data) {
ret = ly_dup_prefix_data(LYD_CTX(node), attr->format, attr->val_prefix_data, &a->val_prefix_data);
LY_CHECK_GOTO(ret, finish);
}
/* insert as the last attribute */
a->parent = opaq;
if (opaq->attr) {
for (last = opaq->attr; last->next; last = last->next) {}
last->next = a;
} else {
opaq->attr = a;
}
finish:
if (ret) {
lyd_free_attr_single(LYD_CTX(node), a);
} else if (dup) {
*dup = a;
}
return LY_SUCCESS;
}
/**
* @brief Find @p schema equivalent in @p trg_ctx.
*
* @param[in] schema Schema node to find.
* @param[in] trg_ctx Target context to search in.
* @param[in] parent Data parent of @p schema, if any.
* @param[in] log Whether to log directly.
* @param[out] trg_schema Found schema from @p trg_ctx to use.
* @return LY_RRR value.
*/
static LY_ERR
lyd_find_schema_ctx(const struct lysc_node *schema, const struct ly_ctx *trg_ctx, const struct lyd_node *parent,
ly_bool log, const struct lysc_node **trg_schema)
{
const struct lysc_node *src_parent = NULL, *trg_parent = NULL, *sp, *tp;
const struct lys_module *trg_mod = NULL;
char *path;
if (!schema) {
/* opaque node */
*trg_schema = NULL;
return LY_SUCCESS;
}
if (lysc_data_parent(schema) && parent && parent->schema) {
/* start from schema parent */
trg_parent = parent->schema;
src_parent = lysc_data_parent(schema);
}
do {
/* find the next parent */
sp = schema;
while (lysc_data_parent(sp) != src_parent) {
sp = lysc_data_parent(sp);
}
src_parent = sp;
if (!src_parent->parent) {
/* find the module first */
trg_mod = ly_ctx_get_module_implemented(trg_ctx, src_parent->module->name);
if (!trg_mod) {
if (log) {
LOGERR(trg_ctx, LY_ENOTFOUND, "Module \"%s\" not present/implemented in the target context.",
src_parent->module->name);
}
return LY_ENOTFOUND;
}
}
/* find the next parent */
assert(trg_parent || trg_mod);
tp = NULL;
while ((tp = lys_getnext(tp, trg_parent, trg_mod ? trg_mod->compiled : NULL, 0))) {
if (!strcmp(tp->name, src_parent->name) && !strcmp(tp->module->name, src_parent->module->name)) {
break;
}
}
if (!tp) {
/* schema node not found */
if (log) {
path = lysc_path(src_parent, LYSC_PATH_LOG, NULL, 0);
LOGERR(trg_ctx, LY_ENOTFOUND, "Schema node \"%s\" not found in the target context.", path);
free(path);
}
return LY_ENOTFOUND;
}
trg_parent = tp;
} while (schema != src_parent);
/* success */
*trg_schema = trg_parent;
return LY_SUCCESS;
}
/**
* @brief Duplicate a single node and connect it into @p parent (if present) or last of @p first siblings.
*
* Ignores ::LYD_DUP_WITH_PARENTS which is supposed to be handled by lyd_dup().
*
* @param[in] node Node to duplicate.
* @param[in] trg_ctx Target context for duplicated nodes.
* @param[in] parent Parent to insert into, NULL for top-level sibling.
* @param[in] insert_order Options for inserting (sorting) duplicated node, @ref insertorder.
* @param[in,out] first First sibling, NULL if no top-level sibling exist yet. Can be also NULL if @p parent is set.
* @param[in] options Bitmask of options flags, see @ref dupoptions.
* @param[out] dup_p Pointer where the created duplicated node is placed (besides connecting it to @p parent / @p first).
* @return LY_ERR value.
*/
static LY_ERR
lyd_dup_r(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node *parent, uint32_t insert_order,
struct lyd_node **first, uint32_t options, struct lyd_node **dup_p)
{
LY_ERR ret;
struct lyd_node *dup = NULL;
struct lyd_meta *meta;
struct lyd_attr *attr;
struct lyd_node_any *any;
const struct lysc_type *type;
const char *val_can;
LY_CHECK_ARG_RET(NULL, node, LY_EINVAL);
if (node->flags & LYD_EXT) {
if (options & LYD_DUP_NO_EXT) {
/* no not duplicate this subtree */
return LY_SUCCESS;
}
/* we need to use the same context */
trg_ctx = LYD_CTX(node);
}
if (!node->schema) {
dup = calloc(1, sizeof(struct lyd_node_opaq));
((struct lyd_node_opaq *)dup)->ctx = trg_ctx;
} else {
switch (node->schema->nodetype) {
case LYS_RPC:
case LYS_ACTION:
case LYS_NOTIF:
case LYS_CONTAINER:
case LYS_LIST:
dup = calloc(1, sizeof(struct lyd_node_inner));
break;
case LYS_LEAF:
case LYS_LEAFLIST:
dup = calloc(1, sizeof(struct lyd_node_term));
break;
case LYS_ANYDATA:
case LYS_ANYXML:
dup = calloc(1, sizeof(struct lyd_node_any));
break;
default:
LOGINT(trg_ctx);
ret = LY_EINT;
goto error;
}
}
LY_CHECK_ERR_GOTO(!dup, LOGMEM(trg_ctx); ret = LY_EMEM, error);
if (options & LYD_DUP_WITH_FLAGS) {
dup->flags = node->flags;
} else {
dup->flags = (node->flags & (LYD_DEFAULT | LYD_EXT)) | LYD_NEW;
}
if (options & LYD_DUP_WITH_PRIV) {
dup->priv = node->priv;
}
if (trg_ctx == LYD_CTX(node)) {
dup->schema = node->schema;
} else {
ret = lyd_find_schema_ctx(node->schema, trg_ctx, parent, 1, &dup->schema);
if (ret) {
/* has no schema but is not an opaque node */
free(dup);
dup = NULL;
goto error;
}
}
dup->prev = dup;
/* duplicate metadata/attributes */
if (!(options & LYD_DUP_NO_META)) {
if (!node->schema) {
LY_LIST_FOR(((struct lyd_node_opaq *)node)->attr, attr) {
LY_CHECK_GOTO(ret = lyd_dup_attr_single(attr, dup, NULL), error);
}
} else {
LY_LIST_FOR(node->meta, meta) {
LY_CHECK_GOTO(ret = lyd_dup_meta_single_to_ctx(trg_ctx, meta, dup, NULL), error);
}
}
}
/* nodetype-specific work */
if (!dup->schema) {
struct lyd_node_opaq *opaq = (struct lyd_node_opaq *)dup;
struct lyd_node_opaq *orig = (struct lyd_node_opaq *)node;
struct lyd_node *child;
if (options & LYD_DUP_RECURSIVE) {
/* duplicate all the children */
LY_LIST_FOR(orig->child, child) {
LY_CHECK_GOTO(ret = lyd_dup_r(child, trg_ctx, dup, LYD_INSERT_NODE_LAST, NULL, options, NULL), error);
}
}
LY_CHECK_GOTO(ret = lydict_insert(trg_ctx, orig->name.name, 0, &opaq->name.name), error);
LY_CHECK_GOTO(ret = lydict_insert(trg_ctx, orig->name.prefix, 0, &opaq->name.prefix), error);
LY_CHECK_GOTO(ret = lydict_insert(trg_ctx, orig->name.module_ns, 0, &opaq->name.module_ns), error);
LY_CHECK_GOTO(ret = lydict_insert(trg_ctx, orig->value, 0, &opaq->value), error);
opaq->hints = orig->hints;
opaq->format = orig->format;
if (orig->val_prefix_data) {
ret = ly_dup_prefix_data(trg_ctx, opaq->format, orig->val_prefix_data, &opaq->val_prefix_data);
LY_CHECK_GOTO(ret, error);
}
} else if (dup->schema->nodetype & LYD_NODE_TERM) {
struct lyd_node_term *term = (struct lyd_node_term *)dup;
struct lyd_node_term *orig = (struct lyd_node_term *)node;
term->hash = orig->hash;
if (trg_ctx == LYD_CTX(node)) {
ret = orig->value.realtype->plugin->duplicate(trg_ctx, &orig->value, &term->value);
LY_CHECK_ERR_GOTO(ret, LOGERR(trg_ctx, ret, "Value duplication failed."), error);
} else {
/* store canonical value in the target context */
val_can = lyd_get_value(node);
type = ((struct lysc_node_leaf *)term->schema)->type;
ret = lyd_value_store(trg_ctx, &term->value, type, val_can, strlen(val_can), 1, 1, NULL, LY_VALUE_CANON, NULL,
LYD_HINT_DATA, term->schema, NULL);
LY_CHECK_GOTO(ret, error);
}
} else if (dup->schema->nodetype & LYD_NODE_INNER) {
struct lyd_node_inner *orig = (struct lyd_node_inner *)node;
struct lyd_node *child;
if (options & LYD_DUP_RECURSIVE) {
/* duplicate all the children */
LY_LIST_FOR(orig->child, child) {
LY_CHECK_GOTO(ret = lyd_dup_r(child, trg_ctx, dup, LYD_INSERT_NODE_LAST, NULL, options, NULL), error);
}
} else if ((dup->schema->nodetype == LYS_LIST) && !(dup->schema->flags & LYS_KEYLESS)) {
/* always duplicate keys of a list */
for (child = orig->child; child && lysc_is_key(child->schema); child = child->next) {
LY_CHECK_GOTO(ret = lyd_dup_r(child, trg_ctx, dup, LYD_INSERT_NODE_LAST, NULL, options, NULL), error);
}
}
lyd_hash(dup);
} else if (dup->schema->nodetype & LYD_NODE_ANY) {
dup->hash = node->hash;
any = (struct lyd_node_any *)node;
LY_CHECK_GOTO(ret = lyd_any_copy_value(dup, &any->value, any->value_type), error);
}
/* insert */
lyd_insert_node(parent, first, dup, insert_order);
if (dup_p) {
*dup_p = dup;
}
return LY_SUCCESS;
error:
lyd_free_tree(dup);
return ret;
}
/**
* @brief Duplicate a (leaf-)list and connect it into @p parent (if present) or last of @p first siblings.
*
* @param[in] orig Node to duplicate.
* @param[in] trg_ctx Target context for duplicated nodes.
* @param[in] parent Parent to insert into, NULL for top-level sibling.
* @param[in,out] first First sibling, NULL if no top-level sibling exist yet. Can be also NULL if @p parent is set.
* @param[in] options Bitmask of options flags, see @ref dupoptions.
* @param[out] dup_p Pointer where the created duplicated node is placed (besides connecting it to @p parent / @p first).
* @return LY_ERR value.
*/
static LY_ERR
lyd_dup_list(const struct lyd_node **orig, const struct ly_ctx *trg_ctx, struct lyd_node *parent,
struct lyd_node **first, uint32_t options, struct lyd_node **dup_p)
{
LY_ERR rc;
struct lyd_node *start, *leader, *dup;
const struct lysc_node *schema;
uint32_t insert_order;
/* duplicate leader */
start = (*orig)->next;
schema = (*orig)->schema;
rc = lyd_dup_r(*orig, trg_ctx, parent, LYD_INSERT_NODE_DEFAULT, first, options, &leader);
LY_CHECK_RET(rc);
if (!start || !start->schema || !LYD_NODE_IS_ALONE(leader)) {
/* no other instances */
if (dup_p) {
*dup_p = leader;
}
return LY_SUCCESS;
}
/* duplicate the rest of the nodes in the (leaf-)list */
insert_order = leader->next ? LYD_INSERT_NODE_LAST_BY_SCHEMA : LYD_INSERT_NODE_LAST;
LY_LIST_FOR(start, *orig) {
if (schema != (*orig)->schema) {
break;
}
rc = lyd_dup_r(*orig, trg_ctx, parent, insert_order, first, options, &dup);
LY_CHECK_GOTO(rc, cleanup);
}
cleanup:
if (dup_p) {
*dup_p = leader;
}
return rc;
}
/**
* @brief Get a parent node to connect duplicated subtree to.
*
* @param[in] node Node (subtree) to duplicate.
* @param[in] trg_ctx Target context for duplicated nodes.
* @param[in] parent Initial parent to connect to.
* @param[in] options Bitmask of options flags, see @ref dupoptions.
* @param[out] dup_parent First duplicated parent node, if any.
* @param[out] local_parent Correct parent to directly connect duplicated @p node to.
* @return LY_ERR value.
*/
static LY_ERR
lyd_dup_get_local_parent(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node *parent,
uint32_t options, struct lyd_node **dup_parent, struct lyd_node **local_parent)
{
const struct lyd_node *orig_parent;
struct lyd_node *iter = NULL;
ly_bool repeat = 1, ext_parent = 0;
*dup_parent = NULL;
*local_parent = NULL;
if (node->flags & LYD_EXT) {
ext_parent = 1;
}
for (orig_parent = lyd_parent(node); repeat && orig_parent; orig_parent = lyd_parent(orig_parent)) {
if (ext_parent) {
/* use the standard context */
trg_ctx = LYD_CTX(orig_parent);
}
if (parent && (LYD_CTX(parent) == LYD_CTX(orig_parent)) && (parent->schema == orig_parent->schema)) {
/* stop creating parents, connect what we have into the provided parent */
iter = parent;
repeat = 0;
} else if (parent && (LYD_CTX(parent) != LYD_CTX(orig_parent)) &&
lyd_compare_schema_equal(parent->schema, orig_parent->schema) &&
lyd_compare_schema_parents_equal(parent, orig_parent)) {
iter = parent;
repeat = 0;
} else {
iter = NULL;
LY_CHECK_RET(lyd_dup_r(orig_parent, trg_ctx, NULL, LYD_INSERT_NODE_DEFAULT, &iter, options, &iter));
/* insert into the previous duplicated parent */
if (*dup_parent) {
lyd_insert_node(iter, NULL, *dup_parent, LYD_INSERT_NODE_DEFAULT);
}
/* update the last duplicated parent */
*dup_parent = iter;
}
/* set the first parent */
if (!*local_parent) {
*local_parent = iter;
}
if (orig_parent->flags & LYD_EXT) {
ext_parent = 1;
}
}
if (repeat && parent) {
/* given parent and created parents chain actually do not interconnect */
LOGERR(trg_ctx, LY_EINVAL, "None of the duplicated node \"%s\" schema parents match the provided parent \"%s\".",
LYD_NAME(node), LYD_NAME(parent));
return LY_EINVAL;
}
if (*dup_parent && parent) {
/* last insert into a prevously-existing parent */
lyd_insert_node(parent, NULL, *dup_parent, LYD_INSERT_NODE_DEFAULT);
}
return LY_SUCCESS;
}
static LY_ERR
lyd_dup(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node *parent, uint32_t options,
ly_bool nosiblings, struct lyd_node **dup_p)
{
LY_ERR rc;
const struct lyd_node *orig; /* original node to be duplicated */
struct lyd_node *first_dup = NULL; /* the first duplicated node, this is returned */
struct lyd_node *top = NULL; /* the most higher created node */
struct lyd_node *local_parent = NULL; /* the direct parent node for the duplicated node(s) */
struct lyd_node *dup = NULL; /* duplicate node */
struct lyd_node *first_sibling = NULL; /* first sibling node */
assert(node && trg_ctx);
if (options & LYD_DUP_WITH_PARENTS) {
LY_CHECK_GOTO(rc = lyd_dup_get_local_parent(node, trg_ctx, parent, options & (LYD_DUP_WITH_FLAGS | LYD_DUP_NO_META),
&top, &local_parent), error);
} else {
local_parent = parent;
}
LY_LIST_FOR(node, orig) {
if (lysc_is_key(orig->schema)) {
if (local_parent) {
/* the key must already exist in the parent */
rc = lyd_find_sibling_schema(lyd_child(local_parent), orig->schema, &dup);
LY_CHECK_ERR_GOTO(rc, LOGINT(trg_ctx), error);
} else {
assert(!(options & LYD_DUP_WITH_PARENTS));
/* duplicating a single key, okay, I suppose... */
rc = lyd_dup_r(orig, trg_ctx, NULL, LYD_INSERT_NODE_DEFAULT, &first_sibling, options, &dup);
LY_CHECK_GOTO(rc, error);
}
} else if (!nosiblings && orig->schema && (orig->schema->nodetype & (LYS_LIST | LYS_LEAFLIST))) {
/* duplicate the whole (leaf-)list */
rc = lyd_dup_list(&orig, trg_ctx, local_parent, &first_sibling, options, &dup);
LY_CHECK_GOTO(rc, error);
} else {
rc = lyd_dup_r(orig, trg_ctx, local_parent,
options & LYD_DUP_NO_LYDS ? LYD_INSERT_NODE_LAST_BY_SCHEMA : LYD_INSERT_NODE_DEFAULT,
&first_sibling, options, &dup);
LY_CHECK_GOTO(rc, error);
}
first_dup = first_dup ? first_dup : dup;
if (nosiblings || !orig) {
break;
}
}
if (dup_p) {
*dup_p = first_dup;
}
return LY_SUCCESS;
error:
if (top) {
lyd_free_tree(top);
} else if (first_dup) {
lyd_free_siblings(first_dup);
} else {
lyd_free_siblings(dup);
}
return rc;
}
/**
* @brief Check the context of node and parent when duplicating nodes.
*
* @param[in] node Node to duplicate.
* @param[in] parent Parent of the duplicated node(s).
* @return LY_ERR value.
*/
static LY_ERR
lyd_dup_ctx_check(const struct lyd_node *node, const struct lyd_node_inner *parent)
{
const struct lyd_node *iter;
if (!node || !parent) {
return LY_SUCCESS;
}
if ((LYD_CTX(node) != LYD_CTX(parent))) {
/* try to find top-level ext data parent */
for (iter = node; iter && !(iter->flags & LYD_EXT); iter = lyd_parent(iter)) {}
if (!iter || !lyd_parent(iter) || (LYD_CTX(lyd_parent(iter)) != LYD_CTX(parent))) {
LOGERR(LYD_CTX(node), LY_EINVAL, "Different contexts used in node duplication.");
return LY_EINVAL;
}
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_dup_single(const struct lyd_node *node, struct lyd_node_inner *parent, uint32_t options, struct lyd_node **dup)
{
LY_CHECK_ARG_RET(NULL, node, LY_EINVAL);
LY_CHECK_RET(lyd_dup_ctx_check(node, parent));
return lyd_dup(node, LYD_CTX(node), (struct lyd_node *)parent, options, 1, dup);
}
LIBYANG_API_DEF LY_ERR
lyd_dup_single_to_ctx(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node_inner *parent,
uint32_t options, struct lyd_node **dup)
{
LY_CHECK_ARG_RET(trg_ctx, node, trg_ctx, LY_EINVAL);
return lyd_dup(node, trg_ctx, (struct lyd_node *)parent, options, 1, dup);
}
LIBYANG_API_DEF LY_ERR
lyd_dup_siblings(const struct lyd_node *node, struct lyd_node_inner *parent, uint32_t options, struct lyd_node **dup)
{
LY_CHECK_ARG_RET(NULL, node, LY_EINVAL);
LY_CHECK_RET(lyd_dup_ctx_check(node, parent));
return lyd_dup(node, LYD_CTX(node), (struct lyd_node *)parent, options, 0, dup);
}
LIBYANG_API_DEF LY_ERR
lyd_dup_siblings_to_ctx(const struct lyd_node *node, const struct ly_ctx *trg_ctx, struct lyd_node_inner *parent,
uint32_t options, struct lyd_node **dup)
{
LY_CHECK_ARG_RET(trg_ctx, node, trg_ctx, LY_EINVAL);
return lyd_dup(node, trg_ctx, (struct lyd_node *)parent, options, 0, dup);
}
LY_ERR
lyd_dup_meta_single_to_ctx(const struct ly_ctx *parent_ctx, const struct lyd_meta *meta, struct lyd_node *parent,
struct lyd_meta **dup)
{
LY_ERR ret = LY_SUCCESS;
struct lyd_meta *mt, *last;
const struct lysc_type *ant_type;
struct lys_module *mod;
const char *val_can;
LY_CHECK_ARG_RET(NULL, meta, parent, LY_EINVAL);
/* create a copy */
mt = calloc(1, sizeof *mt);
LY_CHECK_ERR_RET(!mt, LOGMEM(LYD_CTX(parent)), LY_EMEM);
if (parent_ctx != meta->annotation->module->ctx) {
/* different contexts */
mod = ly_ctx_get_module(parent_ctx, meta->annotation->module->name, meta->annotation->module->revision);
/* annotation */
mt->annotation = lyd_get_meta_annotation(mod, meta->name, strlen(meta->name));
lyplg_ext_get_storage(mt->annotation, LY_STMT_TYPE, sizeof ant_type, (const void **)&ant_type);
LY_CHECK_ERR_GOTO((ret = mt->annotation ? LY_SUCCESS : LY_EINVAL), LOGERR(parent_ctx, LY_EINVAL,
"Annotation for metadata %s not found, value duplication failed.", meta->name), finish);
/* duplicate callback expect only the same contexts, so use the store callback */
val_can = lyd_value_get_canonical(meta->annotation->module->ctx, &meta->value);
ret = lyd_value_store(parent_ctx, &mt->value, ant_type, val_can, strlen(val_can), 1, 1, NULL,
LY_VALUE_CANON, NULL, LYD_HINT_DATA, parent->schema, NULL);
} else {
/* annotation */
mt->annotation = meta->annotation;
/* duplication of value */
ret = meta->value.realtype->plugin->duplicate(parent_ctx, &meta->value, &mt->value);
}
LY_CHECK_ERR_GOTO(ret, LOGERR(LYD_CTX(parent), LY_EINT, "Value duplication failed."), finish);
LY_CHECK_GOTO(ret = lydict_insert(parent_ctx, meta->name, 0, &mt->name), finish);
/* insert as the last attribute */
mt->parent = parent;
if (parent->meta) {
for (last = parent->meta; last->next; last = last->next) {}
last->next = mt;
} else {
parent->meta = mt;
}
finish:
if (ret) {
lyd_free_meta_single(mt);
} else if (dup) {
*dup = mt;
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_dup_meta_single(const struct lyd_meta *meta, struct lyd_node *node, struct lyd_meta **dup)
{
LY_CHECK_ARG_RET(NULL, meta, LY_EINVAL);
/* log to node context but value must always use the annotation context */
return lyd_dup_meta_single_to_ctx(meta->annotation->module->ctx, meta, node, dup);
}
/**
* @brief Merge a source sibling into target siblings.
*
* @param[in,out] first_trg First target sibling, is updated if top-level.
* @param[in] parent_trg Target parent.
* @param[in,out] sibling_src_p Source sibling to merge, set to NULL if spent.
* @param[in] merge_cb Optional merge callback.
* @param[in] cb_data Arbitrary callback data.
* @param[in] options Merge options.
* @param[in] lyds Pool of lyds data which can be reused.
* @param[in,out] leader_p Cached first instance of target (leaf-)list.
* @param[in,out] dup_inst Duplicate instance cache for all @p first_trg siblings.
* @return LY_ERR value.
*/
static LY_ERR
lyd_merge_sibling_r(struct lyd_node **first_trg, struct lyd_node *parent_trg,
const struct lyd_node **sibling_src_p, lyd_merge_cb merge_cb, void *cb_data, uint16_t options,
struct lyds_pool *lyds, struct lyd_node **leader_p, struct ly_ht **dup_inst)
{
const struct lyd_node *child_src, *tmp, *sibling_src;
struct lyd_node *match_trg, *dup_src, *elem, *leader;
struct lyd_node_opaq *opaq_trg, *opaq_src;
struct lysc_type *type;
const struct lysc_node *schema;
struct ly_ht *child_dup_inst = NULL;
LY_ERR r;
ly_bool first_inst = 0;
sibling_src = *sibling_src_p;
if (!sibling_src->schema) {
/* try to find the same opaque node */
r = lyd_find_sibling_opaq_next(*first_trg, LYD_NAME(sibling_src), &match_trg);
} else if (sibling_src->schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) {
/* try to find the exact instance */
r = lyd_find_sibling_first(*first_trg, sibling_src, &match_trg);
} else {
/* try to simply find the node, there cannot be more instances */
r = lyd_find_sibling_val(*first_trg, sibling_src->schema, NULL, 0, &match_trg);
}
LY_CHECK_RET(r && (r != LY_ENOTFOUND), r);
if (match_trg) {
/* update match as needed */
LY_CHECK_RET(lyd_dup_inst_next(&match_trg, *first_trg, dup_inst));
} else {
/* first instance of this node */
first_inst = 1;
}
if (match_trg) {
/* call callback */
if (merge_cb) {
LY_CHECK_RET(merge_cb(match_trg, sibling_src, cb_data));
}
/* node found, make sure even value matches for all node types */
if (!match_trg->schema) {
if (lyd_compare_single(sibling_src, match_trg, 0)) {
/* update value */
opaq_trg = (struct lyd_node_opaq *)match_trg;
opaq_src = (struct lyd_node_opaq *)sibling_src;
lydict_remove(LYD_CTX(opaq_trg), opaq_trg->value);
lydict_insert(LYD_CTX(opaq_trg), opaq_src->value, 0, &opaq_trg->value);
opaq_trg->hints = opaq_src->hints;
ly_free_prefix_data(opaq_trg->format, opaq_trg->val_prefix_data);
opaq_trg->format = opaq_src->format;
ly_dup_prefix_data(LYD_CTX(opaq_trg), opaq_src->format, opaq_src->val_prefix_data,
&opaq_trg->val_prefix_data);
}
} else if ((match_trg->schema->nodetype == LYS_LEAF) &&
lyd_compare_single(sibling_src, match_trg, LYD_COMPARE_DEFAULTS)) {
/* since they are different, they cannot both be default */
assert(!(sibling_src->flags & LYD_DEFAULT) || !(match_trg->flags & LYD_DEFAULT));
/* update value (or only LYD_DEFAULT flag) only if flag set or the source node is not default */
if ((options & LYD_MERGE_DEFAULTS) || !(sibling_src->flags & LYD_DEFAULT)) {
type = ((struct lysc_node_leaf *)match_trg->schema)->type;
type->plugin->free(LYD_CTX(match_trg), &((struct lyd_node_term *)match_trg)->value);
LY_CHECK_RET(type->plugin->duplicate(LYD_CTX(match_trg), &((struct lyd_node_term *)sibling_src)->value,
&((struct lyd_node_term *)match_trg)->value));
/* copy flags and add LYD_NEW */
match_trg->flags = sibling_src->flags | ((options & LYD_MERGE_WITH_FLAGS) ? 0 : LYD_NEW);
}
} else if ((match_trg->schema->nodetype & LYS_ANYDATA) && lyd_compare_single(sibling_src, match_trg, 0)) {
/* update value */
LY_CHECK_RET(lyd_any_copy_value(match_trg, &((struct lyd_node_any *)sibling_src)->value,
((struct lyd_node_any *)sibling_src)->value_type));
/* copy flags and add LYD_NEW */
match_trg->flags = sibling_src->flags | ((options & LYD_MERGE_WITH_FLAGS) ? 0 : LYD_NEW);
}
/* check descendants, recursively */
r = LY_SUCCESS;
leader = NULL;
schema = NULL;
LY_LIST_FOR_SAFE(lyd_child_no_keys(sibling_src), tmp, child_src) {
if ((options & LYD_MERGE_DESTRUCT) && (schema != child_src->schema) && LYDS_NODE_IS_LEADER(child_src)) {
schema = child_src->schema;
/* unlink lyds data and add them to the pool */
lyds_pool_add((struct lyd_node *)child_src, lyds);
}
r = lyd_merge_sibling_r(lyd_node_child_p(match_trg), match_trg, &child_src,
merge_cb, cb_data, options, lyds, &leader, &child_dup_inst);
if (r) {
break;
}
}
lyd_dup_inst_free(child_dup_inst);
LY_CHECK_RET(r);
} else {
/* node not found, merge it */
if (options & LYD_MERGE_DESTRUCT) {
dup_src = (struct lyd_node *)sibling_src;
lyd_unlink_ignore_lyds(NULL, dup_src);
/* spend it */
*sibling_src_p = NULL;
} else {
LY_CHECK_RET(lyd_dup_single(sibling_src, NULL, LYD_DUP_RECURSIVE | LYD_DUP_WITH_FLAGS, &dup_src));
}
if (!(options & LYD_MERGE_WITH_FLAGS)) {
/* set LYD_NEW for all the new nodes, required for validation */
LYD_TREE_DFS_BEGIN(dup_src, elem) {
elem->flags |= LYD_NEW;
LYD_TREE_DFS_END(dup_src, elem);
}
}
if (lyds->rbn) {
/* insert node and try to reuse free lyds data */
lyds_insert2(parent_trg, first_trg, leader_p, dup_src, lyds);
} else {
/* generic insert node */
lyd_insert_node(parent_trg, first_trg, dup_src, LYD_INSERT_NODE_DEFAULT);
}
if (first_inst) {
/* remember not to find this instance next time */
LY_CHECK_RET(lyd_dup_inst_next(&dup_src, *first_trg, dup_inst));
}
/* call callback, no source node */
if (merge_cb) {
LY_CHECK_RET(merge_cb(dup_src, NULL, cb_data));
}
}
return LY_SUCCESS;
}
static LY_ERR
lyd_merge(struct lyd_node **target, const struct lyd_node *source, const struct lys_module *mod,
lyd_merge_cb merge_cb, void *cb_data, uint16_t options, ly_bool nosiblings)
{
const struct lyd_node *sibling_src, *tmp;
const struct lysc_node *schema;
struct lyd_node *leader;
struct ly_ht *dup_inst = NULL;
ly_bool first;
LY_ERR ret = LY_SUCCESS;
struct lyds_pool lyds = {0};
LY_CHECK_ARG_RET(NULL, target, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(*target ? LYD_CTX(*target) : NULL, source ? LYD_CTX(source) : NULL, mod ? mod->ctx : NULL,
LY_EINVAL);
if (!source) {
/* nothing to merge */
return LY_SUCCESS;
}
if ((*target && lysc_data_parent((*target)->schema)) || lysc_data_parent(source->schema)) {
LOGERR(LYD_CTX(source), LY_EINVAL, "Invalid arguments - can merge only 2 top-level subtrees (%s()).", __func__);
return LY_EINVAL;
}
leader = NULL;
schema = NULL;
LY_LIST_FOR_SAFE(source, tmp, sibling_src) {
if (mod && (lyd_owner_module(sibling_src) != mod)) {
/* skip data nodes from different modules */
continue;
}
if ((options & LYD_MERGE_DESTRUCT) && (schema != sibling_src->schema) && LYDS_NODE_IS_LEADER(sibling_src)) {
schema = sibling_src->schema;
/* unlink lyds data and add them to the pool */
lyds_pool_add((struct lyd_node *)sibling_src, &lyds);
}
first = (sibling_src == source) ? 1 : 0;
ret = lyd_merge_sibling_r(target, NULL, &sibling_src, merge_cb, cb_data, options,
&lyds, &leader, &dup_inst);
if (ret) {
break;
}
if (first && !sibling_src) {
/* source was spent (unlinked), move to the next node */
source = tmp;
}
if (nosiblings) {
break;
}
}
lyds_pool_clean(&lyds);
if (options & LYD_MERGE_DESTRUCT) {
/* free any leftover source data that were not merged */
lyd_free_siblings((struct lyd_node *)source);
}
lyd_dup_inst_free(dup_inst);
return ret;
}
LIBYANG_API_DEF LY_ERR
lyd_merge_tree(struct lyd_node **target, const struct lyd_node *source, uint16_t options)
{
return lyd_merge(target, source, NULL, NULL, NULL, options, 1);
}
LIBYANG_API_DEF LY_ERR
lyd_merge_siblings(struct lyd_node **target, const struct lyd_node *source, uint16_t options)
{
return lyd_merge(target, source, NULL, NULL, NULL, options, 0);
}
LIBYANG_API_DEF LY_ERR
lyd_merge_module(struct lyd_node **target, const struct lyd_node *source, const struct lys_module *mod,
lyd_merge_cb merge_cb, void *cb_data, uint16_t options)
{
return lyd_merge(target, source, mod, merge_cb, cb_data, options, 0);
}
static LY_ERR
lyd_path_str_enlarge(char **buffer, size_t *buflen, size_t reqlen, ly_bool is_static)
{
/* ending \0 */
++reqlen;
if (reqlen > *buflen) {
if (is_static) {
return LY_EINCOMPLETE;
}
*buffer = ly_realloc(*buffer, reqlen * sizeof **buffer);
if (!*buffer) {
return LY_EMEM;
}
*buflen = reqlen;
}
return LY_SUCCESS;
}
LY_ERR
lyd_path_list_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, ly_bool is_static)
{
const struct lyd_node *key;
size_t len;
const char *val;
char quot;
for (key = lyd_child(node); key && key->schema && (key->schema->flags & LYS_KEY); key = key->next) {
val = lyd_get_value(key);
len = 1 + strlen(key->schema->name) + 2 + strlen(val) + 2;
LY_CHECK_RET(lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static));
quot = '\'';
if (strchr(val, '\'')) {
quot = '"';
}
*bufused += sprintf(*buffer + *bufused, "[%s=%c%s%c]", key->schema->name, quot, val, quot);
}
return LY_SUCCESS;
}
/**
* @brief Append leaf-list value predicate to path.
*
* @param[in] node Node to print.
* @param[in,out] buffer Buffer to print to.
* @param[in,out] buflen Current buffer length.
* @param[in,out] bufused Current number of characters used in @p buffer.
* @param[in] is_static Whether buffer is static or can be reallocated.
* @return LY_ERR
*/
static LY_ERR
lyd_path_leaflist_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, ly_bool is_static)
{
size_t len;
const char *val;
char quot;
val = lyd_get_value(node);
len = 4 + strlen(val) + 2; /* "[.='" + val + "']" */
LY_CHECK_RET(lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static));
quot = '\'';
if (strchr(val, '\'')) {
quot = '"';
}
*bufused += sprintf(*buffer + *bufused, "[.=%c%s%c]", quot, val, quot);
return LY_SUCCESS;
}
/**
* @brief Append node position (relative to its other instances) predicate to path.
*
* @param[in] node Node to print.
* @param[in,out] buffer Buffer to print to.
* @param[in,out] buflen Current buffer length.
* @param[in,out] bufused Current number of characters used in @p buffer.
* @param[in] is_static Whether buffer is static or can be reallocated.
* @return LY_ERR
*/
static LY_ERR
lyd_path_position_predicate(const struct lyd_node *node, char **buffer, size_t *buflen, size_t *bufused, ly_bool is_static)
{
size_t len;
uint32_t pos;
char *val = NULL;
LY_ERR rc;
pos = lyd_list_pos(node);
if (asprintf(&val, "%" PRIu32, pos) == -1) {
return LY_EMEM;
}
len = 1 + strlen(val) + 1;
rc = lyd_path_str_enlarge(buffer, buflen, *bufused + len, is_static);
if (rc != LY_SUCCESS) {
goto cleanup;
}
*bufused += sprintf(*buffer + *bufused, "[%s]", val);
cleanup:
free(val);
return rc;
}
LIBYANG_API_DEF char *
lyd_path(const struct lyd_node *node, LYD_PATH_TYPE pathtype, char *buffer, size_t buflen)
{
ly_bool is_static = 0;
uint32_t i, depth;
size_t bufused = 0, len;
const struct lyd_node *iter, *parent;
const struct lys_module *mod, *prev_mod;
LY_ERR rc = LY_SUCCESS;
LY_CHECK_ARG_RET(NULL, node, NULL);
if (buffer) {
LY_CHECK_ARG_RET(LYD_CTX(node), buflen > 1, NULL);
is_static = 1;
} else {
buflen = 0;
}
switch (pathtype) {
case LYD_PATH_STD:
case LYD_PATH_STD_NO_LAST_PRED:
depth = 1;
for (iter = node; iter->parent; iter = lyd_parent(iter)) {
++depth;
}
goto iter_print;
while (depth) {
/* find the right node */
for (iter = node, i = 1; i < depth; iter = lyd_parent(iter), ++i) {}
iter_print:
/* get the module */
mod = lyd_node_module(iter);
parent = lyd_parent(iter);
prev_mod = lyd_node_module(parent);
if (prev_mod == mod) {
mod = NULL;
}
/* realloc string */
len = 1 + (mod ? strlen(mod->name) + 1 : 0) + (iter->schema ? strlen(iter->schema->name) :
strlen(((struct lyd_node_opaq *)iter)->name.name));
rc = lyd_path_str_enlarge(&buffer, &buflen, bufused + len, is_static);
if (rc != LY_SUCCESS) {
break;
}
/* print next node */
bufused += sprintf(buffer + bufused, "/%s%s%s", mod ? mod->name : "", mod ? ":" : "", LYD_NAME(iter));
/* do not always print the last (first) predicate */
if (iter->schema && ((depth > 1) || (pathtype == LYD_PATH_STD))) {
switch (iter->schema->nodetype) {
case LYS_LIST:
if (iter->schema->flags & LYS_KEYLESS) {
/* print its position */
rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, is_static);
} else {
/* print all list keys in predicates */
rc = lyd_path_list_predicate(iter, &buffer, &buflen, &bufused, is_static);
}
break;
case LYS_LEAFLIST:
if (iter->schema->flags & LYS_CONFIG_W) {
/* print leaf-list value */
rc = lyd_path_leaflist_predicate(iter, &buffer, &buflen, &bufused, is_static);
} else {
/* print its position */
rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, is_static);
}
break;
default:
/* nothing to print more */
break;
}
}
if (rc != LY_SUCCESS) {
break;
}
--depth;
}
break;
}
return buffer;
}
char *
lyd_path_set(const struct ly_set *dnodes, LYD_PATH_TYPE pathtype)
{
uint32_t depth;
size_t bufused = 0, buflen = 0, len;
char *buffer = NULL;
const struct lyd_node *iter, *parent;
const struct lys_module *mod, *prev_mod;
LY_ERR rc = LY_SUCCESS;
switch (pathtype) {
case LYD_PATH_STD:
case LYD_PATH_STD_NO_LAST_PRED:
for (depth = 1; depth <= dnodes->count; ++depth) {
/* current node */
iter = dnodes->dnodes[depth - 1];
mod = lyd_node_module(iter);
/* parent */
parent = (depth > 1) ? dnodes->dnodes[depth - 2] : NULL;
assert(!parent || !iter->schema || !parent->schema || (parent->schema->nodetype & LYD_NODE_ANY) ||
(lysc_data_parent(iter->schema) == parent->schema) ||
(!lysc_data_parent(iter->schema) && (LYD_CTX(iter) != LYD_CTX(parent))) ||
(parent->schema->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)));
/* get module to print, if any */
prev_mod = lyd_node_module(parent);
if (prev_mod == mod) {
mod = NULL;
}
/* realloc string */
len = 1 + (mod ? strlen(mod->name) + 1 : 0) + (iter->schema ? strlen(iter->schema->name) :
strlen(((struct lyd_node_opaq *)iter)->name.name));
if ((rc = lyd_path_str_enlarge(&buffer, &buflen, bufused + len, 0))) {
break;
}
/* print next node */
bufused += sprintf(buffer + bufused, "/%s%s%s", mod ? mod->name : "", mod ? ":" : "", LYD_NAME(iter));
/* do not always print the last (first) predicate */
if (iter->schema && ((depth > 1) || (pathtype == LYD_PATH_STD))) {
switch (iter->schema->nodetype) {
case LYS_LIST:
if (iter->schema->flags & LYS_KEYLESS) {
/* print its position */
rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, 0);
} else {
/* print all list keys in predicates */
rc = lyd_path_list_predicate(iter, &buffer, &buflen, &bufused, 0);
}
break;
case LYS_LEAFLIST:
if (iter->schema->flags & LYS_CONFIG_W) {
/* print leaf-list value */
rc = lyd_path_leaflist_predicate(iter, &buffer, &buflen, &bufused, 0);
} else {
/* print its position */
rc = lyd_path_position_predicate(iter, &buffer, &buflen, &bufused, 0);
}
break;
default:
/* nothing to print more */
break;
}
}
if (rc) {
break;
}
}
break;
}
return buffer;
}
LIBYANG_API_DEF struct lyd_meta *
lyd_find_meta(const struct lyd_meta *first, const struct lys_module *module, const char *name)
{
struct lyd_meta *ret = NULL;
const struct ly_ctx *ctx;
const char *prefix, *tmp;
char *str;
size_t pref_len, name_len;
LY_CHECK_ARG_RET(NULL, module || strchr(name, ':'), name, NULL);
LY_CHECK_CTX_EQUAL_RET(first ? first->annotation->module->ctx : NULL, module ? module->ctx : NULL, NULL);
if (!first) {
return NULL;
}
ctx = first->annotation->module->ctx;
/* parse the name */
tmp = name;
if (ly_parse_nodeid(&tmp, &prefix, &pref_len, &name, &name_len) || tmp[0]) {
LOGERR(ctx, LY_EINVAL, "Metadata name \"%s\" is not valid.", name);
return NULL;
}
/* find the module */
if (prefix) {
str = strndup(prefix, pref_len);
module = ly_ctx_get_module_latest(ctx, str);
free(str);
LY_CHECK_ERR_RET(!module, LOGERR(ctx, LY_EINVAL, "Module \"%.*s\" not found.", (int)pref_len, prefix), NULL);
}
/* find the metadata */
LY_LIST_FOR(first, first) {
if ((first->annotation->module == module) && !strcmp(first->name, name)) {
ret = (struct lyd_meta *)first;
break;
}
}
return ret;
}
LIBYANG_API_DEF LY_ERR
lyd_find_sibling_first(const struct lyd_node *siblings, const struct lyd_node *target, struct lyd_node **match)
{
struct lyd_node **match_p, *iter, *dup = NULL;
struct lyd_node_inner *parent;
ly_bool found;
LY_CHECK_ARG_RET(NULL, target, LY_EINVAL);
if (!siblings) {
/* no data */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (LYD_CTX(siblings) != LYD_CTX(target)) {
/* create a duplicate in this context */
LY_CHECK_RET(lyd_dup_single_to_ctx(target, LYD_CTX(siblings), NULL, 0, &dup));
target = dup;
}
if ((siblings->schema && target->schema && (lysc_data_parent(siblings->schema) != lysc_data_parent(target->schema)))) {
/* schema mismatch */
lyd_free_tree(dup);
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
/* get first sibling */
siblings = lyd_first_sibling(siblings);
parent = siblings->parent;
if (target->schema && parent && parent->schema && parent->children_ht) {
assert(target->hash);
if (lysc_is_dup_inst_list(target->schema)) {
/* we must search the instances from beginning to find the first matching one */
found = 0;
LYD_LIST_FOR_INST(siblings, target->schema, iter) {
if (!lyd_compare_single(target, iter, LYD_COMPARE_FULL_RECURSION)) {
found = 1;
break;
}
}
if (found) {
siblings = iter;
} else {
siblings = NULL;
}
} else {
/* find by hash */
if (!lyht_find(parent->children_ht, &target, target->hash, (void **)&match_p)) {
siblings = *match_p;
} else {
/* not found */
siblings = NULL;
}
}
} else {
/* no children hash table or cannot be used */
for ( ; siblings; siblings = siblings->next) {
if (lysc_is_dup_inst_list(target->schema)) {
if (!lyd_compare_single(siblings, target, LYD_COMPARE_FULL_RECURSION)) {
break;
}
} else {
if (!lyd_compare_single(siblings, target, 0)) {
break;
}
}
}
}
lyd_free_tree(dup);
if (!siblings) {
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (match) {
*match = (struct lyd_node *)siblings;
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_find_sibling_val(const struct lyd_node *siblings, const struct lysc_node *schema, const char *key_or_value,
size_t val_len, struct lyd_node **match)
{
LY_ERR rc;
struct lyd_node *target = NULL;
const struct lyd_node *parent;
LY_CHECK_ARG_RET(NULL, schema, !(schema->nodetype & (LYS_CHOICE | LYS_CASE)), LY_EINVAL);
if (!siblings) {
/* no data */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if ((LYD_CTX(siblings) != schema->module->ctx)) {
/* parent of ext nodes is useless */
parent = (siblings->flags & LYD_EXT) ? NULL : lyd_parent(siblings);
if (lyd_find_schema_ctx(schema, LYD_CTX(siblings), parent, 0, &schema)) {
/* no schema node in siblings so certainly no data node either */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
}
if (siblings->schema && (lysc_data_parent(siblings->schema) != lysc_data_parent(schema))) {
/* schema mismatch */
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (key_or_value && !val_len) {
val_len = strlen(key_or_value);
}
if ((schema->nodetype & (LYS_LIST | LYS_LEAFLIST)) && key_or_value) {
/* create a data node and find the instance */
if (schema->nodetype == LYS_LEAFLIST) {
/* target used attributes: schema, hash, value */
rc = lyd_create_term(schema, key_or_value, val_len, 0, 1, NULL, LY_VALUE_JSON, NULL, LYD_HINT_DATA, NULL, &target);
LY_CHECK_RET(rc);
} else {
/* target used attributes: schema, hash, child (all keys) */
LY_CHECK_RET(lyd_create_list2(schema, key_or_value, val_len, 1, &target));
}
/* find it */
rc = lyd_find_sibling_first(siblings, target, match);
} else {
/* find the first schema node instance */
rc = lyd_find_sibling_schema(siblings, schema, match);
}
lyd_free_tree(target);
return rc;
}
LIBYANG_API_DEF LY_ERR
lyd_find_sibling_dup_inst_set(const struct lyd_node *siblings, const struct lyd_node *target, struct ly_set **set)
{
struct lyd_node **match_p, *first, *iter;
struct lyd_node_inner *parent;
uint32_t comp_opts;
LY_CHECK_ARG_RET(NULL, target, set, LY_EINVAL);
LY_CHECK_CTX_EQUAL_RET(siblings ? LYD_CTX(siblings) : NULL, LYD_CTX(target), LY_EINVAL);
LY_CHECK_RET(ly_set_new(set));
if (!siblings || (siblings->schema && (lysc_data_parent(siblings->schema) != lysc_data_parent(target->schema)))) {
/* no data or schema mismatch */
return LY_ENOTFOUND;
}
/* set options */
comp_opts = (lysc_is_dup_inst_list(target->schema) ? LYD_COMPARE_FULL_RECURSION : 0);
/* get first sibling */
siblings = lyd_first_sibling(siblings);
parent = siblings->parent;
if (parent && parent->schema && parent->children_ht) {
assert(target->hash);
/* find the first instance */
lyd_find_sibling_first(siblings, target, &first);
if (first) {
/* add it so that it is the first in the set */
if (ly_set_add(*set, first, 1, NULL)) {
goto error;
}
/* find by hash */
if (!lyht_find(parent->children_ht, &target, target->hash, (void **)&match_p)) {
iter = *match_p;
} else {
/* not found */
iter = NULL;
}
while (iter) {
/* add all found nodes into the set */
if ((iter != first) && !lyd_compare_single(iter, target, comp_opts) && ly_set_add(*set, iter, 1, NULL)) {
goto error;
}
/* find next instance */
if (lyht_find_next(parent->children_ht, &iter, iter->hash, (void **)&match_p)) {
iter = NULL;
} else {
iter = *match_p;
}
}
}
} else {
/* no children hash table */
LY_LIST_FOR(siblings, siblings) {
if (!lyd_compare_single(target, siblings, comp_opts)) {
ly_set_add(*set, (void *)siblings, 1, NULL);
}
}
}
if (!(*set)->count) {
return LY_ENOTFOUND;
}
return LY_SUCCESS;
error:
ly_set_free(*set, NULL);
*set = NULL;
return LY_EMEM;
}
LIBYANG_API_DEF LY_ERR
lyd_find_sibling_opaq_next(const struct lyd_node *first, const char *name, struct lyd_node **match)
{
LY_CHECK_ARG_RET(NULL, name, LY_EINVAL);
if (first && first->schema) {
first = first->prev;
if (first->schema) {
/* no opaque nodes */
first = NULL;
} else {
/* opaque nodes are at the end, find quickly the first */
while (!first->prev->schema) {
first = first->prev;
}
}
}
for ( ; first; first = first->next) {
assert(!first->schema);
if (!strcmp(LYD_NAME(first), name)) {
break;
}
}
if (match) {
*match = (struct lyd_node *)first;
}
return first ? LY_SUCCESS : LY_ENOTFOUND;
}
LIBYANG_API_DEF LY_ERR
lyd_find_xpath(const struct lyd_node *ctx_node, const char *xpath, struct ly_set **set)
{
LY_CHECK_ARG_RET(NULL, ctx_node, xpath, set, LY_EINVAL);
return lyd_find_xpath3(ctx_node, ctx_node, xpath, LY_VALUE_JSON, NULL, NULL, set);
}
LIBYANG_API_DEF LY_ERR
lyd_find_xpath2(const struct lyd_node *ctx_node, const char *xpath, const struct lyxp_var *vars, struct ly_set **set)
{
LY_CHECK_ARG_RET(NULL, ctx_node, xpath, set, LY_EINVAL);
return lyd_find_xpath3(ctx_node, ctx_node, xpath, LY_VALUE_JSON, NULL, vars, set);
}
LIBYANG_API_DEF LY_ERR
lyd_find_xpath3(const struct lyd_node *ctx_node, const struct lyd_node *tree, const char *xpath, LY_VALUE_FORMAT format,
void *prefix_data, const struct lyxp_var *vars, struct ly_set **set)
{
LY_CHECK_ARG_RET(NULL, tree, xpath, set, LY_EINVAL);
*set = NULL;
return lyd_eval_xpath4(ctx_node, tree, NULL, xpath, format, prefix_data, vars, NULL, set, NULL, NULL, NULL);
}
LIBYANG_API_DEF LY_ERR
lyd_eval_xpath(const struct lyd_node *ctx_node, const char *xpath, ly_bool *result)
{
return lyd_eval_xpath3(ctx_node, NULL, xpath, LY_VALUE_JSON, NULL, NULL, result);
}
LIBYANG_API_DEF LY_ERR
lyd_eval_xpath2(const struct lyd_node *ctx_node, const char *xpath, const struct lyxp_var *vars, ly_bool *result)
{
return lyd_eval_xpath3(ctx_node, NULL, xpath, LY_VALUE_JSON, NULL, vars, result);
}
LIBYANG_API_DEF LY_ERR
lyd_eval_xpath3(const struct lyd_node *ctx_node, const struct lys_module *cur_mod, const char *xpath,
LY_VALUE_FORMAT format, void *prefix_data, const struct lyxp_var *vars, ly_bool *result)
{
return lyd_eval_xpath4(ctx_node, ctx_node, cur_mod, xpath, format, prefix_data, vars, NULL, NULL, NULL, NULL, result);
}
LIBYANG_API_DEF LY_ERR
lyd_eval_xpath4(const struct lyd_node *ctx_node, const struct lyd_node *tree, const struct lys_module *cur_mod,
const char *xpath, LY_VALUE_FORMAT format, void *prefix_data, const struct lyxp_var *vars, LY_XPATH_TYPE *ret_type,
struct ly_set **node_set, char **string, long double *number, ly_bool *boolean)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_set xp_set = {0};
struct lyxp_expr *exp = NULL;
uint32_t i;
LY_CHECK_ARG_RET(NULL, tree, xpath, ((ret_type && node_set && string && number && boolean) ||
(node_set && !string && !number && !boolean) || (!node_set && string && !number && !boolean) ||
(!node_set && !string && number && !boolean) || (!node_set && !string && !number && boolean)), LY_EINVAL);
/* parse expression */
ret = lyxp_expr_parse((struct ly_ctx *)LYD_CTX(tree), xpath, 0, 1, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* evaluate expression */
ret = lyxp_eval(LYD_CTX(tree), exp, cur_mod, format, prefix_data, ctx_node, ctx_node, tree, vars, &xp_set,
LYXP_IGNORE_WHEN);
LY_CHECK_GOTO(ret, cleanup);
/* return expected result type without or with casting */
if (node_set) {
/* node set */
if (xp_set.type == LYXP_SET_NODE_SET) {
/* transform into a set */
LY_CHECK_GOTO(ret = ly_set_new(node_set), cleanup);
(*node_set)->objs = malloc(xp_set.used * sizeof *(*node_set)->objs);
LY_CHECK_ERR_GOTO(!(*node_set)->objs, LOGMEM(LYD_CTX(tree)); ret = LY_EMEM, cleanup);
(*node_set)->size = xp_set.used;
for (i = 0; i < xp_set.used; ++i) {
if (xp_set.val.nodes[i].type == LYXP_NODE_ELEM) {
ret = ly_set_add(*node_set, xp_set.val.nodes[i].node, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
if (ret_type) {
*ret_type = LY_XPATH_NODE_SET;
}
} else if (!string && !number && !boolean) {
LOGERR(LYD_CTX(tree), LY_EINVAL, "XPath \"%s\" result is not a node set.", xpath);
ret = LY_EINVAL;
goto cleanup;
}
}
if (string) {
if ((xp_set.type != LYXP_SET_STRING) && !node_set) {
/* cast into string */
LY_CHECK_GOTO(ret = lyxp_set_cast(&xp_set, LYXP_SET_STRING), cleanup);
}
if (xp_set.type == LYXP_SET_STRING) {
/* string */
*string = xp_set.val.str;
xp_set.val.str = NULL;
if (ret_type) {
*ret_type = LY_XPATH_STRING;
}
}
}
if (number) {
if ((xp_set.type != LYXP_SET_NUMBER) && !node_set) {
/* cast into number */
LY_CHECK_GOTO(ret = lyxp_set_cast(&xp_set, LYXP_SET_NUMBER), cleanup);
}
if (xp_set.type == LYXP_SET_NUMBER) {
/* number */
*number = xp_set.val.num;
if (ret_type) {
*ret_type = LY_XPATH_NUMBER;
}
}
}
if (boolean) {
if ((xp_set.type != LYXP_SET_BOOLEAN) && !node_set) {
/* cast into boolean */
LY_CHECK_GOTO(ret = lyxp_set_cast(&xp_set, LYXP_SET_BOOLEAN), cleanup);
}
if (xp_set.type == LYXP_SET_BOOLEAN) {
/* boolean */
*boolean = xp_set.val.bln;
if (ret_type) {
*ret_type = LY_XPATH_BOOLEAN;
}
}
}
cleanup:
lyxp_set_free_content(&xp_set);
lyxp_expr_free((struct ly_ctx *)LYD_CTX(tree), exp);
return ret;
}
/**
* @brief Hash table node equal callback.
*/
static ly_bool
lyd_trim_equal_cb(void *val1_p, void *val2_p, ly_bool UNUSED(mod), void *UNUSED(cb_data))
{
struct lyd_node *node1, *node2;
node1 = *(struct lyd_node **)val1_p;
node2 = *(struct lyd_node **)val2_p;
return node1 == node2;
}
LIBYANG_API_DEF LY_ERR
lyd_trim_xpath(struct lyd_node **tree, const char *xpath, const struct lyxp_var *vars)
{
LY_ERR ret = LY_SUCCESS;
struct ly_ctx *ctx = NULL;
struct lyxp_set xp_set = {0};
struct lyxp_expr *exp = NULL;
struct lyd_node *node, *parent;
struct lyxp_set_hash_node hnode;
struct ly_ht *parent_ht = NULL;
struct ly_set free_set = {0};
uint32_t i, hash;
ly_bool is_result;
LY_CHECK_ARG_RET(NULL, tree, xpath, LY_EINVAL);
if (!*tree) {
/* nothing to do */
goto cleanup;
}
*tree = lyd_first_sibling(*tree);
ctx = (struct ly_ctx *)LYD_CTX(*tree);
/* parse expression */
ret = lyxp_expr_parse(ctx, xpath, 0, 1, &exp);
LY_CHECK_GOTO(ret, cleanup);
/* evaluate expression */
ret = lyxp_eval(ctx, exp, NULL, LY_VALUE_JSON, NULL, *tree, *tree, *tree, vars, &xp_set, LYXP_IGNORE_WHEN);
LY_CHECK_GOTO(ret, cleanup);
/* create hash table for all the parents of results */
parent_ht = lyht_new(32, sizeof node, lyd_trim_equal_cb, NULL, 1);
LY_CHECK_GOTO(!parent_ht, cleanup);
for (i = 0; i < xp_set.used; ++i) {
if (xp_set.val.nodes[i].type != LYXP_NODE_ELEM) {
/* ignore */
continue;
}
for (parent = lyd_parent(xp_set.val.nodes[i].node); parent; parent = lyd_parent(parent)) {
/* add the parent into parent_ht */
ret = lyht_insert(parent_ht, &parent, parent->hash, NULL);
if (ret == LY_EEXIST) {
/* shared parent, we are done */
break;
}
LY_CHECK_GOTO(ret, cleanup);
}
}
hnode.type = LYXP_NODE_ELEM;
LY_LIST_FOR(*tree, parent) {
LYD_TREE_DFS_BEGIN(parent, node) {
if (lysc_is_key(node->schema)) {
/* ignore */
goto next_iter;
}
/* check the results */
is_result = 0;
if (xp_set.ht) {
hnode.node = node;
hash = lyht_hash_multi(0, (const char *)&hnode.node, sizeof hnode.node);
hash = lyht_hash_multi(hash, (const char *)&hnode.type, sizeof hnode.type);
hash = lyht_hash_multi(hash, NULL, 0);
if (!lyht_find(xp_set.ht, &hnode, hash, NULL)) {
is_result = 1;
}
} else {
/* not enough elements for a hash table */
for (i = 0; i < xp_set.used; ++i) {
if (xp_set.val.nodes[i].type != LYXP_NODE_ELEM) {
/* ignore */
continue;
}
if (xp_set.val.nodes[i].node == node) {
is_result = 1;
break;
}
}
}
if (is_result) {
/* keep the whole subtree if the node is in the results */
LYD_TREE_DFS_continue = 1;
} else if (lyht_find(parent_ht, &node, node->hash, NULL)) {
/* free the whole subtree if the node is not even among the selected parents */
ret = ly_set_add(&free_set, node, 1, NULL);
LY_CHECK_GOTO(ret, cleanup);
LYD_TREE_DFS_continue = 1;
} /* else keep the parent node because a subtree is in the results */
next_iter:
LYD_TREE_DFS_END(parent, node);
}
}
/* free */
for (i = 0; i < free_set.count; ++i) {
node = free_set.dnodes[i];
if (*tree == node) {
*tree = (*tree)->next;
}
lyd_free_tree(node);
}
cleanup:
lyxp_set_free_content(&xp_set);
lyxp_expr_free(ctx, exp);
lyht_free(parent_ht, NULL);
ly_set_erase(&free_set, NULL);
return ret;
}
LIBYANG_API_DEF LY_ERR
lyd_find_path(const struct lyd_node *ctx_node, const char *path, ly_bool output, struct lyd_node **match)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_expr *expr = NULL;
struct ly_path *lypath = NULL;
LY_CHECK_ARG_RET(NULL, ctx_node, ctx_node->schema, path, LY_EINVAL);
/* parse the path */
ret = ly_path_parse(LYD_CTX(ctx_node), ctx_node->schema, path, strlen(path), 0, LY_PATH_BEGIN_EITHER,
LY_PATH_PREFIX_FIRST, LY_PATH_PRED_SIMPLE, &expr);
LY_CHECK_GOTO(ret, cleanup);
/* compile the path */
ret = ly_path_compile(LYD_CTX(ctx_node), NULL, ctx_node->schema, NULL, expr,
output ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_SINGLE, 0, LY_VALUE_JSON, NULL, &lypath);
LY_CHECK_GOTO(ret, cleanup);
/* evaluate the path */
ret = ly_path_eval_partial(lypath, ctx_node, NULL, 0, NULL, match);
cleanup:
lyxp_expr_free(LYD_CTX(ctx_node), expr);
ly_path_free(LYD_CTX(ctx_node), lypath);
return ret;
}
LIBYANG_API_DEF LY_ERR
lyd_find_target(const struct ly_path *path, const struct lyd_node *tree, struct lyd_node **match)
{
LY_ERR ret;
struct lyd_node *m;
LY_CHECK_ARG_RET(NULL, path, LY_EINVAL);
ret = ly_path_eval(path, tree, NULL, &m);
if (ret) {
if (match) {
*match = NULL;
}
return LY_ENOTFOUND;
}
if (match) {
*match = m;
}
return LY_SUCCESS;
}
LY_ERR
lyd_get_or_create_leafref_links_record(const struct lyd_node_term *node, struct lyd_leafref_links_rec **record, ly_bool create)
{
struct ly_ht *ht;
uint32_t hash;
struct lyd_leafref_links_rec rec = {0};
assert(node);
assert(record);
*record = NULL;
if (!(ly_ctx_get_options(LYD_CTX(node)) & LY_CTX_LEAFREF_LINKING)) {
return LY_EDENIED;
}
rec.node = node;
ht = LYD_CTX(node)->leafref_links_ht;
hash = lyht_hash((const char *)&node, sizeof node);
if (lyht_find(ht, &rec, hash, (void **)record) == LY_ENOTFOUND) {
if (create) {
LY_CHECK_RET(lyht_insert_no_check(ht, &rec, hash, (void **)record));
} else {
return LY_ENOTFOUND;
}
}
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_leafref_get_links(const struct lyd_node_term *node, const struct lyd_leafref_links_rec **record)
{
LY_CHECK_ARG_RET(NULL, node, record, LY_EINVAL);
return lyd_get_or_create_leafref_links_record(node, (struct lyd_leafref_links_rec **)record, 0);
}
LY_ERR
lyd_link_leafref_node(const struct lyd_node_term *node, const struct lyd_node_term *leafref_node)
{
const struct lyd_node_term **item = NULL;
struct lyd_leafref_links_rec *rec;
LY_ARRAY_COUNT_TYPE u;
assert(node);
assert(leafref_node);
if (!(ly_ctx_get_options(LYD_CTX(node)) & LY_CTX_LEAFREF_LINKING)) {
return LY_EDENIED;
}
/* add leafref node into the list of target node */
LY_CHECK_RET(lyd_get_or_create_leafref_links_record(node, &rec, 1));
LY_ARRAY_FOR(rec->leafref_nodes, u) {
if (rec->leafref_nodes[u] == leafref_node) {
return LY_SUCCESS;
}
}
LY_ARRAY_NEW_RET(LYD_CTX(node), rec->leafref_nodes, item, LY_EMEM);
*item = leafref_node;
/* add target node into the list of leafref node*/
LY_CHECK_RET(lyd_get_or_create_leafref_links_record(leafref_node, &rec, 1));
LY_ARRAY_FOR(rec->target_nodes, u) {
if (rec->target_nodes[u] == node) {
return LY_SUCCESS;
}
}
LY_ARRAY_NEW_RET(LYD_CTX(node), rec->target_nodes, item, LY_EMEM);
*item = node;
return LY_SUCCESS;
}
LIBYANG_API_DEF LY_ERR
lyd_leafref_link_node_tree(const struct lyd_node *tree)
{
const struct lyd_node *sibling, *elem;
struct ly_set *targets = NULL;
char *errmsg;
struct lyd_node_term *leafref_node;
struct lysc_node_leaf *leaf_schema;
struct lysc_type_leafref *lref;
LY_ERR ret = LY_SUCCESS;
uint32_t i;
LY_CHECK_ARG_RET(NULL, tree, LY_EINVAL);
if (!(ly_ctx_get_options(LYD_CTX(tree)) & LY_CTX_LEAFREF_LINKING)) {
return LY_EDENIED;
}
LY_LIST_FOR(tree, sibling) {
LYD_TREE_DFS_BEGIN(sibling, elem) {
if (elem->schema && (elem->schema->nodetype & LYD_NODE_TERM)) {
leafref_node = (struct lyd_node_term *)elem;
leaf_schema = (struct lysc_node_leaf *)elem->schema;
if (leaf_schema->type->basetype == LY_TYPE_LEAFREF) {
lref = (struct lysc_type_leafref *)leaf_schema->type;
ly_set_free(targets, NULL);
if (lyplg_type_resolve_leafref(lref, elem, &leafref_node->value, tree, &targets, &errmsg)) {
/* leafref target not found */
free(errmsg);
} else {
/* leafref target found, link it */
for (i = 0; i < targets->count; ++i) {
if (targets->dnodes[i]->schema->nodetype & LYD_NODE_TERM) {
ret = lyd_link_leafref_node((struct lyd_node_term *)targets->dnodes[i], leafref_node);
LY_CHECK_GOTO(ret, cleanup);
}
}
}
}
}
LYD_TREE_DFS_END(sibling, elem);
}
}
cleanup:
ly_set_free(targets, NULL);
return ret;
}
LY_ERR
lyd_unlink_leafref_node(const struct lyd_node_term *node, const struct lyd_node_term *leafref_node)
{
LY_ERR ret;
struct lyd_leafref_links_rec *rec;
assert(node);
assert(leafref_node);
if (!(ly_ctx_get_options(LYD_CTX(node)) & LY_CTX_LEAFREF_LINKING)) {
return LY_EDENIED;
}
/* remove link from target node to leafref node */
ret = lyd_get_or_create_leafref_links_record(node, &rec, 0);
if (ret == LY_SUCCESS) {
LY_ARRAY_REMOVE_VALUE(rec->leafref_nodes, leafref_node);
if ((LY_ARRAY_COUNT(rec->leafref_nodes) == 0) && (LY_ARRAY_COUNT(rec->target_nodes) == 0)) {
lyd_free_leafref_nodes(node);
}
} else if (ret != LY_ENOTFOUND) {
return ret;
}
/* remove link from leafref node to target node */
ret = lyd_get_or_create_leafref_links_record(leafref_node, &rec, 0);
if (ret == LY_SUCCESS) {
LY_ARRAY_REMOVE_VALUE(rec->target_nodes, node);
if ((LY_ARRAY_COUNT(rec->leafref_nodes) == 0) && (LY_ARRAY_COUNT(rec->target_nodes) == 0)) {
lyd_free_leafref_nodes(leafref_node);
}
} else if (ret != LY_ENOTFOUND) {
return ret;
}
return LY_SUCCESS;
}