| /** |
| * @file xpath.c |
| * @author Michal Vasko <mvasko@cesnet.cz> |
| * @brief YANG XPath evaluation functions |
| * |
| * Copyright (c) 2015 CESNET, z.s.p.o. |
| * |
| * This source code is licensed under BSD 3-Clause License (the "License"). |
| * You may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * https://opensource.org/licenses/BSD-3-Clause |
| */ |
| |
| #define _GNU_SOURCE |
| |
| /* needed by libmath functions isfinite(), isinf(), isnan(), signbit(), ... */ |
| #define _ISOC99_SOURCE |
| |
| #include <ctype.h> |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <assert.h> |
| #include <limits.h> |
| #include <errno.h> |
| #include <math.h> |
| #include <pcre.h> |
| |
| #include "xpath.h" |
| #include "libyang.h" |
| #include "xml_internal.h" |
| #include "tree_schema.h" |
| #include "tree_data.h" |
| #include "context.h" |
| #include "tree_internal.h" |
| #include "common.h" |
| #include "resolve.h" |
| #include "printer.h" |
| #include "parser.h" |
| #include "dict_private.h" |
| |
| static const struct lyd_node *moveto_get_root(const struct lyd_node *cur_node, int options, |
| enum lyxp_node_type *root_type); |
| static int eval_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options); |
| static int reparse_expr(struct lyxp_expr *exp, uint16_t *exp_idx); |
| |
| void |
| lyxp_expr_free(struct lyxp_expr *expr) |
| { |
| uint16_t i; |
| |
| if (!expr) { |
| return; |
| } |
| |
| free(expr->expr); |
| free(expr->tokens); |
| free(expr->expr_pos); |
| free(expr->tok_len); |
| if (expr->repeat) { |
| for (i = 0; i < expr->used; ++i) { |
| free(expr->repeat[i]); |
| } |
| } |
| free(expr->repeat); |
| free(expr); |
| } |
| |
| /** |
| * @brief Print the type of an XPath \p set. |
| * |
| * @param[in] set Set to use. |
| * |
| * @return Set type string. |
| */ |
| static const char * |
| print_set_type(struct lyxp_set *set) |
| { |
| switch (set->type) { |
| case LYXP_SET_EMPTY: |
| return "empty"; |
| case LYXP_SET_NODE_SET: |
| return "node set"; |
| case LYXP_SET_SNODE_SET: |
| return "schema node set"; |
| case LYXP_SET_BOOLEAN: |
| return "boolean"; |
| case LYXP_SET_NUMBER: |
| return "number"; |
| case LYXP_SET_STRING: |
| return "string"; |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * @brief Print an XPath token \p tok type. |
| * |
| * @param[in] tok Token to use. |
| * |
| * @return Token type string. |
| */ |
| static const char * |
| print_token(enum lyxp_token tok) |
| { |
| switch (tok) { |
| case LYXP_TOKEN_PAR1: |
| return "("; |
| case LYXP_TOKEN_PAR2: |
| return ")"; |
| case LYXP_TOKEN_BRACK1: |
| return "["; |
| case LYXP_TOKEN_BRACK2: |
| return "]"; |
| case LYXP_TOKEN_DOT: |
| return "."; |
| case LYXP_TOKEN_DDOT: |
| return ".."; |
| case LYXP_TOKEN_AT: |
| return "@"; |
| case LYXP_TOKEN_COMMA: |
| return ","; |
| case LYXP_TOKEN_NAMETEST: |
| return "NameTest"; |
| case LYXP_TOKEN_NODETYPE: |
| return "NodeType"; |
| case LYXP_TOKEN_FUNCNAME: |
| return "FunctionName"; |
| case LYXP_TOKEN_OPERATOR_LOG: |
| return "Operator(Logic)"; |
| case LYXP_TOKEN_OPERATOR_COMP: |
| return "Operator(Comparison)"; |
| case LYXP_TOKEN_OPERATOR_MATH: |
| return "Operator(Math)"; |
| case LYXP_TOKEN_OPERATOR_UNI: |
| return "Operator(Union)"; |
| case LYXP_TOKEN_OPERATOR_PATH: |
| return "Operator(Path)"; |
| case LYXP_TOKEN_LITERAL: |
| return "Literal"; |
| case LYXP_TOKEN_NUMBER: |
| return "Number"; |
| default: |
| LOGINT; |
| return ""; |
| } |
| } |
| |
| /** |
| * @brief Print the whole expression \p exp to debug output. |
| * |
| * @param[in] exp Expression to use. |
| */ |
| static void |
| print_expr_struct_debug(struct lyxp_expr *exp) |
| { |
| uint16_t i, j; |
| char tmp[128]; |
| |
| if (!exp || (ly_log_level < LY_LLDBG)) { |
| return; |
| } |
| |
| LOGDBG(LY_LDGXPATH, "expression \"%s\":", exp->expr); |
| for (i = 0; i < exp->used; ++i) { |
| sprintf(tmp, "\ttoken %s, in expression \"%.*s\"", print_token(exp->tokens[i]), exp->tok_len[i], |
| &exp->expr[exp->expr_pos[i]]); |
| if (exp->repeat[i]) { |
| sprintf(tmp + strlen(tmp), " (repeat %d", exp->repeat[i][0]); |
| for (j = 1; exp->repeat[i][j]; ++j) { |
| sprintf(tmp + strlen(tmp), ", %d", exp->repeat[i][j]); |
| } |
| strcat(tmp, ")"); |
| } |
| LOGDBG(LY_LDGXPATH, tmp); |
| } |
| } |
| |
| #ifndef NDEBUG |
| |
| /** |
| * @brief Print XPath set content to debug output. |
| * |
| * @param[in] set Set to print. |
| */ |
| static void |
| print_set_debug(struct lyxp_set *set) |
| { |
| uint32_t i; |
| char *str_num; |
| struct lyxp_set_nodes *item; |
| struct lyxp_set_snodes *sitem; |
| |
| if (ly_log_level < LY_LLDBG) { |
| return; |
| } |
| |
| switch (set->type) { |
| case LYXP_SET_NODE_SET: |
| LOGDBG(LY_LDGXPATH, "set NODE SET:"); |
| for (i = 0; i < set->used; ++i) { |
| item = &set->val.nodes[i]; |
| |
| switch (item->type) { |
| case LYXP_NODE_ROOT: |
| LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ROOT", i + 1, item->pos); |
| break; |
| case LYXP_NODE_ROOT_CONFIG: |
| LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ROOT CONFIG", i + 1, item->pos); |
| break; |
| case LYXP_NODE_ELEM: |
| if ((item->node->schema->nodetype == LYS_LIST) |
| && (item->node->child->schema->nodetype == LYS_LEAF)) { |
| LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s (1st child val: %s)", i + 1, item->pos, |
| item->node->schema->name, |
| ((struct lyd_node_leaf_list *)item->node->child)->value_str); |
| } else if (item->node->schema->nodetype == LYS_LEAFLIST) { |
| LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s (val: %s)", i + 1, item->pos, |
| item->node->schema->name, |
| ((struct lyd_node_leaf_list *)item->node)->value_str); |
| } else { |
| LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s", i + 1, item->pos, item->node->schema->name); |
| } |
| break; |
| case LYXP_NODE_TEXT: |
| if (item->node->schema->nodetype & LYS_ANYDATA) { |
| LOGDBG(LY_LDGXPATH, "\t%d (pos %u): TEXT <%s>", i + 1, item->pos, |
| item->node->schema->nodetype == LYS_ANYXML ? "anyxml" : "anydata"); |
| } else { |
| LOGDBG(LY_LDGXPATH, "\t%d (pos %u): TEXT %s", i + 1, item->pos, |
| ((struct lyd_node_leaf_list *)item->node)->value_str); |
| } |
| break; |
| case LYXP_NODE_ATTR: |
| LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ATTR %s = %s", i + 1, item->pos, set->val.attrs[i].attr->name, |
| set->val.attrs[i].attr->value); |
| break; |
| } |
| } |
| break; |
| |
| case LYXP_SET_SNODE_SET: |
| LOGDBG(LY_LDGXPATH, "set SNODE SET:"); |
| for (i = 0; i < set->used; ++i) { |
| sitem = &set->val.snodes[i]; |
| |
| switch (sitem->type) { |
| case LYXP_NODE_ROOT: |
| LOGDBG(LY_LDGXPATH, "\t%d (%u): ROOT", i + 1, sitem->in_ctx); |
| break; |
| case LYXP_NODE_ROOT_CONFIG: |
| LOGDBG(LY_LDGXPATH, "\t%d (%u): ROOT CONFIG", i + 1, sitem->in_ctx); |
| break; |
| case LYXP_NODE_ELEM: |
| LOGDBG(LY_LDGXPATH, "\t%d (%u): ELEM %s", i + 1, sitem->in_ctx, sitem->snode->name); |
| break; |
| default: |
| LOGINT; |
| break; |
| } |
| } |
| break; |
| |
| case LYXP_SET_EMPTY: |
| LOGDBG(LY_LDGXPATH, "set EMPTY"); |
| break; |
| |
| case LYXP_SET_BOOLEAN: |
| LOGDBG(LY_LDGXPATH, "set BOOLEAN"); |
| LOGDBG(LY_LDGXPATH, "\t%s", (set->val.bool ? "true" : "false")); |
| break; |
| |
| case LYXP_SET_STRING: |
| LOGDBG(LY_LDGXPATH, "set STRING"); |
| LOGDBG(LY_LDGXPATH, "\t%s", set->val.str); |
| break; |
| |
| case LYXP_SET_NUMBER: |
| LOGDBG(LY_LDGXPATH, "set NUMBER"); |
| |
| if (isnan(set->val.num)) { |
| str_num = strdup("NaN"); |
| } else if ((set->val.num == 0) || (set->val.num == -0.0f)) { |
| str_num = strdup("0"); |
| } else if (isinf(set->val.num) && !signbit(set->val.num)) { |
| str_num = strdup("Infinity"); |
| } else if (isinf(set->val.num) && signbit(set->val.num)) { |
| str_num = strdup("-Infinity"); |
| } else if ((long long)set->val.num == set->val.num) { |
| if (asprintf(&str_num, "%lld", (long long)set->val.num) == -1) { |
| str_num = NULL; |
| } |
| } else { |
| if (asprintf(&str_num, "%03.1Lf", set->val.num) == -1) { |
| str_num = NULL; |
| } |
| } |
| |
| if (!str_num) { |
| LOGMEM; |
| return; |
| } |
| |
| LOGDBG(LY_LDGXPATH, "\t%s", str_num); |
| free(str_num); |
| } |
| } |
| |
| #endif |
| |
| /** |
| * @brief Realloc the string \p str. |
| * |
| * @param[in] needed How much free space is required. |
| * @param[in,out] str Pointer to the string to use. |
| * @param[in,out] used Used bytes in \p str. |
| * @param[in,out] size Allocated bytes in \p str. |
| */ |
| static void |
| cast_string_realloc(uint16_t needed, char **str, uint16_t *used, uint16_t *size) |
| { |
| if (*size - *used < needed) { |
| do { |
| *size += LYXP_STRING_CAST_SIZE_STEP; |
| } while (*size - *used < needed); |
| *str = ly_realloc(*str, *size * sizeof(char)); |
| if (!(*str)) { |
| LOGMEM; |
| } |
| } |
| } |
| |
| /** |
| * @brief Cast nodes recursively to one string \p str. |
| * |
| * @param[in] node Node to cast. |
| * @param[in] fake_cont Whether to put the data into a "fake" container. |
| * @param[in] root_type Type of the XPath root. |
| * @param[in] indent Current indent. |
| * @param[in,out] str Resulting string. |
| * @param[in,out] used Used bytes in \p str. |
| * @param[in,out] size Allocated bytes in \p str. |
| */ |
| static void |
| cast_string_recursive(struct lyd_node *node, struct lys_module *local_mod, int fake_cont, enum lyxp_node_type root_type, |
| uint16_t indent, char **str, uint16_t *used, uint16_t *size) |
| { |
| char *buf, *line, *ptr; |
| const char *value_str; |
| struct lyd_node *child; |
| struct lyd_node_anydata *any; |
| |
| if ((root_type == LYXP_NODE_ROOT_CONFIG) && (node->schema->flags & LYS_CONFIG_R)) { |
| return; |
| } |
| |
| if (fake_cont) { |
| cast_string_realloc(1, str, used, size); |
| strcpy(*str + (*used - 1), "\n"); |
| ++(*used); |
| |
| ++indent; |
| } |
| |
| switch (node->schema->nodetype) { |
| case LYS_CONTAINER: |
| case LYS_LIST: |
| case LYS_RPC: |
| case LYS_NOTIF: |
| cast_string_realloc(1, str, used, size); |
| strcpy(*str + (*used - 1), "\n"); |
| ++(*used); |
| |
| LY_TREE_FOR(node->child, child) { |
| cast_string_recursive(child, local_mod, 0, root_type, indent + 1, str, used, size); |
| } |
| |
| break; |
| |
| case LYS_LEAF: |
| case LYS_LEAFLIST: |
| value_str = ((struct lyd_node_leaf_list *)node)->value_str; |
| if (!value_str) { |
| value_str = ""; |
| } |
| |
| /* make value canonical */ |
| if (((struct lyd_node_leaf_list *)node)->value_type & LY_TYPE_IDENT) { |
| if (!strncmp(value_str, local_mod->name, strlen(local_mod->name)) |
| && (value_str[strlen(local_mod->name)] == ':')) { |
| value_str += strlen(local_mod->name) + 1; |
| } |
| } |
| |
| /* print indent */ |
| cast_string_realloc(indent * 2 + strlen(value_str) + 1, str, used, size); |
| memset(*str + (*used - 1), ' ', indent * 2); |
| *used += indent * 2; |
| |
| /* print value */ |
| if (*used == 1) { |
| sprintf(*str + (*used - 1), "%s", value_str); |
| *used += strlen(value_str); |
| } else { |
| sprintf(*str + (*used - 1), "%s\n", value_str); |
| *used += strlen(value_str) + 1; |
| } |
| |
| break; |
| |
| case LYS_ANYXML: |
| case LYS_ANYDATA: |
| any = (struct lyd_node_anydata *)node; |
| if (!(void*)any->value.tree) { |
| /* no content */ |
| buf = strdup(""); |
| } else { |
| switch (any->value_type) { |
| case LYD_ANYDATA_CONSTSTRING: |
| case LYD_ANYDATA_SXML: |
| case LYD_ANYDATA_JSON: |
| buf = strdup(any->value.str); |
| if (!buf) { |
| LOGMEM; |
| return; |
| } |
| break; |
| case LYD_ANYDATA_DATATREE: |
| lyd_print_mem(&buf, any->value.tree, LYD_XML, LYP_WITHSIBLINGS); |
| break; |
| case LYD_ANYDATA_XML: |
| lyxml_print_mem(&buf, any->value.xml, LYXML_PRINT_SIBLINGS); |
| break; |
| case LYD_ANYDATA_STRING: |
| case LYD_ANYDATA_SXMLD: |
| case LYD_ANYDATA_JSOND: |
| /* dynamic strings are used only as input parameters */ |
| assert(0); |
| break; |
| } |
| } |
| |
| line = strtok_r(buf, "\n", &ptr); |
| do { |
| cast_string_realloc(indent * 2 + strlen(line) + 1, str, used, size); |
| memset(*str + (*used - 1), ' ', indent * 2); |
| *used += indent * 2; |
| |
| strcpy(*str + (*used - 1), line); |
| *used += strlen(line); |
| |
| strcpy(*str + (*used - 1), "\n"); |
| *used += 1; |
| } while ((line = strtok_r(NULL, "\n", &ptr))); |
| |
| free(buf); |
| break; |
| |
| default: |
| LOGINT; |
| break; |
| } |
| |
| if (fake_cont) { |
| cast_string_realloc(1, str, used, size); |
| strcpy(*str + (*used - 1), "\n"); |
| ++(*used); |
| |
| --indent; |
| } |
| } |
| |
| /** |
| * @brief Cast an element into a string. |
| * |
| * @param[in] node Node to cast. |
| * @param[in] fake_cont Whether to put the data into a "fake" container. |
| * @param[in] root_type Type of the XPath root. |
| * |
| * @return Element cast to dynamically-allocated string. |
| */ |
| static char * |
| cast_string_elem(struct lyd_node *node, struct lys_module *local_mod, int fake_cont, enum lyxp_node_type root_type) |
| { |
| char *str; |
| uint16_t used, size; |
| |
| str = malloc(LYXP_STRING_CAST_SIZE_START * sizeof(char)); |
| if (!str) { |
| LOGMEM; |
| return NULL; |
| } |
| str[0] = '\0'; |
| used = 1; |
| size = LYXP_STRING_CAST_SIZE_START; |
| |
| cast_string_recursive(node, local_mod, fake_cont, root_type, 0, &str, &used, &size); |
| |
| if (size > used) { |
| str = ly_realloc(str, used * sizeof(char)); |
| if (!str) { |
| LOGMEM; |
| return NULL; |
| } |
| } |
| return str; |
| } |
| |
| /** |
| * @brief Cast a LYXP_SET_NODE_SET set into a string. |
| * Context position aware. |
| * |
| * @param[in] set Set to cast. |
| * @param[in] cur_node Original context node. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return Cast string in the dictionary. |
| */ |
| static char * |
| cast_node_set_to_string(struct lyxp_set *set, struct lyd_node *cur_node, struct lys_module *local_mod, int options) |
| { |
| enum lyxp_node_type root_type; |
| |
| if ((set->val.nodes[0].type != LYXP_NODE_ATTR) && (set->val.nodes[0].node->validity & LYD_VAL_INUSE)) { |
| LOGVAL(LYE_XPATH_DUMMY, LY_VLOG_LYD, set->val.nodes[0].node, set->val.nodes[0].node->schema->name); |
| return NULL; |
| } |
| |
| moveto_get_root(cur_node, options, &root_type); |
| |
| switch (set->val.nodes[0].type) { |
| case LYXP_NODE_ROOT: |
| case LYXP_NODE_ROOT_CONFIG: |
| return cast_string_elem(set->val.nodes[0].node, local_mod, 1, root_type); |
| case LYXP_NODE_ELEM: |
| case LYXP_NODE_TEXT: |
| return cast_string_elem(set->val.nodes[0].node, local_mod, 0, root_type); |
| case LYXP_NODE_ATTR: |
| return strdup(set->val.attrs[0].attr->value_str); |
| } |
| |
| LOGINT; |
| return NULL; |
| } |
| |
| /** |
| * @brief Cast a string into an XPath number. |
| * |
| * @param[in] str String to use. |
| * |
| * @return Cast number. |
| */ |
| static long double |
| cast_string_to_number(const char *str) |
| { |
| long double num; |
| char *ptr; |
| |
| errno = 0; |
| num = strtold(str, &ptr); |
| if (errno || *ptr) { |
| num = NAN; |
| } |
| return num; |
| } |
| |
| /* |
| * lyxp_set manipulation functions |
| */ |
| |
| /** |
| * @brief Create a deep copy of a \p set. |
| * |
| * @param[in] set Set to copy. |
| * |
| * @return Copy of \p set. |
| */ |
| static struct lyxp_set * |
| set_copy(struct lyxp_set *set) |
| { |
| struct lyxp_set *ret; |
| |
| if (!set) { |
| return NULL; |
| } |
| |
| ret = malloc(sizeof *ret); |
| if (!ret) { |
| LOGMEM; |
| return NULL; |
| } |
| if ((set->type == LYXP_SET_NODE_SET) || (set->type == LYXP_SET_SNODE_SET)) { |
| ret->type = set->type; |
| ret->val.nodes = malloc(set->used * sizeof *ret->val.nodes); |
| if (!ret->val.nodes) { |
| LOGMEM; |
| free(ret); |
| return NULL; |
| } |
| memcpy(ret->val.nodes, set->val.nodes, set->used * sizeof *ret->val.nodes); |
| |
| ret->used = ret->size = set->used; |
| ret->ctx_pos = set->ctx_pos; |
| ret->ctx_size = set->ctx_size; |
| } else { |
| memcpy(ret, set, sizeof *ret); |
| if (set->type == LYXP_SET_STRING) { |
| ret->val.str = strdup(set->val.str); |
| } |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Fill XPath set with a string. Any current data are disposed of. |
| * |
| * @param[in] set Set to fill. |
| * @param[in] string String to fill into \p set. |
| * @param[in] str_len Length of \p string. 0 is a valid value! |
| * @param[in] ctx libyang context to use. |
| */ |
| static void |
| set_fill_string(struct lyxp_set *set, const char *string, uint16_t str_len) |
| { |
| if (set->type == LYXP_SET_NODE_SET) { |
| free(set->val.nodes); |
| } else if (set->type == LYXP_SET_STRING) { |
| free(set->val.str); |
| } |
| |
| set->type = LYXP_SET_STRING; |
| if ((str_len == 0) && (string[0] != '\0')) { |
| string = ""; |
| } |
| set->val.str = strndup(string, str_len); |
| } |
| |
| /** |
| * @brief Fill XPath set with a number. Any current data are disposed of. |
| * |
| * @param[in] set Set to fill. |
| * @param[in] number Number to fill into \p set. |
| */ |
| static void |
| set_fill_number(struct lyxp_set *set, long double number) |
| { |
| if (set->type == LYXP_SET_NODE_SET) { |
| free(set->val.nodes); |
| } else if (set->type == LYXP_SET_STRING) { |
| free(set->val.str); |
| } |
| |
| set->type = LYXP_SET_NUMBER; |
| set->val.num = number; |
| } |
| |
| /** |
| * @brief Fill XPath set with a boolean. Any current data are disposed of. |
| * |
| * @param[in] set Set to fill. |
| * @param[in] boolean Boolean to fill into \p set. |
| */ |
| static void |
| set_fill_boolean(struct lyxp_set *set, int boolean) |
| { |
| if (set->type == LYXP_SET_NODE_SET) { |
| free(set->val.nodes); |
| } else if (set->type == LYXP_SET_STRING) { |
| free(set->val.str); |
| } |
| |
| set->type = LYXP_SET_BOOLEAN; |
| set->val.bool = boolean; |
| } |
| |
| /** |
| * @brief Fill XPath set with the value from another set (deep assign). |
| * Any current data are disposed of. |
| * |
| * @param[in] trg Set to fill. |
| * @param[in] src Source set to copy into \p trg. |
| */ |
| static void |
| set_fill_set(struct lyxp_set *trg, struct lyxp_set *src) |
| { |
| if (!trg || !src) { |
| return; |
| } |
| |
| if (src->type == LYXP_SET_SNODE_SET) { |
| trg->type = LYXP_SET_SNODE_SET; |
| trg->used = src->used; |
| trg->size = src->used; |
| |
| trg->val.snodes = ly_realloc(trg->val.snodes, trg->size * sizeof *trg->val.nodes); |
| if (!trg->val.nodes) { |
| LOGMEM; |
| memset(trg, 0, sizeof *trg); |
| return; |
| } |
| |
| memcpy(trg->val.nodes, src->val.nodes, src->used * sizeof *src->val.nodes); |
| } else if (src->type == LYXP_SET_BOOLEAN) { |
| set_fill_boolean(trg, src->val.bool); |
| } else if (src->type == LYXP_SET_NUMBER) { |
| set_fill_number(trg, src->val.num); |
| } else if (src->type == LYXP_SET_STRING) { |
| set_fill_string(trg, src->val.str, strlen(src->val.str)); |
| } else { |
| if (trg->type == LYXP_SET_NODE_SET) { |
| free(trg->val.nodes); |
| } else if (trg->type == LYXP_SET_STRING) { |
| free(trg->val.str); |
| } |
| |
| if (src->type == LYXP_SET_EMPTY) { |
| trg->type = LYXP_SET_EMPTY; |
| } else { |
| assert(src->type == LYXP_SET_NODE_SET); |
| |
| trg->type = LYXP_SET_NODE_SET; |
| trg->used = src->used; |
| trg->size = src->used; |
| trg->ctx_pos = src->ctx_pos; |
| trg->ctx_size = src->ctx_size; |
| |
| trg->val.nodes = malloc(trg->used * sizeof *trg->val.nodes); |
| if (!trg->val.nodes) { |
| LOGMEM; |
| memset(trg, 0, sizeof *trg); |
| return; |
| } |
| |
| memcpy(trg->val.nodes, src->val.nodes, src->used * sizeof *src->val.nodes); |
| } |
| } |
| |
| |
| } |
| |
| static void |
| set_snode_clear_ctx(struct lyxp_set *set) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < set->used; ++i) { |
| if (set->val.snodes[i].in_ctx == 1) { |
| set->val.snodes[i].in_ctx = 0; |
| } |
| } |
| } |
| |
| /** |
| * @brief Remove a node from a set. Removing last node changes |
| * \p set into LYXP_SET_EMPTY. Context position aware. |
| * |
| * @param[in] set Set to use. |
| * @param[in] idx Index from \p set of the node to be removed. |
| */ |
| static void |
| set_remove_node(struct lyxp_set *set, uint32_t idx) |
| { |
| assert(set && (set->type == LYXP_SET_NODE_SET)); |
| assert(idx < set->used); |
| |
| --set->used; |
| if (set->used) { |
| memmove(&set->val.nodes[idx], &set->val.nodes[idx + 1], |
| (set->used - idx) * sizeof *set->val.nodes); |
| } else { |
| free(set->val.nodes); |
| /* this changes it to LYXP_SET_EMPTY */ |
| memset(set, 0, sizeof *set); |
| } |
| } |
| |
| /** |
| * @brief Check for duplicates in a node set. |
| * |
| * @param[in] set Set to check. |
| * @param[in] node Node to look for in \p set. |
| * @param[in] node_type Type of \p node. |
| * @param[in] skip_idx Index from \p set to skip. |
| * |
| * @return Position of the duplicate or -1 if there is none. |
| */ |
| static int |
| set_dup_node_check(struct lyxp_set *set, void *node, enum lyxp_node_type node_type, int skip_idx) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < set->used; ++i) { |
| if ((skip_idx > -1) && (i == (unsigned)skip_idx)) { |
| continue; |
| } |
| |
| if ((set->val.nodes[i].node == node) && (set->val.nodes[i].type == node_type)) { |
| return i; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static int |
| set_snode_dup_node_check(struct lyxp_set *set, const struct lys_node *node, enum lyxp_node_type node_type, int skip_idx) |
| { |
| uint32_t i; |
| |
| for (i = 0; i < set->used; ++i) { |
| if ((skip_idx > -1) && (i == (unsigned)skip_idx)) { |
| continue; |
| } |
| |
| if ((set->val.snodes[i].snode == node) && (set->val.snodes[i].type == node_type)) { |
| return i; |
| } |
| } |
| |
| return -1; |
| } |
| |
| static void |
| set_snode_merge(struct lyxp_set *set1, struct lyxp_set *set2) |
| { |
| uint32_t orig_used, i, j; |
| |
| assert(((set1->type == LYXP_SET_SNODE_SET) || (set1->type == LYXP_SET_EMPTY)) |
| && ((set2->type == LYXP_SET_SNODE_SET) || (set2->type == LYXP_SET_EMPTY))); |
| |
| if (set2->type == LYXP_SET_EMPTY) { |
| return; |
| } |
| |
| if (set1->type == LYXP_SET_EMPTY) { |
| memcpy(set1, set2, sizeof *set1); |
| return; |
| } |
| |
| if (set1->used + set2->used > set1->size) { |
| set1->size = set1->used + set2->used; |
| set1->val.snodes = ly_realloc(set1->val.snodes, set1->size * sizeof *set1->val.snodes); |
| if (!set1->val.snodes) { |
| LOGMEM; |
| return; |
| } |
| } |
| |
| orig_used = set1->used; |
| |
| for (i = 0; i < set2->used; ++i) { |
| for (j = 0; j < orig_used; ++j) { |
| /* detect duplicities */ |
| if (set1->val.snodes[j].snode == set2->val.snodes[i].snode) { |
| break; |
| } |
| } |
| |
| if (j == orig_used) { |
| memcpy(&set1->val.snodes[set1->used], &set2->val.snodes[i], sizeof *set2->val.snodes); |
| ++set1->used; |
| } |
| } |
| |
| free(set2->val.snodes); |
| memset(set2, 0, sizeof *set2); |
| } |
| |
| /** |
| * @brief Insert a node into a set. Context position aware. |
| * |
| * @param[in] set Set to use. |
| * @param[in] node Node to insert to \p set. |
| * @param[in] pos Sort position of \p node. If left 0, it is filled just before sorting. |
| * @param[in] node_type Node type of \p node. |
| * @param[in] idx Index in \p set to insert into. |
| */ |
| static void |
| set_insert_node(struct lyxp_set *set, const void *node, uint32_t pos, enum lyxp_node_type node_type, uint32_t idx) |
| { |
| assert(set && ((set->type == LYXP_SET_NODE_SET) || (set->type == LYXP_SET_EMPTY))); |
| |
| if (set->type == LYXP_SET_EMPTY) { |
| /* first item */ |
| if (idx) { |
| /* no real harm done, but it is a bug */ |
| LOGINT; |
| idx = 0; |
| } |
| set->val.nodes = malloc(LYXP_SET_SIZE_START * sizeof *set->val.nodes); |
| if (!set->val.nodes) { |
| LOGMEM; |
| return; |
| } |
| set->type = LYXP_SET_NODE_SET; |
| set->used = 0; |
| set->size = LYXP_SET_SIZE_START; |
| set->ctx_pos = 1; |
| set->ctx_size = 1; |
| } else { |
| /* not an empty set */ |
| if (set->used == set->size) { |
| |
| /* set is full */ |
| set->val.nodes = ly_realloc(set->val.nodes, (set->size + LYXP_SET_SIZE_STEP) * sizeof *set->val.nodes); |
| if (!set->val.nodes) { |
| LOGMEM; |
| return; |
| } |
| set->size += LYXP_SET_SIZE_STEP; |
| } |
| |
| if (idx > set->used) { |
| LOGINT; |
| idx = set->used; |
| } |
| |
| /* make space for the new node */ |
| if (idx < set->used) { |
| memmove(&set->val.nodes[idx + 1], &set->val.nodes[idx], (set->used - idx) * sizeof *set->val.nodes); |
| } |
| } |
| |
| /* finally assign the value */ |
| set->val.nodes[idx].node = (struct lyd_node *)node; |
| set->val.nodes[idx].type = node_type; |
| set->val.nodes[idx].pos = pos; |
| ++set->used; |
| } |
| |
| static int |
| set_snode_insert_node(struct lyxp_set *set, const struct lys_node *node, enum lyxp_node_type node_type) |
| { |
| int ret; |
| |
| assert(set->type == LYXP_SET_SNODE_SET); |
| |
| ret = set_snode_dup_node_check(set, node, node_type, -1); |
| if (ret > -1) { |
| set->val.snodes[ret].in_ctx = 1; |
| } else { |
| if (set->used == set->size) { |
| set->val.snodes = ly_realloc(set->val.snodes, (set->size + LYXP_SET_SIZE_STEP) * sizeof *set->val.snodes); |
| if (!set->val.snodes) { |
| LOGMEM; |
| return -1; |
| } |
| set->size += LYXP_SET_SIZE_STEP; |
| } |
| |
| ret = set->used; |
| set->val.snodes[ret].snode = (struct lys_node *)node; |
| set->val.snodes[ret].type = node_type; |
| set->val.snodes[ret].in_ctx = 1; |
| ++set->used; |
| } |
| |
| return ret; |
| } |
| |
| static uint32_t |
| set_snode_new_in_ctx(struct lyxp_set *set) |
| { |
| uint32_t ret_ctx, i; |
| |
| assert(set->type == LYXP_SET_SNODE_SET); |
| |
| ret_ctx = 3; |
| retry: |
| for (i = 0; i < set->used; ++i) { |
| if (set->val.snodes[i].in_ctx >= ret_ctx) { |
| ret_ctx = set->val.snodes[i].in_ctx + 1; |
| goto retry; |
| } |
| } |
| for (i = 0; i < set->used; ++i) { |
| if (set->val.snodes[i].in_ctx == 1) { |
| set->val.snodes[i].in_ctx = ret_ctx; |
| } |
| } |
| |
| return ret_ctx; |
| } |
| |
| /** |
| * @brief Get unique \p node position in the data. |
| * |
| * @param[in] node Node to find. |
| * @param[in] node_type Node type of \p node. |
| * @param[in] root Root node. |
| * @param[in] root_type Type of the XPath \p root node. |
| * @param[in] prev Node that we think is before \p node in DFS from \p root. Can optionally |
| * be used to increase efficiency and start the DFS from this node. |
| * @param[in] prev_pos Node \p prev position. Optional, but must be set if \p prev is set. |
| * |
| * @return Node position. |
| */ |
| static uint32_t |
| get_node_pos(const struct lyd_node *node, enum lyxp_node_type node_type, const struct lyd_node *root, |
| enum lyxp_node_type root_type, const struct lyd_node **prev, uint32_t *prev_pos) |
| { |
| const struct lyd_node *next, *elem, *top_sibling; |
| uint32_t pos = 1; |
| |
| assert(prev && prev_pos && !root->prev->next); |
| |
| if ((node_type == LYXP_NODE_ROOT) || (node_type == LYXP_NODE_ROOT_CONFIG)) { |
| return 0; |
| } |
| |
| if (*prev) { |
| /* start from the previous element instead from the root */ |
| elem = next = *prev; |
| pos = *prev_pos; |
| for (top_sibling = elem; top_sibling->parent; top_sibling = top_sibling->parent); |
| goto dfs_search; |
| } |
| |
| LY_TREE_FOR(root, top_sibling) { |
| /* TREE DFS */ |
| LY_TREE_DFS_BEGIN(top_sibling, next, elem) { |
| dfs_search: |
| if ((root_type == LYXP_NODE_ROOT_CONFIG) && (elem->schema->flags & LYS_CONFIG_R)) { |
| goto skip_children; |
| } |
| |
| if (elem == node) { |
| break; |
| } |
| ++pos; |
| |
| /* TREE DFS END */ |
| /* select element for the next run - children first */ |
| next = elem->child; |
| /* child exception for lyd_node_leaf and lyd_node_leaflist, but not the root */ |
| if (elem->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) { |
| next = NULL; |
| } |
| if (!next) { |
| skip_children: |
| /* no children */ |
| if (elem == top_sibling) { |
| /* we are done, root has no children */ |
| elem = NULL; |
| break; |
| } |
| /* try siblings */ |
| next = elem->next; |
| } |
| while (!next) { |
| /* no siblings, go back through parents */ |
| if (elem->parent == top_sibling->parent) { |
| /* we are done, no next element to process */ |
| elem = NULL; |
| break; |
| } |
| /* parent is already processed, go to its sibling */ |
| elem = elem->parent; |
| next = elem->next; |
| } |
| } |
| |
| /* node found */ |
| if (elem) { |
| break; |
| } |
| } |
| |
| if (!elem) { |
| if (!(*prev)) { |
| /* we went from root and failed to find it, cannot be */ |
| LOGINT; |
| return 0; |
| } else { |
| /* node is before prev, we assumed otherwise :( */ |
| //LOGDBG(LY_LDGXPATH, "get_node_pos optimalization fail."); |
| |
| *prev = NULL; |
| *prev_pos = 0; |
| |
| elem = next = top_sibling = root; |
| pos = 1; |
| goto dfs_search; |
| } |
| } |
| |
| /*if (*prev) { |
| LOGDBG(LY_LDGXPATH, "get_node_pos optimalization success."); |
| }*/ |
| |
| /* remember the last found node for next time */ |
| *prev = node; |
| *prev_pos = pos; |
| |
| return pos; |
| } |
| |
| /** |
| * @brief Assign (fill) missing node positions. |
| * |
| * @param[in] set Set to fill positions in. |
| * @param[in] root Context root node. |
| * @param[in] root_type Context root type. |
| * |
| * @return 0 on success, -1 on error. |
| */ |
| static int |
| set_assign_pos(struct lyxp_set *set, const struct lyd_node *root, enum lyxp_node_type root_type) |
| { |
| const struct lyd_node *prev = NULL, *tmp_node; |
| uint32_t i, tmp_pos = 0; |
| |
| for (i = 0; i < set->used; ++i) { |
| if (!set->val.nodes[i].pos) { |
| tmp_node = NULL; |
| switch (set->val.nodes[i].type) { |
| case LYXP_NODE_ATTR: |
| tmp_node = lyd_attr_parent(root, set->val.attrs[i].attr); |
| if (!tmp_node) { |
| LOGINT; |
| return -1; |
| } |
| /* fallthrough */ |
| case LYXP_NODE_ELEM: |
| case LYXP_NODE_TEXT: |
| if (!tmp_node) { |
| tmp_node = set->val.nodes[i].node; |
| } |
| set->val.nodes[i].pos = get_node_pos(tmp_node, set->val.nodes[i].type, root, root_type, &prev, &tmp_pos); |
| break; |
| default: |
| /* all roots have position 0 */ |
| break; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Get unique \p attr position in the parent attributes. |
| * |
| * @param[in] attr Attr to use. |
| * @param[in] parent Parent of \p attr. |
| * |
| * @return Attribute position. |
| */ |
| static uint16_t |
| get_attr_pos(struct lyd_attr *attr, const struct lyd_node *parent) |
| { |
| uint16_t pos = 0; |
| struct lyd_attr *attr2; |
| |
| for (attr2 = parent->attr; attr2 && (attr2 != attr); attr2 = attr2->next) { |
| ++pos; |
| } |
| |
| assert(attr2); |
| return pos; |
| } |
| |
| /** |
| * @brief Compare 2 nodes in respect to XPath document order. |
| * |
| * @param[in] idx1 Index of the 1st node in \p set1. |
| * @param[in] set1 Set with the 1st node on index \p idx1. |
| * @param[in] idx2 Index of the 2nd node in \p set2. |
| * @param[in] set2 Set with the 2nd node on index \p idx2. |
| * @param[in] root Context root node. |
| * |
| * @return If 1st > 2nd returns 1, 1st == 2nd returns 0, and 1st < 2nd returns -1. |
| */ |
| static int |
| set_sort_compare(struct lyxp_set_nodes *item1, struct lyxp_set_nodes *item2, |
| const struct lyd_node *root) |
| { |
| const struct lyd_node *tmp_node; |
| uint32_t attr_pos1 = 0, attr_pos2 = 0; |
| |
| if (item1->pos < item2->pos) { |
| return -1; |
| } |
| |
| if (item1->pos > item2->pos) { |
| return 1; |
| } |
| |
| /* node positions are equal, the fun case */ |
| |
| /* 1st ELEM - == - 2nd TEXT, 1st TEXT - == - 2nd ELEM */ |
| /* special case since text nodes are actually saved as their parents */ |
| if ((item1->node == item2->node) && (item1->type != item2->type)) { |
| if (item1->type == LYXP_NODE_ELEM) { |
| assert(item2->type == LYXP_NODE_TEXT); |
| return -1; |
| } else { |
| assert((item1->type == LYXP_NODE_TEXT) && (item2->type == LYXP_NODE_ELEM)); |
| return 1; |
| } |
| } |
| |
| /* we need attr positions now */ |
| if (item1->type == LYXP_NODE_ATTR) { |
| tmp_node = lyd_attr_parent(root, (struct lyd_attr *)item1->node); |
| if (!tmp_node) { |
| LOGINT; |
| return -1; |
| } |
| attr_pos1 = get_attr_pos((struct lyd_attr *)item1->node, tmp_node); |
| } |
| if (item2->type == LYXP_NODE_ATTR) { |
| tmp_node = lyd_attr_parent(root, (struct lyd_attr *)item2->node); |
| if (!tmp_node) { |
| LOGINT; |
| return -1; |
| } |
| attr_pos2 = get_attr_pos((struct lyd_attr *)item2->node, tmp_node); |
| } |
| |
| /* 1st ROOT - 2nd ROOT, 1st ELEM - 2nd ELEM, 1st TEXT - 2nd TEXT, 1st ATTR - =pos= - 2nd ATTR */ |
| /* check for duplicates */ |
| if (item1->node == item2->node) { |
| assert((item1->type == item2->type) && ((item1->type != LYXP_NODE_ATTR) || (attr_pos1 == attr_pos2))); |
| return 0; |
| } |
| |
| /* 1st ELEM - 2nd TEXT, 1st ELEM - any pos - 2nd ATTR */ |
| /* elem is always first, 2nd node is after it */ |
| if (item1->type == LYXP_NODE_ELEM) { |
| assert(item2->type != LYXP_NODE_ELEM); |
| return -1; |
| } |
| |
| /* 1st TEXT - 2nd ELEM, 1st TEXT - any pos - 2nd ATTR, 1st ATTR - any pos - 2nd ELEM, 1st ATTR - >pos> - 2nd ATTR */ |
| /* 2nd is before 1st */ |
| if (((item1->type == LYXP_NODE_TEXT) |
| && ((item2->type == LYXP_NODE_ELEM) || (item2->type == LYXP_NODE_ATTR))) |
| || ((item1->type == LYXP_NODE_ATTR) && (item2->type == LYXP_NODE_ELEM)) |
| || (((item1->type == LYXP_NODE_ATTR) && (item2->type == LYXP_NODE_ATTR)) |
| && (attr_pos1 > attr_pos2))) { |
| return 1; |
| } |
| |
| /* 1st ATTR - any pos - 2nd TEXT, 1st ATTR <pos< - 2nd ATTR */ |
| /* 2nd is after 1st */ |
| return -1; |
| } |
| |
| #ifndef NDEBUG |
| |
| /** |
| * @brief Bubble sort \p set into XPath document order. |
| * Context position aware. Unused in the 'Release' build target. |
| * |
| * @param[in] set Set to sort. |
| * @param[in] cur_node Original context node. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return How many times the whole set was traversed. |
| */ |
| static int |
| set_sort(struct lyxp_set *set, const struct lyd_node *cur_node, int options) |
| { |
| uint32_t i, j; |
| int ret = 0, cmp, inverted, change; |
| const struct lyd_node *root; |
| enum lyxp_node_type root_type; |
| struct lyxp_set_nodes item; |
| |
| if ((set->type != LYXP_SET_NODE_SET) || (set->used == 1)) { |
| return 0; |
| } |
| |
| /* get root */ |
| root = moveto_get_root(cur_node, options, &root_type); |
| |
| /* fill positions */ |
| if (set_assign_pos(set, root, root_type)) { |
| return -1; |
| } |
| |
| LOGDBG(LY_LDGXPATH, "SORT BEGIN"); |
| print_set_debug(set); |
| |
| for (i = 0; i < set->used; ++i) { |
| inverted = 0; |
| change = 0; |
| |
| for (j = 1; j < set->used - i; ++j) { |
| /* compare node positions */ |
| if (inverted) { |
| cmp = set_sort_compare(&set->val.nodes[j], &set->val.nodes[j - 1], root); |
| } else { |
| cmp = set_sort_compare(&set->val.nodes[j - 1], &set->val.nodes[j], root); |
| } |
| |
| /* swap if needed */ |
| if ((inverted && (cmp < 0)) || (!inverted && (cmp > 0))) { |
| change = 1; |
| |
| item = set->val.nodes[j - 1]; |
| set->val.nodes[j - 1] = set->val.nodes[j]; |
| set->val.nodes[j] = item; |
| } else { |
| /* whether node_pos1 should be smaller than node_pos2 or the other way around */ |
| inverted = !inverted; |
| } |
| } |
| |
| ++ret; |
| |
| if (!change) { |
| break; |
| } |
| } |
| |
| LOGDBG(LY_LDGXPATH, "SORT END %d", ret); |
| print_set_debug(set); |
| |
| return ret; |
| } |
| |
| /** |
| * @brief Remove duplicate entries in a sorted node set. |
| * |
| * @param[in] set Sorted set to check. |
| * |
| * @return EXIT_SUCCESS if no duplicates were found, |
| * EXIT_FAILURE otherwise. |
| */ |
| static int |
| set_sorted_dup_node_clean(struct lyxp_set *set) |
| { |
| uint32_t i = 0; |
| int ret = EXIT_SUCCESS; |
| |
| if (set->used > 1) { |
| while (i < set->used - 1) { |
| if ((set->val.nodes[i].node == set->val.nodes[i + 1].node) |
| && (set->val.nodes[i].type == set->val.nodes[i + 1].type)) { |
| set_remove_node(set, i + 1); |
| ret = EXIT_FAILURE; |
| } else { |
| ++i; |
| } |
| } |
| } |
| |
| return ret; |
| } |
| |
| #endif |
| |
| /** |
| * @brief Merge 2 sorted sets into one. |
| * |
| * @param[in,out] trg Set to merge into. Duplicates are removed. |
| * @param[in] src Set to be merged into \p trg. It is cast to #LYXP_SET_EMPTY on success. |
| * @param[in] cur_node Original context node. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return 0 on success, -1 on error. |
| */ |
| static int |
| set_sorted_merge(struct lyxp_set *trg, struct lyxp_set *src, struct lyd_node *cur_node, int options) |
| { |
| uint32_t i, j, count, dup_count; |
| int cmp; |
| const struct lyd_node *root; |
| enum lyxp_node_type root_type; |
| |
| if (((trg->type != LYXP_SET_NODE_SET) && (trg->type != LYXP_SET_EMPTY)) |
| || ((src->type != LYXP_SET_NODE_SET) && (src->type != LYXP_SET_EMPTY))) { |
| return -1; |
| } |
| |
| if (src->type == LYXP_SET_EMPTY) { |
| return 0; |
| } else if (trg->type == LYXP_SET_EMPTY) { |
| set_fill_set(trg, src); |
| lyxp_set_cast(src, LYXP_SET_EMPTY, cur_node, NULL, options); |
| return 0; |
| } |
| |
| /* get root */ |
| root = moveto_get_root(cur_node, options, &root_type); |
| |
| /* fill positions */ |
| if (set_assign_pos(trg, root, root_type) || set_assign_pos(src, root, root_type)) { |
| return -1; |
| } |
| |
| #ifndef NDEBUG |
| LOGDBG(LY_LDGXPATH, "MERGE target"); |
| print_set_debug(trg); |
| LOGDBG(LY_LDGXPATH, "MERGE source"); |
| print_set_debug(src); |
| #endif |
| |
| /* make memory for the merge (duplicates are not detected yet, so space |
| * will likely be wasted on them, too bad) */ |
| if (trg->size - trg->used < src->used) { |
| trg->size = trg->used + src->used; |
| |
| trg->val.nodes = ly_realloc(trg->val.nodes, trg->size * sizeof *trg->val.nodes); |
| if (!trg->val.nodes) { |
| LOGMEM; |
| return -1; |
| } |
| } |
| |
| i = 0; |
| j = 0; |
| count = 0; |
| dup_count = 0; |
| do { |
| cmp = set_sort_compare(&src->val.nodes[i], &trg->val.nodes[j], root); |
| if (!cmp) { |
| if (!count) { |
| /* duplicate, just skip it */ |
| ++i; |
| ++j; |
| } else { |
| /* we are copying something already, so let's copy the duplicate too, |
| * we are hoping that afterwards there are some more nodes to |
| * copy and this way we can copy them all together */ |
| ++count; |
| ++dup_count; |
| ++i; |
| ++j; |
| } |
| } else if (cmp < 0) { |
| /* inserting src node into trg, just remember it for now */ |
| ++count; |
| ++i; |
| } else if (count) { |
| copy_nodes: |
| /* time to actually copy the nodes, we have found the largest block of nodes */ |
| memmove(&trg->val.nodes[j + (count - dup_count)], |
| &trg->val.nodes[j], |
| (trg->used - j) * sizeof *trg->val.nodes); |
| memcpy(&trg->val.nodes[j - dup_count], &src->val.nodes[i - count], count * sizeof *src->val.nodes); |
| |
| trg->used += count - dup_count; |
| /* do not change i, except the copying above, we are basically doing exactly what is in the else branch below */ |
| j += count - dup_count; |
| |
| count = 0; |
| dup_count = 0; |
| } else { |
| ++j; |
| } |
| } while ((i < src->used) && (j < trg->used)); |
| |
| if ((i < src->used) || count) { |
| /* loop ended, but we need to copy something at trg end */ |
| count += src->used - i; |
| i = src->used; |
| goto copy_nodes; |
| } |
| |
| #ifndef NDEBUG |
| LOGDBG(LY_LDGXPATH, "MERGE result"); |
| print_set_debug(trg); |
| #endif |
| |
| lyxp_set_cast(src, LYXP_SET_EMPTY, cur_node, NULL, options); |
| return 0; |
| } |
| |
| /* |
| * (re)parse functions |
| * |
| * Parse functions parse the expression into |
| * tokens (syntactic analysis). |
| * |
| * Reparse functions perform semantic analysis |
| * (do not save the result, just a check) of |
| * the expression and fill repeat indices. |
| */ |
| |
| /** |
| * @brief Add \p token into the expression \p exp. |
| * |
| * @param[in] exp Expression to use. |
| * @param[in] token Token to add. |
| * @param[in] expr_pos Token position in the XPath expression. |
| * @param[in] tok_len Token length in the XPath expression. |
| */ |
| static void |
| exp_add_token(struct lyxp_expr *exp, enum lyxp_token token, uint16_t expr_pos, uint16_t tok_len) |
| { |
| if (exp->used == exp->size) { |
| exp->size += LYXP_EXPR_SIZE_STEP; |
| exp->tokens = ly_realloc(exp->tokens, exp->size * sizeof *exp->tokens); |
| if (!exp->tokens) { |
| LOGMEM; |
| return; |
| } |
| exp->expr_pos = ly_realloc(exp->expr_pos, exp->size * sizeof *exp->expr_pos); |
| if (!exp->expr_pos) { |
| LOGMEM; |
| return; |
| } |
| exp->tok_len = ly_realloc(exp->tok_len, exp->size * sizeof *exp->tok_len); |
| if (!exp->tok_len) { |
| LOGMEM; |
| return; |
| } |
| } |
| |
| exp->tokens[exp->used] = token; |
| exp->expr_pos[exp->used] = expr_pos; |
| exp->tok_len[exp->used] = tok_len; |
| ++exp->used; |
| } |
| |
| /** |
| * @brief Look at the next token and check its kind. |
| * |
| * @param[in] exp Expression to use. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] want_tok Expected token. |
| * @param[in] strict Whether the token is strictly required (print error if |
| * not the next one) or we simply want to check whether it is the next or not. |
| * |
| * @return EXIT_SUCCESS if the current token matches the expected one, |
| * -1 otherwise. |
| */ |
| static int |
| exp_check_token(struct lyxp_expr *exp, uint16_t exp_idx, enum lyxp_token want_tok, int strict) |
| { |
| if (exp->used == exp_idx) { |
| if (strict) { |
| LOGVAL(LYE_XPATH_EOF, LY_VLOG_NONE, NULL); |
| } |
| return -1; |
| } |
| |
| if (want_tok && (exp->tokens[exp_idx] != want_tok)) { |
| if (strict) { |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, |
| print_token(exp->tokens[exp_idx]), &exp->expr[exp->expr_pos[exp_idx]]); |
| } |
| return -1; |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Stack operation peek on the repeat array. |
| * |
| * @param[in] exp Expression to use. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return Last repeat or 0. |
| */ |
| static uint16_t |
| exp_repeat_peek(struct lyxp_expr *exp, uint16_t exp_idx) |
| { |
| uint16_t i; |
| |
| if (!exp->repeat[exp_idx]) { |
| return 0; |
| } |
| |
| for (i = 0; exp->repeat[exp_idx][i + 1]; ++i); |
| |
| return exp->repeat[exp_idx][i]; |
| } |
| |
| /** |
| * @brief Stack operation pop on the repeat array. |
| * |
| * @param[in] exp Expression to use. |
| * @param[in] exp_idx Position in the expression \p exp. |
| */ |
| static void |
| exp_repeat_pop(struct lyxp_expr *exp, uint16_t exp_idx) |
| { |
| uint16_t i; |
| |
| if (!exp->repeat[exp_idx]) { |
| LOGINT; |
| return; |
| } |
| |
| for (i = 0; exp->repeat[exp_idx][i + 1]; ++i); |
| |
| exp->repeat[exp_idx][i] = 0; |
| } |
| |
| /** |
| * @brief Stack operation push on the repeat array. |
| * |
| * @param[in] exp Expression to use. |
| * @param[in] exp_idx Position in the expresion \p exp. |
| * @param[in] repeat_op_idx Index from \p exp of the operator token. This value is pushed. |
| */ |
| static void |
| exp_repeat_push(struct lyxp_expr *exp, uint16_t exp_idx, uint16_t repeat_op_idx) |
| { |
| uint16_t i; |
| |
| if (exp->repeat[exp_idx]) { |
| for (i = 0; exp->repeat[exp_idx][i]; ++i); |
| exp->repeat[exp_idx] = realloc(exp->repeat[exp_idx], (i + 2) * sizeof *exp->repeat[exp_idx]); |
| if (!exp->repeat[exp_idx]) { |
| LOGMEM; |
| return; |
| } |
| exp->repeat[exp_idx][i] = repeat_op_idx; |
| exp->repeat[exp_idx][i + 1] = 0; |
| } else { |
| exp->repeat[exp_idx] = calloc(2, sizeof *exp->repeat[exp_idx]); |
| if (!exp->repeat[exp_idx]) { |
| LOGMEM; |
| return; |
| } |
| exp->repeat[exp_idx][0] = repeat_op_idx; |
| } |
| } |
| |
| /** |
| * @brief Reparse Predicate. Logs directly on error. |
| * |
| * [6] Predicate ::= '[' Expr ']' |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| reparse_predicate(struct lyxp_expr *exp, uint16_t *exp_idx) |
| { |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_BRACK1, 1)) { |
| return -1; |
| } |
| ++(*exp_idx); |
| |
| if (reparse_expr(exp, exp_idx)) { |
| return -1; |
| } |
| |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_BRACK2, 1)) { |
| return -1; |
| } |
| ++(*exp_idx); |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Reparse RelativeLocationPath. Logs directly on error. |
| * |
| * [3] RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step |
| * [4] Step ::= '@'? NodeTest Predicate* | '.' | '..' |
| * [5] NodeTest ::= NameTest | NodeType '(' ')' |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error. |
| */ |
| static int |
| reparse_relative_location_path(struct lyxp_expr *exp, uint16_t *exp_idx) |
| { |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) { |
| return -1; |
| } |
| |
| goto step; |
| do { |
| /* '/' or '//' */ |
| ++(*exp_idx); |
| |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) { |
| return -1; |
| } |
| step: |
| /* Step */ |
| switch (exp->tokens[*exp_idx]) { |
| case LYXP_TOKEN_DOT: |
| ++(*exp_idx); |
| break; |
| |
| case LYXP_TOKEN_DDOT: |
| ++(*exp_idx); |
| break; |
| |
| case LYXP_TOKEN_AT: |
| ++(*exp_idx); |
| |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) { |
| return -1; |
| } |
| if ((exp->tokens[*exp_idx] != LYXP_TOKEN_NAMETEST) && (exp->tokens[*exp_idx] != LYXP_TOKEN_NODETYPE)) { |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, |
| print_token(exp->tokens[*exp_idx]), &exp->expr[exp->expr_pos[*exp_idx]]); |
| return -1; |
| } |
| /* fall through */ |
| case LYXP_TOKEN_NAMETEST: |
| ++(*exp_idx); |
| goto reparse_predicate; |
| break; |
| |
| case LYXP_TOKEN_NODETYPE: |
| ++(*exp_idx); |
| |
| /* '(' */ |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR1, 1)) { |
| return -1; |
| } |
| ++(*exp_idx); |
| |
| /* ')' */ |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR2, 1)) { |
| return -1; |
| } |
| ++(*exp_idx); |
| |
| reparse_predicate: |
| /* Predicate* */ |
| while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_BRACK1)) { |
| if (reparse_predicate(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| break; |
| default: |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, |
| print_token(exp->tokens[*exp_idx]), &exp->expr[exp->expr_pos[*exp_idx]]); |
| return -1; |
| } |
| } while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_OPERATOR_PATH)); |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Reparse AbsoluteLocationPath. Logs directly on error. |
| * |
| * [2] AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| reparse_absolute_location_path(struct lyxp_expr *exp, uint16_t *exp_idx) |
| { |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_PATH, 1)) { |
| return -1; |
| } |
| |
| /* '/' RelativeLocationPath? */ |
| if (exp->tok_len[*exp_idx] == 1) { |
| /* '/' */ |
| ++(*exp_idx); |
| |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 0)) { |
| return EXIT_SUCCESS; |
| } |
| switch (exp->tokens[*exp_idx]) { |
| case LYXP_TOKEN_DOT: |
| case LYXP_TOKEN_DDOT: |
| case LYXP_TOKEN_AT: |
| case LYXP_TOKEN_NAMETEST: |
| case LYXP_TOKEN_NODETYPE: |
| if (reparse_relative_location_path(exp, exp_idx)) { |
| return -1; |
| } |
| /* fall through */ |
| default: |
| break; |
| } |
| |
| /* '//' RelativeLocationPath */ |
| } else { |
| /* '//' */ |
| ++(*exp_idx); |
| |
| if (reparse_relative_location_path(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Reparse FunctionCall. Logs directly on error. |
| * |
| * [8] FunctionCall ::= FunctionName '(' ( Expr ( ',' Expr )* )? ')' |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| reparse_function_call(struct lyxp_expr *exp, uint16_t *exp_idx) |
| { |
| int min_arg_count = -1, max_arg_count, arg_count; |
| uint16_t func_exp_idx; |
| |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_FUNCNAME, 1)) { |
| return -1; |
| } |
| func_exp_idx = *exp_idx; |
| switch (exp->tok_len[*exp_idx]) { |
| case 3: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "not", 3)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "sum", 3)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } |
| break; |
| case 4: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "lang", 4)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "last", 4)) { |
| min_arg_count = 0; |
| max_arg_count = 0; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "name", 4)) { |
| min_arg_count = 0; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "true", 4)) { |
| min_arg_count = 0; |
| max_arg_count = 0; |
| } |
| break; |
| case 5: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "count", 5)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "false", 5)) { |
| min_arg_count = 0; |
| max_arg_count = 0; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "floor", 5)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "round", 5)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "deref", 5)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } |
| break; |
| case 6: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "concat", 6)) { |
| min_arg_count = 2; |
| max_arg_count = 3; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "number", 6)) { |
| min_arg_count = 0; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "string", 6)) { |
| min_arg_count = 0; |
| max_arg_count = 1; |
| } |
| break; |
| case 7: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "boolean", 7)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "ceiling", 7)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "current", 7)) { |
| min_arg_count = 0; |
| max_arg_count = 0; |
| } |
| break; |
| case 8: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "contains", 8)) { |
| min_arg_count = 2; |
| max_arg_count = 2; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "position", 8)) { |
| min_arg_count = 0; |
| max_arg_count = 0; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "re-match", 8)) { |
| min_arg_count = 2; |
| max_arg_count = 2; |
| } |
| break; |
| case 9: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring", 9)) { |
| min_arg_count = 2; |
| max_arg_count = 3; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "translate", 9)) { |
| min_arg_count = 3; |
| max_arg_count = 3; |
| } |
| break; |
| case 10: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "local-name", 10)) { |
| min_arg_count = 0; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "enum-value", 10)) { |
| min_arg_count = 1; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "bit-is-set", 10)) { |
| min_arg_count = 2; |
| max_arg_count = 2; |
| } |
| break; |
| case 11: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "starts-with", 11)) { |
| min_arg_count = 2; |
| max_arg_count = 2; |
| } |
| break; |
| case 12: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "derived-from", 12)) { |
| min_arg_count = 2; |
| max_arg_count = 2; |
| } |
| break; |
| case 13: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "namespace-uri", 13)) { |
| min_arg_count = 0; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "string-length", 13)) { |
| min_arg_count = 0; |
| max_arg_count = 1; |
| } |
| break; |
| case 15: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "normalize-space", 15)) { |
| min_arg_count = 0; |
| max_arg_count = 1; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring-after", 15)) { |
| min_arg_count = 2; |
| max_arg_count = 2; |
| } |
| break; |
| case 16: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring-before", 16)) { |
| min_arg_count = 2; |
| max_arg_count = 2; |
| } |
| break; |
| case 20: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "derived-from-or-self", 20)) { |
| min_arg_count = 2; |
| max_arg_count = 2; |
| } |
| break; |
| } |
| if (min_arg_count == -1) { |
| LOGVAL(LYE_XPATH_INFUNC, LY_VLOG_NONE, NULL, exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]]); |
| return -1; |
| } |
| ++(*exp_idx); |
| |
| /* '(' */ |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR1, 1)) { |
| return -1; |
| } |
| ++(*exp_idx); |
| |
| /* ( Expr ( ',' Expr )* )? */ |
| arg_count = 0; |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) { |
| return -1; |
| } |
| if (exp->tokens[*exp_idx] != LYXP_TOKEN_PAR2) { |
| ++arg_count; |
| if (reparse_expr(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_COMMA)) { |
| ++(*exp_idx); |
| |
| ++arg_count; |
| if (reparse_expr(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| |
| /* ')' */ |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR2, 1)) { |
| return -1; |
| } |
| ++(*exp_idx); |
| |
| if ((arg_count < min_arg_count) || (arg_count > max_arg_count)) { |
| LOGVAL(LYE_XPATH_INARGCOUNT, LY_VLOG_NONE, NULL, arg_count, exp->tok_len[func_exp_idx], |
| &exp->expr[exp->expr_pos[func_exp_idx]]); |
| return -1; |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Reparse PathExpr. Logs directly on error. |
| * |
| * [9] PathExpr ::= LocationPath | PrimaryExpr Predicate* |
| * | PrimaryExpr Predicate* '/' RelativeLocationPath |
| * | PrimaryExpr Predicate* '//' RelativeLocationPath |
| * [1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath |
| * [7] PrimaryExpr ::= '(' Expr ')' | Literal | Number | FunctionCall |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| reparse_path_expr(struct lyxp_expr *exp, uint16_t *exp_idx) |
| { |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) { |
| return -1; |
| } |
| |
| switch (exp->tokens[*exp_idx]) { |
| case LYXP_TOKEN_PAR1: |
| /* '(' Expr ')' Predicate* */ |
| ++(*exp_idx); |
| |
| if (reparse_expr(exp, exp_idx)) { |
| return -1; |
| } |
| |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR2, 1)) { |
| return -1; |
| } |
| ++(*exp_idx); |
| goto predicate; |
| break; |
| case LYXP_TOKEN_DOT: |
| case LYXP_TOKEN_DDOT: |
| case LYXP_TOKEN_AT: |
| case LYXP_TOKEN_NAMETEST: |
| case LYXP_TOKEN_NODETYPE: |
| /* RelativeLocationPath */ |
| if (reparse_relative_location_path(exp, exp_idx)) { |
| return -1; |
| } |
| break; |
| case LYXP_TOKEN_FUNCNAME: |
| /* FunctionCall */ |
| if (reparse_function_call(exp, exp_idx)) { |
| return -1; |
| } |
| goto predicate; |
| break; |
| case LYXP_TOKEN_OPERATOR_PATH: |
| /* AbsoluteLocationPath */ |
| if (reparse_absolute_location_path(exp, exp_idx)) { |
| return -1; |
| } |
| break; |
| case LYXP_TOKEN_LITERAL: |
| /* Literal */ |
| ++(*exp_idx); |
| goto predicate; |
| break; |
| case LYXP_TOKEN_NUMBER: |
| /* Number */ |
| ++(*exp_idx); |
| goto predicate; |
| break; |
| default: |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, |
| print_token(exp->tokens[*exp_idx]), &exp->expr[exp->expr_pos[*exp_idx]]); |
| return -1; |
| } |
| |
| return EXIT_SUCCESS; |
| |
| predicate: |
| /* Predicate* */ |
| while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_BRACK1)) { |
| if (reparse_predicate(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| |
| /* ('/' or '//') RelativeLocationPath */ |
| if ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_OPERATOR_PATH)) { |
| |
| /* '/' or '//' */ |
| ++(*exp_idx); |
| |
| if (reparse_relative_location_path(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Reparse UnaryExpr. Logs directly on error. |
| * |
| * [16] UnaryExpr ::= UnionExpr | '-' UnaryExpr |
| * [17] UnionExpr ::= PathExpr | UnionExpr '|' PathExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| reparse_unary_expr(struct lyxp_expr *exp, uint16_t *exp_idx) |
| { |
| uint16_t prev_exp; |
| |
| /* ('-')* */ |
| while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_MATH, 0) |
| && (exp->expr[exp->expr_pos[*exp_idx]] == '-')) { |
| ++(*exp_idx); |
| } |
| |
| /* PathExpr */ |
| prev_exp = *exp_idx; |
| if (reparse_path_expr(exp, exp_idx)) { |
| return -1; |
| } |
| |
| /* ('|' PathExpr)* */ |
| while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_UNI, 0)) { |
| exp_repeat_push(exp, prev_exp, *exp_idx); |
| ++(*exp_idx); |
| |
| prev_exp = *exp_idx; |
| if (reparse_path_expr(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Reparse AdditiveExpr. Logs directly on error. |
| * |
| * [14] AdditiveExpr ::= MultiplicativeExpr |
| * | AdditiveExpr '+' MultiplicativeExpr |
| * | AdditiveExpr '-' MultiplicativeExpr |
| * [15] MultiplicativeExpr ::= UnaryExpr |
| * | MultiplicativeExpr '*' UnaryExpr |
| * | MultiplicativeExpr 'div' UnaryExpr |
| * | MultiplicativeExpr 'mod' UnaryExpr |
| * |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| reparse_additive_expr(struct lyxp_expr *exp, uint16_t *exp_idx) |
| { |
| uint16_t prev_add_exp, prev_mul_exp; |
| |
| goto reparse_multiplicative_expr; |
| |
| /* ('+' / '-' MultiplicativeExpr)* */ |
| while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_MATH, 0) |
| && ((exp->expr[exp->expr_pos[*exp_idx]] == '+') || (exp->expr[exp->expr_pos[*exp_idx]] == '-'))) { |
| exp_repeat_push(exp, prev_add_exp, *exp_idx); |
| ++(*exp_idx); |
| |
| reparse_multiplicative_expr: |
| prev_add_exp = *exp_idx; |
| prev_mul_exp = *exp_idx; |
| |
| /* UnaryExpr */ |
| if (reparse_unary_expr(exp, exp_idx)) { |
| return -1; |
| } |
| |
| /* ('*' / 'div' / 'mod' UnaryExpr)* */ |
| while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_MATH, 0) |
| && ((exp->expr[exp->expr_pos[*exp_idx]] == '*') || (exp->tok_len[*exp_idx] == 3))) { |
| exp_repeat_push(exp, prev_mul_exp, *exp_idx); |
| ++(*exp_idx); |
| |
| prev_mul_exp = *exp_idx; |
| if (reparse_unary_expr(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Reparse EqualityExpr. Logs directly on error. |
| * |
| * [12] EqualityExpr ::= RelationalExpr | EqualityExpr '=' RelationalExpr |
| * | EqualityExpr '!=' RelationalExpr |
| * [13] RelationalExpr ::= AdditiveExpr |
| * | RelationalExpr '<' AdditiveExpr |
| * | RelationalExpr '>' AdditiveExpr |
| * | RelationalExpr '<=' AdditiveExpr |
| * | RelationalExpr '>=' AdditiveExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| reparse_equality_expr(struct lyxp_expr *exp, uint16_t *exp_idx) |
| { |
| uint16_t prev_eq_exp, prev_rel_exp; |
| |
| goto reparse_additive_expr; |
| |
| /* ('=' / '!=' RelationalExpr)* */ |
| while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_COMP, 0) |
| && ((exp->expr[exp->expr_pos[*exp_idx]] == '=') || (exp->expr[exp->expr_pos[*exp_idx]] == '!'))) { |
| exp_repeat_push(exp, prev_eq_exp, *exp_idx); |
| ++(*exp_idx); |
| |
| reparse_additive_expr: |
| prev_eq_exp = *exp_idx; |
| prev_rel_exp = *exp_idx; |
| |
| /* AdditiveExpr */ |
| if (reparse_additive_expr(exp, exp_idx)) { |
| return -1; |
| } |
| |
| /* ('<' / '>' / '<=' / '>=' AdditiveExpr)* */ |
| while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_COMP, 0) |
| && ((exp->expr[exp->expr_pos[*exp_idx]] == '<') || (exp->expr[exp->expr_pos[*exp_idx]] == '>'))) { |
| exp_repeat_push(exp, prev_rel_exp, *exp_idx); |
| ++(*exp_idx); |
| |
| prev_rel_exp = *exp_idx; |
| if (reparse_additive_expr(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Reparse Expr. Logs directly on error. |
| * |
| * [10] Expr ::= AndExpr | Expr 'or' AndExpr |
| * [11] AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| reparse_expr(struct lyxp_expr *exp, uint16_t *exp_idx) |
| { |
| uint16_t prev_or_exp, prev_and_exp; |
| |
| goto reparse_equality_expr; |
| |
| /* ('or' AndExpr)* */ |
| while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_LOG, 0) && (exp->tok_len[*exp_idx] == 2)) { |
| exp_repeat_push(exp, prev_or_exp, *exp_idx); |
| ++(*exp_idx); |
| |
| reparse_equality_expr: |
| prev_or_exp = *exp_idx; |
| prev_and_exp = *exp_idx; |
| |
| /* EqualityExpr */ |
| if (reparse_equality_expr(exp, exp_idx)) { |
| return -1; |
| } |
| |
| /* ('and' EqualityExpr)* */ |
| while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_LOG, 0) && (exp->tok_len[*exp_idx] == 3)) { |
| exp_repeat_push(exp, prev_and_exp, *exp_idx); |
| ++(*exp_idx); |
| |
| prev_and_exp = *exp_idx; |
| if (reparse_equality_expr(exp, exp_idx)) { |
| return -1; |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Parse NCName. |
| * |
| * @param[in] ncname Name to parse. |
| * |
| * @return Length of \p ncname valid characters. |
| */ |
| static uint16_t |
| parse_ncname(const char *ncname) |
| { |
| uint16_t parsed = 0; |
| int uc; |
| unsigned int size; |
| |
| uc = lyxml_getutf8(&ncname[parsed], &size); |
| if (!is_xmlnamestartchar(uc) || (uc == ':')) { |
| return parsed; |
| } |
| |
| do { |
| parsed += size; |
| if (!ncname[parsed]) { |
| break; |
| } |
| uc = lyxml_getutf8(&ncname[parsed], &size); |
| } while (is_xmlnamechar(uc) && (uc != ':')); |
| |
| return parsed; |
| } |
| |
| struct lyxp_expr * |
| lyxp_parse_expr(const char *expr) |
| { |
| struct lyxp_expr *ret; |
| uint16_t parsed = 0, tok_len, ncname_len; |
| enum lyxp_token tok_type; |
| int prev_function_check = 0; |
| |
| /* init lyxp_expr structure */ |
| ret = calloc(1, sizeof *ret); |
| if (!ret) { |
| LOGMEM; |
| goto error; |
| } |
| ret->expr = strdup(expr); |
| if (!ret->expr) { |
| LOGMEM; |
| goto error; |
| } |
| ret->used = 0; |
| ret->size = LYXP_EXPR_SIZE_START; |
| ret->tokens = malloc(ret->size * sizeof *ret->tokens); |
| if (!ret->tokens) { |
| LOGMEM; |
| goto error; |
| } |
| ret->expr_pos = malloc(ret->size * sizeof *ret->expr_pos); |
| if (!ret->expr_pos) { |
| LOGMEM; |
| goto error; |
| } |
| ret->tok_len = malloc(ret->size * sizeof *ret->tok_len); |
| if (!ret->tok_len) { |
| LOGMEM; |
| goto error; |
| } |
| |
| while (is_xmlws(expr[parsed])) { |
| ++parsed; |
| } |
| |
| do { |
| if (expr[parsed] == '(') { |
| |
| /* '(' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_PAR1; |
| |
| if (prev_function_check && ret->used && (ret->tokens[ret->used - 1] == LYXP_TOKEN_NAMETEST)) { |
| /* it is a NodeType/FunctionName after all */ |
| if (((ret->tok_len[ret->used - 1] == 4) |
| && (!strncmp(&expr[ret->expr_pos[ret->used - 1]], "node", 4) |
| || !strncmp(&expr[ret->expr_pos[ret->used - 1]], "text", 4))) || |
| ((ret->tok_len[ret->used - 1] == 7) |
| && !strncmp(&expr[ret->expr_pos[ret->used - 1]], "comment", 7))) { |
| ret->tokens[ret->used - 1] = LYXP_TOKEN_NODETYPE; |
| } else { |
| ret->tokens[ret->used - 1] = LYXP_TOKEN_FUNCNAME; |
| } |
| prev_function_check = 0; |
| } |
| |
| } else if (expr[parsed] == ')') { |
| |
| /* ')' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_PAR2; |
| |
| } else if (expr[parsed] == '[') { |
| |
| /* '[' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_BRACK1; |
| |
| } else if (expr[parsed] == ']') { |
| |
| /* ']' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_BRACK2; |
| |
| } else if (!strncmp(&expr[parsed], "..", 2)) { |
| |
| /* '..' */ |
| tok_len = 2; |
| tok_type = LYXP_TOKEN_DDOT; |
| |
| } else if ((expr[parsed] == '.') && (!isdigit(expr[parsed+1]))) { |
| |
| /* '.' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_DOT; |
| |
| } else if (expr[parsed] == '@') { |
| |
| /* '@' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_AT; |
| |
| } else if (expr[parsed] == ',') { |
| |
| /* ',' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_COMMA; |
| |
| } else if (expr[parsed] == '\'') { |
| |
| /* Literal with ' */ |
| for (tok_len = 1; expr[parsed + tok_len] != '\''; ++tok_len); |
| ++tok_len; |
| tok_type = LYXP_TOKEN_LITERAL; |
| |
| } else if (expr[parsed] == '\"') { |
| |
| /* Literal with " */ |
| for (tok_len = 1; expr[parsed + tok_len] != '\"'; ++tok_len); |
| ++tok_len; |
| tok_type = LYXP_TOKEN_LITERAL; |
| |
| } else if ((expr[parsed] == '.') || (isdigit(expr[parsed]))) { |
| |
| /* Number */ |
| for (tok_len = 0; isdigit(expr[parsed + tok_len]); ++tok_len); |
| if (expr[parsed + tok_len] == '.') { |
| ++tok_len; |
| for (; isdigit(expr[parsed + tok_len]); ++tok_len); |
| } |
| tok_type = LYXP_TOKEN_NUMBER; |
| |
| } else if (expr[parsed] == '/') { |
| |
| /* Operator '/', '//' */ |
| if (!strncmp(&expr[parsed], "//", 2)) { |
| tok_len = 2; |
| } else { |
| tok_len = 1; |
| } |
| tok_type = LYXP_TOKEN_OPERATOR_PATH; |
| |
| } else if (!strncmp(&expr[parsed], "!=", 2) || !strncmp(&expr[parsed], "<=", 2) |
| || !strncmp(&expr[parsed], ">=", 2)) { |
| |
| /* Operator '!=', '<=', '>=' */ |
| tok_len = 2; |
| tok_type = LYXP_TOKEN_OPERATOR_COMP; |
| |
| } else if (expr[parsed] == '|') { |
| |
| /* Operator '|' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_OPERATOR_UNI; |
| |
| } else if ((expr[parsed] == '+') || (expr[parsed] == '-')) { |
| |
| /* Operator '+', '-' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_OPERATOR_MATH; |
| |
| } else if ((expr[parsed] == '=') || (expr[parsed] == '<') || (expr[parsed] == '>')) { |
| |
| /* Operator '=', '<', '>' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_OPERATOR_COMP; |
| |
| } else if (ret->used && (ret->tokens[ret->used - 1] != LYXP_TOKEN_AT) |
| && (ret->tokens[ret->used - 1] != LYXP_TOKEN_PAR1) |
| && (ret->tokens[ret->used - 1] != LYXP_TOKEN_BRACK1) |
| && (ret->tokens[ret->used - 1] != LYXP_TOKEN_COMMA) |
| && (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_LOG) |
| && (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_COMP) |
| && (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_MATH) |
| && (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_UNI) |
| && (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_PATH)) { |
| |
| /* Operator '*', 'or', 'and', 'mod', or 'div' */ |
| if (expr[parsed] == '*') { |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_OPERATOR_MATH; |
| |
| } else if (!strncmp(&expr[parsed], "or", 2)) { |
| tok_len = 2; |
| tok_type = LYXP_TOKEN_OPERATOR_LOG; |
| |
| } else if (!strncmp(&expr[parsed], "and", 3)) { |
| tok_len = 3; |
| tok_type = LYXP_TOKEN_OPERATOR_LOG; |
| |
| } else if (!strncmp(&expr[parsed], "mod", 3) || !strncmp(&expr[parsed], "div", 3)) { |
| tok_len = 3; |
| tok_type = LYXP_TOKEN_OPERATOR_MATH; |
| |
| } else { |
| LOGVAL(LYE_INCHAR, LY_VLOG_NONE, NULL, expr[parsed], &expr[parsed]); |
| goto error; |
| } |
| } else if (expr[parsed] == '*') { |
| |
| /* NameTest '*' */ |
| tok_len = 1; |
| tok_type = LYXP_TOKEN_NAMETEST; |
| |
| } else { |
| |
| /* NameTest (NCName ':' '*' | QName) or NodeType/FunctionName */ |
| ncname_len = parse_ncname(&expr[parsed]); |
| if (!ncname_len) { |
| LOGVAL(LYE_INCHAR, LY_VLOG_NONE, NULL, expr[parsed], &expr[parsed]); |
| goto error; |
| } |
| tok_len = ncname_len; |
| |
| if (expr[parsed + tok_len] == ':') { |
| ++tok_len; |
| if (expr[parsed + tok_len] == '*') { |
| ++tok_len; |
| } else { |
| ncname_len = parse_ncname(&expr[parsed + tok_len]); |
| if (!ncname_len) { |
| LOGVAL(LYE_INCHAR, LY_VLOG_NONE, NULL, expr[parsed], &expr[parsed]); |
| goto error; |
| } |
| tok_len += ncname_len; |
| } |
| /* remove old flag to prevent ambiguities */ |
| prev_function_check = 0; |
| tok_type = LYXP_TOKEN_NAMETEST; |
| } else { |
| /* there is no prefix so it can still be NodeType/FunctioName, we can't finally decide now */ |
| prev_function_check = 1; |
| tok_type = LYXP_TOKEN_NAMETEST; |
| } |
| } |
| |
| /* store the token, move on to the next one */ |
| exp_add_token(ret, tok_type, parsed, tok_len); |
| parsed += tok_len; |
| while (is_xmlws(expr[parsed])) { |
| ++parsed; |
| } |
| |
| } while (expr[parsed]); |
| |
| /* prealloc repeat */ |
| ret->repeat = calloc(ret->size, sizeof *ret->repeat); |
| if (!ret->repeat) { |
| LOGMEM; |
| goto error; |
| } |
| |
| return ret; |
| |
| error: |
| lyxp_expr_free(ret); |
| return NULL; |
| } |
| |
| /* |
| * XPath functions |
| */ |
| |
| /** |
| * @brief Execute the YANG 1.1 bit-is-set(node-set, string) function. Returns LYXP_SET_BOOLEAN |
| * depending on whether the first node bit value from the second argument is set. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_bit_is_set(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| struct lyd_node_leaf_list *leaf; |
| int i, bits_count; |
| |
| if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_EMPTY)) { |
| LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "bit-is-set(node-set, string)"); |
| return -1; |
| } |
| if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| set_fill_boolean(set, 0); |
| if (args[0]->type == LYXP_SET_NODE_SET) { |
| leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[0].node; |
| if ((leaf->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST)) |
| && (((struct lys_node_leaf *)leaf->schema)->type.base == LY_TYPE_BITS)) { |
| bits_count = ((struct lys_node_leaf *)leaf->schema)->type.info.bits.count; |
| for (i = 0; i < bits_count; ++i) { |
| if (leaf->value.bit[i] && ly_strequal(leaf->value.bit[i]->name, args[1]->val.str, 0)) { |
| set_fill_boolean(set, 1); |
| break; |
| } |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath boolean(object) function. Returns LYXP_SET_BOOLEAN |
| * with the argument converted to boolean. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_boolean(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| lyxp_set_cast(args[0], LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| set_fill_set(set, args[0]); |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath ceiling(number) function. Returns LYXP_SET_NUMBER |
| * with the first argument rounded up to the nearest integer. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_ceiling(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (lyxp_set_cast(args[0], LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if ((long long)args[0]->val.num != args[0]->val.num) { |
| set_fill_number(set, ((long long)args[0]->val.num) + 1); |
| } else { |
| set_fill_number(set, args[0]->val.num); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath concat(string, string, string*) function. |
| * Returns LYXP_SET_STRING with the concatenation of all the arguments. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_concat(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| uint16_t i; |
| char *str = NULL; |
| size_t used = 1; |
| |
| for (i = 0; i < arg_count; ++i) { |
| if (lyxp_set_cast(args[i], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| free(str); |
| return -1; |
| } |
| |
| str = ly_realloc(str, (used + strlen(args[i]->val.str)) * sizeof(char)); |
| if (!str) { |
| LOGMEM; |
| return -1; |
| } |
| strcpy(str + used - 1, args[i]->val.str); |
| used += strlen(args[i]->val.str); |
| } |
| |
| /* free, kind of */ |
| lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| set->type = LYXP_SET_STRING; |
| set->val.str = str; |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath contains(string, string) function. |
| * Returns LYXP_SET_BOOLEAN whether the second argument can |
| * be found in the first or not. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_contains(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| if (strstr(args[0]->val.str, args[1]->val.str)) { |
| set_fill_boolean(set, 1); |
| } else { |
| set_fill_boolean(set, 0); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath count(node-set) function. Returns LYXP_SET_NUMBER |
| * with the size of the node-set from the argument. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_count(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node), |
| struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options)) |
| { |
| if (args[0]->type == LYXP_SET_EMPTY) { |
| set_fill_number(set, 0); |
| return EXIT_SUCCESS; |
| } |
| |
| if (args[0]->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "count(node-set)"); |
| return -1; |
| } |
| |
| set_fill_number(set, args[0]->used); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath current() function. Returns LYXP_SET_NODE_SET |
| * with the context with the intial node. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_current(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (arg_count || args) { |
| LOGVAL(LYE_XPATH_INARGCOUNT, LY_VLOG_NONE, NULL, arg_count, "current()"); |
| return -1; |
| } |
| |
| if (options & LYXP_SNODE_ALL) { |
| set_snode_clear_ctx(set); |
| |
| set_snode_insert_node(set, (struct lys_node *)cur_node, LYXP_NODE_ELEM); |
| } else { |
| lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| |
| /* position is filled later */ |
| set_insert_node(set, cur_node, 0, LYXP_NODE_ELEM, 0); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the YANG 1.1 deref(node-set) function. Returns LYXP_SET_NODE_SET with either |
| * leafref or instance-identifier target node(s). |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_deref(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| struct lyd_node_leaf_list *leaf; |
| struct lys_node_leaf *sleaf; |
| |
| if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_SNODE_SET) |
| && (args[0]->type != LYXP_SET_EMPTY)) { |
| LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "deref(node-set)"); |
| return -1; |
| } |
| |
| if (options & LYXP_SNODE_ALL) { |
| assert(args[0]->type == LYXP_SET_SNODE_SET); |
| set_snode_clear_ctx(set); |
| |
| sleaf = (struct lys_node_leaf *)args[0]->val.snodes[0].snode; |
| if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (sleaf->type.base == LY_TYPE_LEAFREF)) { |
| assert(sleaf->type.info.lref.path && sleaf->type.info.lref.target); |
| set_insert_node(set, sleaf->type.info.lref.target, 0, LYXP_NODE_ELEM, 0); |
| } |
| set_snode_insert_node(set, (struct lys_node *)cur_node, LYXP_NODE_ELEM); |
| } else { |
| lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| if (args[0]->type != LYXP_SET_EMPTY) { |
| leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[0].node; |
| sleaf = (struct lys_node_leaf *)leaf->schema; |
| if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) |
| && ((sleaf->type.base == LY_TYPE_LEAFREF) || (sleaf->type.base == LY_TYPE_INST))) { |
| if (leaf->value_type & (LY_TYPE_LEAFREF_UNRES | LY_TYPE_INST_UNRES)) { |
| /* this is bad */ |
| LOGVAL(LYE_SPEC, LY_VLOG_LYD, args[0]->val.nodes[0].node, |
| "Trying to dereference an unresolved leafref or instance-identifier."); |
| return -1; |
| } |
| /* works for both leafref and instid */ |
| set_insert_node(set, leaf->value.leafref, 0, LYXP_NODE_ELEM, 0); |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /* return 0 - match, 1 - mismatch */ |
| static int |
| xpath_derived_from_ident_cmp(struct lys_ident *ident, const char *ident_str) |
| { |
| const char *ptr; |
| int len; |
| |
| ptr = strchr(ident_str, ':'); |
| if (ptr) { |
| len = ptr - ident_str; |
| if (strncmp(ident->module->name, ident_str, len) |
| || ident->module->name[len]) { |
| /* module name mismatch BUG we expect JSON format prefix, but if the 2nd argument was |
| * not a literal, we may easily be mistaken */ |
| return 1; |
| } |
| ++ptr; |
| } else { |
| ptr = ident_str; |
| } |
| |
| len = strlen(ptr); |
| if (strncmp(ident->name, ptr, len) || ident->name[len]) { |
| /* name mismatch */ |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * @brief Execute the YANG 1.1 derived-from(node-set, string) function. Returns LYXP_SET_BOOLEAN depending |
| * on whether the first argument nodes contain a node of an identity derived from the second |
| * argument identity. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_derived_from(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| uint16_t i, j; |
| struct lyd_node_leaf_list *leaf; |
| struct lys_node_leaf *sleaf; |
| |
| if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_EMPTY)) { |
| LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "derived-from(node-set, string)"); |
| return -1; |
| } |
| if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| set_fill_boolean(set, 0); |
| if (args[0]->type != LYXP_SET_EMPTY) { |
| for (i = 0; i < args[0]->used; ++i) { |
| leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[i].node; |
| sleaf = (struct lys_node_leaf *)leaf->schema; |
| if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (sleaf->type.base == LY_TYPE_IDENT)) { |
| for (j = 0; j < leaf->value.ident->base_size; ++j) { |
| if (!xpath_derived_from_ident_cmp(leaf->value.ident->base[j], args[1]->val.str)) { |
| set_fill_boolean(set, 1); |
| break; |
| } |
| } |
| |
| if (j < leaf->value.ident->base_size) { |
| break; |
| } |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the YANG 1.1 derived-from-or-self(node-set, string) function. Returns LYXP_SET_BOOLEAN depending |
| * on whether the first argument nodes contain a node of an identity that either is or is derived from |
| * the second argument identity. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_derived_from_or_self(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, |
| struct lys_module *local_mod, struct lyxp_set *set, int options) |
| { |
| uint16_t i, j; |
| struct lyd_node_leaf_list *leaf; |
| struct lys_node_leaf *sleaf; |
| |
| if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_EMPTY)) { |
| LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "derived-from-or-self(node-set, string)"); |
| return -1; |
| } |
| if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| set_fill_boolean(set, 0); |
| if (args[0]->type != LYXP_SET_EMPTY) { |
| for (i = 0; i < args[0]->used; ++i) { |
| leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[i].node; |
| sleaf = (struct lys_node_leaf *)leaf->schema; |
| if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (sleaf->type.base == LY_TYPE_IDENT)) { |
| if (!xpath_derived_from_ident_cmp(leaf->value.ident, args[1]->val.str)) { |
| set_fill_boolean(set, 1); |
| break; |
| } |
| |
| for (j = 0; j < leaf->value.ident->base_size; ++j) { |
| if (!xpath_derived_from_ident_cmp(leaf->value.ident->base[j], args[1]->val.str)) { |
| set_fill_boolean(set, 1); |
| break; |
| } |
| } |
| |
| if (j < leaf->value.ident->base_size) { |
| break; |
| } |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the YANG 1.1 enum-value(node-set) function. Returns LYXP_SET_NUMBER |
| * with the integer value of the first node's enum value, otherwise NaN. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_enum_value(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node), |
| struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options)) |
| { |
| struct lyd_node_leaf_list *leaf; |
| |
| if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_EMPTY)) { |
| LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "enum-value(node-set)"); |
| return -1; |
| } |
| |
| set_fill_number(set, NAN); |
| if (args[0]->type == LYXP_SET_NODE_SET) { |
| leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[0].node; |
| if ((leaf->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST)) |
| && (((struct lys_node_leaf *)leaf->schema)->type.base == LY_TYPE_ENUM)) { |
| set_fill_number(set, leaf->value.enm->value); |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath false() function. Returns LYXP_SET_BOOLEAN |
| * with false value. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_false(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node), |
| struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options)) |
| { |
| set_fill_boolean(set, 0); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath floor(number) function. Returns LYXP_SET_NUMBER |
| * with the first argument floored (truncated). |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_floor(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (lyxp_set_cast(args[0], LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (isfinite(args[0]->val.num)) { |
| set_fill_number(set, (long long)args[0]->val.num); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath lang(string) function. Returns LYXP_SET_BOOLEAN |
| * whether the language of the text matches the one from the argument. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_lang(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| const struct lyd_node *node, *root; |
| struct lyd_attr *attr = NULL; |
| int i; |
| |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| if (set->type == LYXP_SET_EMPTY) { |
| set_fill_boolean(set, 0); |
| return EXIT_SUCCESS; |
| } |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "lang(string)"); |
| return -1; |
| } |
| |
| switch (set->val.nodes[0].type) { |
| case LYXP_NODE_ELEM: |
| case LYXP_NODE_TEXT: |
| node = set->val.nodes[0].node; |
| break; |
| case LYXP_NODE_ATTR: |
| root = moveto_get_root(cur_node, options, NULL); |
| node = lyd_attr_parent(root, set->val.attrs[0].attr); |
| break; |
| default: |
| /* nothing to do with roots */ |
| set_fill_boolean(set, 0); |
| return EXIT_SUCCESS; |
| } |
| |
| /* find lang attribute */ |
| for (; node; node = node->parent) { |
| for (attr = node->attr; attr; attr = attr->next) { |
| if (attr->name && !strcmp(attr->name, "lang") && !strcmp(attr->annotation->module->name, "xml")) { |
| break; |
| } |
| } |
| |
| if (attr) { |
| break; |
| } |
| } |
| |
| /* compare languages */ |
| if (!attr) { |
| set_fill_boolean(set, 0); |
| } else { |
| for (i = 0; args[0]->val.str[i]; ++i) { |
| if (tolower(args[0]->val.str[i]) != tolower(attr->value_str[i])) { |
| set_fill_boolean(set, 0); |
| break; |
| } |
| } |
| if (!args[0]->val.str[i]) { |
| if (!attr->value_str[i] || (attr->value_str[i] == '-')) { |
| set_fill_boolean(set, 1); |
| } else { |
| set_fill_boolean(set, 0); |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath last() function. Returns LYXP_SET_NUMBER |
| * with the context size. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_last(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node), |
| struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options)) |
| { |
| |
| if (set->type == LYXP_SET_EMPTY) { |
| set_fill_number(set, 0); |
| return EXIT_SUCCESS; |
| } |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "last()"); |
| return -1; |
| } |
| |
| set_fill_number(set, set->ctx_size); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath local-name(node-set?) function. Returns LYXP_SET_STRING |
| * with the node name without namespace from the argument or the context. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_local_name(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *UNUSED(local_mod), |
| struct lyxp_set *set, int options) |
| { |
| struct lyxp_set_nodes *item; |
| |
| if (arg_count) { |
| if (args[0]->type == LYXP_SET_EMPTY) { |
| set_fill_string(set, "", 0); |
| return EXIT_SUCCESS; |
| } |
| if (args[0]->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "local-name(node-set?)"); |
| return -1; |
| } |
| |
| #ifndef NDEBUG |
| /* we need the set sorted, it affects the result */ |
| if (set_sort(args[0], cur_node, options) > 1) { |
| LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__); |
| } |
| #else |
| /* suppress unused variable warning */ |
| (void)cur_node; |
| #endif |
| |
| item = &args[0]->val.nodes[0]; |
| } else { |
| if (set->type == LYXP_SET_EMPTY) { |
| set_fill_string(set, "", 0); |
| return EXIT_SUCCESS; |
| } |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "local-name(node-set?)"); |
| return -1; |
| } |
| |
| #ifndef NDEBUG |
| /* we need the set sorted, it affects the result */ |
| if (set_sort(set, cur_node, options) > 1) { |
| LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__); |
| } |
| #endif |
| |
| item = &set->val.nodes[0]; |
| } |
| |
| switch (item->type) { |
| case LYXP_NODE_ROOT: |
| case LYXP_NODE_ROOT_CONFIG: |
| case LYXP_NODE_TEXT: |
| set_fill_string(set, "", 0); |
| break; |
| case LYXP_NODE_ELEM: |
| set_fill_string(set, item->node->schema->name, strlen(item->node->schema->name)); |
| break; |
| case LYXP_NODE_ATTR: |
| set_fill_string(set, ((struct lyd_attr *)item->node)->name, strlen(((struct lyd_attr *)item->node)->name)); |
| break; |
| } |
| |
| /* UNUSED in 'Release' build type */ |
| (void)options; |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath name(node-set?) function. Returns LYXP_SET_STRING |
| * with the node name fully qualified (with namespace) from the argument or the context. |
| * !! This function does not follow its definition and actually copies what local-name() |
| * function does, for the ietf-ipfix-psamp module that uses it incorrectly. !! |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_name(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| return xpath_local_name(args, arg_count, cur_node, local_mod, set, options); |
| } |
| |
| /** |
| * @brief Execute the XPath namespace-uri(node-set?) function. Returns LYXP_SET_STRING |
| * with the namespace of the node from the argument or the context. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_namespace_uri(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *UNUSED(local_mod), |
| struct lyxp_set *set, int options) |
| { |
| struct lyxp_set_nodes *item; |
| struct lys_module *module; |
| |
| if (arg_count) { |
| if (args[0]->type == LYXP_SET_EMPTY) { |
| set_fill_string(set, "", 0); |
| return EXIT_SUCCESS; |
| } |
| if (args[0]->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "namespace-uri(node-set?)"); |
| return -1; |
| } |
| |
| #ifndef NDEBUG |
| /* we need the set sorted, it affects the result */ |
| if (set_sort(args[0], cur_node, options) > 1) { |
| LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__); |
| } |
| #else |
| /* suppress unused variable warning */ |
| (void)cur_node; |
| #endif |
| |
| item = &args[0]->val.nodes[0]; |
| } else { |
| if (set->type == LYXP_SET_EMPTY) { |
| set_fill_string(set, "", 0); |
| return EXIT_SUCCESS; |
| } |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "namespace-uri(node-set?)"); |
| return -1; |
| } |
| |
| #ifndef NDEBUG |
| /* we need the set sorted, it affects the result */ |
| if (set_sort(set, cur_node, options) > 1) { |
| LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__); |
| } |
| #endif |
| |
| item = &set->val.nodes[0]; |
| } |
| |
| switch (item->type) { |
| case LYXP_NODE_ROOT: |
| case LYXP_NODE_ROOT_CONFIG: |
| case LYXP_NODE_TEXT: |
| set_fill_string(set, "", 0); |
| break; |
| case LYXP_NODE_ELEM: |
| case LYXP_NODE_ATTR: |
| if (item->type == LYXP_NODE_ELEM) { |
| module = item->node->schema->module; |
| } else { /* LYXP_NODE_ATTR */ |
| module = ((struct lyd_attr *)item->node)->annotation->module; |
| } |
| |
| module = lys_main_module(module); |
| |
| set_fill_string(set, module->ns, strlen(module->ns)); |
| break; |
| } |
| |
| /* UNUSED in 'Release' build type */ |
| (void)options; |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath node() function (node type). Returns LYXP_SET_NODE_SET |
| * with only nodes from the context. In practice it either leaves the context |
| * as it is or returns an empty node set. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_node(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (set->type != LYXP_SET_NODE_SET) { |
| lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| } |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath normalize-space(string?) function. Returns LYXP_SET_STRING |
| * with normalized value (no leading, trailing, double white spaces) of the node |
| * from the argument or the context. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_normalize_space(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| uint16_t i, new_used; |
| char *new; |
| int have_spaces = 0, space_before = 0; |
| |
| if (arg_count) { |
| set_fill_set(set, args[0]); |
| } |
| if (lyxp_set_cast(set, LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| /* is there any normalization necessary? */ |
| for (i = 0; set->val.str[i]; ++i) { |
| if (is_xmlws(set->val.str[i])) { |
| if ((i == 0) || space_before || (!set->val.str[i + 1])) { |
| have_spaces = 1; |
| break; |
| } |
| space_before = 1; |
| } else { |
| space_before = 0; |
| } |
| } |
| |
| /* yep, there is */ |
| if (have_spaces) { |
| /* it's enough, at least one character will go, makes space for ending '\0' */ |
| new = malloc(strlen(set->val.str) * sizeof(char)); |
| if (!new) { |
| LOGMEM; |
| return -1; |
| } |
| new_used = 0; |
| |
| space_before = 0; |
| for (i = 0; set->val.str[i]; ++i) { |
| if (is_xmlws(set->val.str[i])) { |
| if ((i == 0) || space_before) { |
| space_before = 1; |
| continue; |
| } else { |
| space_before = 1; |
| } |
| } else { |
| space_before = 0; |
| } |
| |
| new[new_used] = (space_before ? ' ' : set->val.str[i]); |
| ++new_used; |
| } |
| |
| /* at worst there is one trailing space now */ |
| if (new_used && is_xmlws(new[new_used - 1])) { |
| --new_used; |
| } |
| |
| new = ly_realloc(new, (new_used + 1) * sizeof(char)); |
| if (!new) { |
| LOGMEM; |
| return -1; |
| } |
| new[new_used] = '\0'; |
| |
| free(set->val.str); |
| set->val.str = new; |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath not(boolean) function. Returns LYXP_SET_BOOLEAN |
| * with the argument converted to boolean and logically inverted. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_not(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| lyxp_set_cast(args[0], LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| if (args[0]->val.bool) { |
| set_fill_boolean(set, 0); |
| } else { |
| set_fill_boolean(set, 1); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath bumber(object?) function. Returns LYXP_SET_NUMBER |
| * with the number representation of either the argument or the context. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_number(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (arg_count) { |
| if (lyxp_set_cast(args[0], LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| set_fill_set(set, args[0]); |
| } else { |
| if (lyxp_set_cast(set, LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath position() function. Returns LYXP_SET_NUMBER |
| * with the context position. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_position(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node), |
| struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int options) |
| { |
| if (set->type == LYXP_SET_EMPTY) { |
| set_fill_number(set, 0); |
| return EXIT_SUCCESS; |
| } |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "position()"); |
| return -1; |
| } |
| |
| set_fill_number(set, set->ctx_pos); |
| |
| /* UNUSED in 'Release' build type */ |
| (void)options; |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the YANG 1.1 re-match(string, string) function. Returns LYXP_SET_BOOLEAN |
| * depending on whether the second argument regex matches the first argument string. For details refer to |
| * YANG 1.1 RFC section 10.2.1. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_re_match(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| pcre *precomp; |
| |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| if (lyp_check_pattern(args[1]->val.str, &precomp)) { |
| return -1; |
| } |
| if (pcre_exec(precomp, NULL, args[0]->val.str, strlen(args[0]->val.str), 0, 0, NULL, 0)) { |
| set_fill_boolean(set, 0); |
| } else { |
| set_fill_boolean(set, 1); |
| } |
| free(precomp); |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath round(number) function. Returns LYXP_SET_NUMBER |
| * with the rounded first argument. For details refer to |
| * http://www.w3.org/TR/1999/REC-xpath-19991116/#function-round. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_round(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (lyxp_set_cast(args[0], LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| /* cover only the cases where floor can't be used */ |
| if ((args[0]->val.num == -0.0f) || ((args[0]->val.num < 0) && (args[0]->val.num >= -0.5))) { |
| set_fill_number(set, -0.0f); |
| } else { |
| args[0]->val.num += 0.5; |
| if (xpath_floor(args, 1, cur_node, local_mod, args[0], options)) { |
| return -1; |
| } |
| set_fill_number(set, args[0]->val.num); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath starts-with(string, string) function. |
| * Returns LYXP_SET_BOOLEAN whether the second argument is |
| * the prefix of the first or not. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_starts_with(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| if (strncmp(args[0]->val.str, args[1]->val.str, strlen(args[1]->val.str))) { |
| set_fill_boolean(set, 0); |
| } else { |
| set_fill_boolean(set, 1); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath string(object?) function. Returns LYXP_SET_STRING |
| * with the string representation of either the argument or the context. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_string(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (arg_count) { |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| set_fill_set(set, args[0]); |
| } else { |
| if (lyxp_set_cast(set, LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath string-length(string?) function. Returns LYXP_SET_NUMBER |
| * with the length of the string in either the argument or the context. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_string_length(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| if (arg_count) { |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| set_fill_number(set, strlen(args[0]->val.str)); |
| } else { |
| if (lyxp_set_cast(set, LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| set_fill_number(set, strlen(set->val.str)); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath substring(string, number, number?) function. |
| * Returns LYXP_SET_STRING substring of the first argument starting |
| * on the second argument index ending on the third argument index, |
| * indexed from 1. For exact definition refer to |
| * http://www.w3.org/TR/1999/REC-xpath-19991116/#function-substring. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_substring(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int start, len; |
| uint16_t str_start, str_len, pos; |
| |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| /* start */ |
| if (xpath_round(&args[1], 1, cur_node, local_mod, args[1], options)) { |
| return -1; |
| } |
| if (isfinite(args[1]->val.num)) { |
| start = args[1]->val.num - 1; |
| } else if (isinf(args[1]->val.num) && signbit(args[1]->val.num)) { |
| start = INT_MIN; |
| } else { |
| start = INT_MAX; |
| } |
| |
| /* len */ |
| if (arg_count == 3) { |
| if (xpath_round(&args[2], 1, cur_node, local_mod, args[2], options)) { |
| return -1; |
| } |
| if (isfinite(args[2]->val.num)) { |
| len = args[2]->val.num; |
| } else if (isnan(args[2]->val.num) || signbit(args[2]->val.num)) { |
| len = 0; |
| } else { |
| len = INT_MAX; |
| } |
| } else { |
| len = INT_MAX; |
| } |
| |
| /* find matching character positions */ |
| str_start = 0; |
| str_len = 0; |
| for (pos = 0; args[0]->val.str[pos]; ++pos) { |
| if (pos < start) { |
| ++str_start; |
| } else if (pos < start + len) { |
| ++str_len; |
| } else { |
| break; |
| } |
| } |
| |
| set_fill_string(set, args[0]->val.str + str_start, str_len); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath substring-after(string, string) function. |
| * Returns LYXP_SET_STRING with the string succeeding the occurance |
| * of the second argument in the first or an empty string. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_substring_after(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, |
| struct lys_module *local_mod, struct lyxp_set *set, int options) |
| { |
| char *ptr; |
| |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| ptr = strstr(args[0]->val.str, args[1]->val.str); |
| if (ptr) { |
| set_fill_string(set, ptr + strlen(args[1]->val.str), strlen(ptr + strlen(args[1]->val.str))); |
| } else { |
| set_fill_string(set, "", 0); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath substring-before(string, string) function. |
| * Returns LYXP_SET_STRING with the string preceding the occurance |
| * of the second argument in the first or an empty string. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_substring_before(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, |
| struct lys_module *local_mod, struct lyxp_set *set, int options) |
| { |
| char *ptr; |
| |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| ptr = strstr(args[0]->val.str, args[1]->val.str); |
| if (ptr) { |
| set_fill_string(set, args[0]->val.str, ptr - args[0]->val.str); |
| } else { |
| set_fill_string(set, "", 0); |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath sum(node-set) function. Returns LYXP_SET_NUMBER |
| * with the sum of all the nodes in the context. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_sum(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| long double num; |
| char *str; |
| uint16_t i; |
| struct lyxp_set set_item; |
| |
| set_fill_number(set, 0); |
| if (args[0]->type == LYXP_SET_EMPTY) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (args[0]->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "sum(node-set)"); |
| return -1; |
| } |
| |
| set_item.type = LYXP_SET_NODE_SET; |
| set_item.val.nodes = malloc(sizeof *set_item.val.nodes); |
| if (!set_item.val.nodes) { |
| LOGMEM; |
| return -1; |
| } |
| |
| set_item.used = 1; |
| set_item.size = 1; |
| |
| for (i = 0; i < args[0]->used; ++i) { |
| set_item.val.nodes[0] = args[0]->val.nodes[i]; |
| |
| str = cast_node_set_to_string(&set_item, cur_node, local_mod, options); |
| if (!str) { |
| return -1; |
| } |
| num = cast_string_to_number(str); |
| free(str); |
| set->val.num += num; |
| } |
| |
| free(set_item.val.nodes); |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath text() function (node type). Returns LYXP_SET_NODE_SET |
| * with the text content of the nodes in the context. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_text(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node), |
| struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options)) |
| { |
| uint32_t i; |
| |
| if (set->type == LYXP_SET_EMPTY) { |
| return EXIT_SUCCESS; |
| } |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "text()"); |
| return -1; |
| } |
| |
| for (i = 0; i < set->used;) { |
| switch (set->val.nodes[i].type) { |
| case LYXP_NODE_ELEM: |
| if (set->val.nodes[i].node->validity & LYD_VAL_INUSE) { |
| LOGVAL(LYE_XPATH_DUMMY, LY_VLOG_LYD, set->val.nodes[i].node, set->val.nodes[i].node->schema->name); |
| return -1; |
| } |
| if ((set->val.nodes[i].node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST)) |
| && ((struct lyd_node_leaf_list *)set->val.nodes[i].node)->value_str) { |
| set->val.nodes[i].type = LYXP_NODE_TEXT; |
| ++i; |
| break; |
| } |
| /* fall through */ |
| case LYXP_NODE_ROOT: |
| case LYXP_NODE_ROOT_CONFIG: |
| case LYXP_NODE_TEXT: |
| case LYXP_NODE_ATTR: |
| set_remove_node(set, i); |
| break; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath translate(string, string, string) function. |
| * Returns LYXP_SET_STRING with the first argument with the characters |
| * from the second argument replaced by those on the corresponding |
| * positions in the third argument. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_translate(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, |
| struct lys_module *local_mod, struct lyxp_set *set, int options) |
| { |
| uint16_t i, j, new_used; |
| char *new; |
| int found, have_removed; |
| |
| if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(args[2], LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| new = malloc((strlen(args[0]->val.str) + 1) * sizeof(char)); |
| if (!new) { |
| LOGMEM; |
| return -1; |
| } |
| new_used = 0; |
| |
| have_removed = 0; |
| for (i = 0; args[0]->val.str[i]; ++i) { |
| found = 0; |
| |
| for (j = 0; args[1]->val.str[j]; ++j) { |
| if (args[0]->val.str[i] == args[1]->val.str[j]) { |
| /* removing this char */ |
| if (j >= strlen(args[2]->val.str)) { |
| have_removed = 1; |
| found = 1; |
| break; |
| } |
| /* replacing this char */ |
| new[new_used] = args[2]->val.str[j]; |
| ++new_used; |
| found = 1; |
| break; |
| } |
| } |
| |
| /* copying this char */ |
| if (!found) { |
| new[new_used] = args[0]->val.str[i]; |
| ++new_used; |
| } |
| } |
| |
| if (have_removed) { |
| new = ly_realloc(new, (new_used + 1) * sizeof(char)); |
| if (!new) { |
| LOGMEM; |
| return -1; |
| } |
| } |
| new[new_used] = '\0'; |
| |
| lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| set->type = LYXP_SET_STRING; |
| set->val.str = new; |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Execute the XPath true() function. Returns LYXP_SET_BOOLEAN |
| * with true value. |
| * |
| * @param[in] args Array of arguments. |
| * @param[in] arg_count Count of elements in \p args. |
| * @param[in] cur_node Original context node. |
| * @param[in,out] set Context and result set at the same time. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| xpath_true(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node), |
| struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options)) |
| { |
| set_fill_boolean(set, 1); |
| return EXIT_SUCCESS; |
| } |
| |
| /* |
| * moveto functions |
| * |
| * They and only they actually change the context (set). |
| */ |
| |
| /** |
| * @brief Resolve and find a specific model. Does not log. |
| * |
| * \p cur_snode is required in 2 quite specific cases concerning |
| * XPath on schema. Problem is when we are parsing a submodule |
| * and referencing something in the main module or parsing |
| * a module importing another module that references back |
| * the original module. Then the target module is still being |
| * parsed and it not yet in the context - it fails to resolve. |
| * In these cases we can find the module using \p cur_snode. |
| * |
| * @param[in] mod_name_ns Either module name or namespace. |
| * @param[in] mon_nam_ns_len Length of \p mod_name_ns. |
| * @param[in] ctx libyang context. |
| * @param[in] cur_snode Current schema node, on data XPath leave NULL. |
| * @param[in] is_name Whether \p mod_name_ns is module name (1) or namespace (0). |
| * |
| * @return Corresponding module or NULL on error. |
| */ |
| static struct lys_module * |
| moveto_resolve_model(const char *mod_name_ns, uint16_t mod_nam_ns_len, struct ly_ctx *ctx, struct lys_node *cur_snode, |
| int is_name) |
| { |
| uint16_t i; |
| const char *str; |
| struct lys_module *mod, *mainmod; |
| |
| if (cur_snode) { |
| /* detect if the XPath is used in augment - in such a case the module of the context node (cur_snode) |
| * differs from the currently processed module. Then, we have to use the currently processed module |
| * for searching for the module/namespace instead of the module of the context node */ |
| if (ctx->models.parsing_sub_modules_count && |
| cur_snode->module != ctx->models.parsing_sub_modules[ctx->models.parsing_sub_modules_count - 1]) { |
| mod = ctx->models.parsing_sub_modules[ctx->models.parsing_sub_modules_count - 1]; |
| } else { |
| mod = cur_snode->module; |
| } |
| mainmod = lys_main_module(mod); |
| |
| str = (is_name ? mainmod->name : mainmod->ns); |
| if (!strncmp(str, mod_name_ns, mod_nam_ns_len) && !str[mod_nam_ns_len]) { |
| return mainmod; |
| } |
| |
| for (i = 0; i < mod->imp_size; ++i) { |
| str = (is_name ? mod->imp[i].module->name : mod->imp[i].module->ns); |
| if (!strncmp(str, mod_name_ns, mod_nam_ns_len) && !str[mod_nam_ns_len]) { |
| return mod->imp[i].module; |
| } |
| } |
| } |
| |
| for (i = 0; i < ctx->models.used; ++i) { |
| if (!ctx->models.list[i]->implemented || ctx->models.list[i]->disabled) { |
| /* skip not implemented or disabled modules */ |
| continue; |
| } |
| str = (is_name ? ctx->models.list[i]->name : ctx->models.list[i]->ns); |
| if (!strncmp(str, mod_name_ns, mod_nam_ns_len) && !str[mod_nam_ns_len]) { |
| return ctx->models.list[i]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /** |
| * @brief Get the context root. |
| * |
| * @param[in] cur_node Original context node. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * @param[out] root_type Root type, differs only in when, must evaluation. |
| * |
| * @return Context root. |
| */ |
| static const struct lyd_node * |
| moveto_get_root(const struct lyd_node *cur_node, int options, enum lyxp_node_type *root_type) |
| { |
| const struct lyd_node *root; |
| |
| if (!cur_node) { |
| return NULL; |
| } |
| |
| if (!options) { |
| /* special kind of root that can access everything */ |
| for (root = cur_node; root->parent; root = root->parent); |
| for (; root->prev->next; root = root->prev); |
| *root_type = LYXP_NODE_ROOT; |
| return root; |
| } |
| |
| if (cur_node->schema->flags & LYS_CONFIG_W) { |
| *root_type = LYXP_NODE_ROOT_CONFIG; |
| } else { |
| *root_type = LYXP_NODE_ROOT; |
| } |
| |
| for (root = cur_node; root->parent; root = root->parent); |
| for (; root->prev->next; root = root->prev); |
| |
| return root; |
| } |
| |
| static const struct lys_node * |
| moveto_snode_get_root(const struct lys_node *cur_node, int options, enum lyxp_node_type *root_type) |
| { |
| const struct lys_node *root; |
| |
| assert(cur_node && root_type); |
| |
| if (options & LYXP_SNODE) { |
| /* general root that can access everything */ |
| for (root = cur_node; lys_parent(root); root = lys_parent(root)); |
| root = lys_getnext(NULL, NULL, root->module, 0); |
| *root_type = LYXP_NODE_ROOT; |
| return root; |
| } |
| |
| if (cur_node->flags & LYS_CONFIG_W) { |
| *root_type = LYXP_NODE_ROOT_CONFIG; |
| } else { |
| *root_type = LYXP_NODE_ROOT; |
| } |
| |
| for (root = cur_node; lys_parent(root); root = lys_parent(root)); |
| root = lys_getnext(NULL, NULL, lys_node_module(root), 0); |
| |
| return root; |
| } |
| |
| /** |
| * @brief Move context \p set to the root. Handles absolute path. |
| * Result is LYXP_SET_NODE_SET. |
| * |
| * @param[in,out] set Set to use. |
| * @param[in] cur_node Original context node. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| */ |
| static void |
| moveto_root(struct lyxp_set *set, struct lyd_node *cur_node, int options) |
| { |
| const struct lyd_node *root; |
| enum lyxp_node_type root_type; |
| |
| if (!set) { |
| return; |
| } |
| |
| root = moveto_get_root(cur_node, options, &root_type); |
| |
| lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, NULL, options); |
| if (root) { |
| set_insert_node(set, root, 0, root_type, 0); |
| } |
| } |
| |
| static void |
| moveto_snode_root(struct lyxp_set *set, struct lys_node *cur_node, int options) |
| { |
| const struct lys_node *root; |
| enum lyxp_node_type root_type; |
| |
| if (!set) { |
| return; |
| } |
| |
| if (!cur_node) { |
| LOGINT; |
| return; |
| } |
| |
| root = moveto_snode_get_root(cur_node, options, &root_type); |
| set_snode_clear_ctx(set); |
| set_snode_insert_node(set, root, root_type); |
| } |
| |
| /** |
| * @brief Check \p node as a part of NameTest processing. |
| * |
| * @param[in] node Node to check. |
| * @param[in] node_name Node name to move to. Must be in the dictionary! |
| * @param[in] moveto_mod Expected module of the node. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| moveto_node_check(struct lyd_node *node, enum lyxp_node_type root_type, const char *node_name, |
| struct lys_module *moveto_mod, int options) |
| { |
| /* module check */ |
| if (moveto_mod && (lys_node_module(node->schema) != moveto_mod)) { |
| return -1; |
| } |
| |
| /* context check */ |
| if ((root_type == LYXP_NODE_ROOT_CONFIG) && (node->schema->flags & LYS_CONFIG_R)) { |
| return -1; |
| } |
| |
| /* name check */ |
| if (!ly_strequal(node->schema->name, node_name, 1) && strcmp(node_name, "*")) { |
| return -1; |
| } |
| |
| /* when check */ |
| if ((options & LYXP_WHEN) && !LYD_WHEN_DONE(node->when_status)) { |
| return EXIT_FAILURE; |
| } |
| |
| /* match */ |
| return EXIT_SUCCESS; |
| } |
| |
| static int |
| moveto_snode_check(const struct lys_node *node, enum lyxp_node_type root_type, const char *node_name, |
| struct lys_module *moveto_mod, int options) |
| { |
| struct lys_node *parent; |
| |
| /* RPC input/output check */ |
| for (parent = lys_parent(node); parent && (parent->nodetype == LYS_USES); parent = lys_parent(parent)); |
| if (options & LYXP_SNODE_OUTPUT) { |
| if (parent && (parent->nodetype == LYS_INPUT)) { |
| return -1; |
| } |
| } else { |
| if (parent && (parent->nodetype == LYS_OUTPUT)) { |
| return -1; |
| } |
| } |
| |
| /* module check */ |
| if (moveto_mod && (lys_node_module(node) != moveto_mod)) { |
| return -1; |
| } |
| |
| /* context check */ |
| if ((root_type == LYXP_NODE_ROOT_CONFIG) && (node->flags & LYS_CONFIG_R)) { |
| return -1; |
| } |
| |
| /* name check */ |
| if (!ly_strequal(node->name, node_name, 1) && strcmp(node_name, "*")) { |
| return -1; |
| } |
| |
| /* match */ |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Add \p node into \p set as a part of NameTest processing. |
| * |
| * @param[in] node Node to add. |
| * @param[in] pos Node sort position. |
| * @param[in,out] set Set to use. |
| * @param[in] i Desired index of \p node in \p set. |
| * @param[in,out] replaced Whether the node in \p set has already been replaced. |
| */ |
| static void |
| moveto_node_add(struct lyxp_set *set, struct lyd_node *node, uint32_t pos, uint32_t i, int *replaced) |
| { |
| if (!(*replaced)) { |
| set->val.nodes[i].node = node; |
| set->val.nodes[i].type = LYXP_NODE_ELEM; |
| set->val.nodes[i].pos = pos; |
| *replaced = 1; |
| } else { |
| set_insert_node(set, node, pos, LYXP_NODE_ELEM, i); |
| } |
| } |
| |
| /** |
| * @brief Move context \p set to a node. Handles '/' and '*', 'NAME', 'PREFIX:*', or 'PREFIX:NAME'. |
| * Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY). Context position aware. |
| * |
| * @param[in,out] set Set to use. |
| * @param[in] cur_node Original context node. |
| * @param[in] qname Qualified node name to move to. |
| * @param[in] qname_len Length of \p qname. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| moveto_node(struct lyxp_set *set, struct lyd_node *cur_node, const char *qname, uint16_t qname_len, int options) |
| { |
| uint32_t i; |
| int replaced, pref_len, ret; |
| const char *ptr, *name_dict = NULL; /* optimalization - so we can do (==) instead (!strncmp(...)) in moveto_node_check() */ |
| struct lys_module *moveto_mod; |
| struct lyd_node *sub; |
| struct ly_ctx *ctx; |
| enum lyxp_node_type root_type; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| assert(cur_node); |
| |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| ctx = cur_node->schema->module->ctx; |
| moveto_get_root(cur_node, options, &root_type); |
| |
| /* prefix */ |
| if ((ptr = strnchr(qname, ':', qname_len))) { |
| pref_len = ptr - qname; |
| moveto_mod = moveto_resolve_model(qname, pref_len, ctx, NULL, 1); |
| if (!moveto_mod) { |
| LOGINT; |
| return -1; |
| } |
| qname += pref_len + 1; |
| qname_len -= pref_len + 1; |
| } else { |
| moveto_mod = NULL; |
| } |
| |
| /* name */ |
| name_dict = lydict_insert(ctx, qname, qname_len); |
| |
| for (i = 0; i < set->used; ) { |
| replaced = 0; |
| |
| if ((set->val.nodes[i].type == LYXP_NODE_ROOT_CONFIG) || (set->val.nodes[i].type == LYXP_NODE_ROOT)) { |
| LY_TREE_FOR(set->val.nodes[i].node, sub) { |
| ret = moveto_node_check(sub, root_type, name_dict, moveto_mod, options); |
| if (!ret) { |
| /* pos filled later */ |
| moveto_node_add(set, sub, 0, i, &replaced); |
| ++i; |
| } else if (ret == EXIT_FAILURE) { |
| lydict_remove(ctx, name_dict); |
| return EXIT_FAILURE; |
| } |
| } |
| |
| /* skip nodes without children - leaves, leaflists, anyxmls, and dummy nodes (ouput root will eval to true) */ |
| } else if (!(set->val.nodes[i].node->validity & LYD_VAL_INUSE) |
| && !(set->val.nodes[i].node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA))) { |
| |
| LY_TREE_FOR(set->val.nodes[i].node->child, sub) { |
| ret = moveto_node_check(sub, root_type, name_dict, moveto_mod, options); |
| if (!ret) { |
| moveto_node_add(set, sub, 0, i, &replaced); |
| ++i; |
| } else if (ret == EXIT_FAILURE) { |
| lydict_remove(ctx, name_dict); |
| return EXIT_FAILURE; |
| } |
| } |
| } |
| |
| if (!replaced) { |
| /* no match */ |
| set_remove_node(set, i); |
| } |
| } |
| lydict_remove(ctx, name_dict); |
| |
| return EXIT_SUCCESS; |
| } |
| |
| static int |
| moveto_snode(struct lyxp_set *set, struct lys_node *cur_node, const char *qname, uint16_t qname_len, int options) |
| { |
| int i, orig_used, pref_len, idx, temp_ctx = 0; |
| const char *ptr, *name_dict = NULL; /* optimalization - so we can do (==) instead (!strncmp(...)) in moveto_node_check() */ |
| struct lys_module *moveto_mod; |
| const struct lys_node *sub; |
| struct ly_ctx *ctx; |
| enum lyxp_node_type root_type; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set->type != LYXP_SET_SNODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| ctx = cur_node->module->ctx; |
| moveto_snode_get_root(cur_node, options, &root_type); |
| |
| /* prefix */ |
| if ((ptr = strnchr(qname, ':', qname_len))) { |
| pref_len = ptr - qname; |
| moveto_mod = moveto_resolve_model(qname, pref_len, ctx, cur_node, 1); |
| if (!moveto_mod) { |
| LOGVAL(LYE_XPATH_INMOD, LY_VLOG_NONE, NULL, pref_len, qname); |
| return -1; |
| } |
| qname += pref_len + 1; |
| qname_len -= pref_len + 1; |
| } else { |
| moveto_mod = NULL; |
| } |
| |
| /* name */ |
| name_dict = lydict_insert(ctx, qname, qname_len); |
| |
| orig_used = set->used; |
| for (i = 0; i < orig_used; ++i) { |
| if (set->val.snodes[i].in_ctx != 1) { |
| continue; |
| } |
| set->val.snodes[i].in_ctx = 0; |
| |
| if ((set->val.snodes[i].type == LYXP_NODE_ROOT_CONFIG) || (set->val.snodes[i].type == LYXP_NODE_ROOT)) { |
| /* it can actually be in any module, it's all <running>, but we know it's moveto_mod (if set), |
| * so use it directly (root node itself is useless in this case) */ |
| sub = NULL; |
| while ((sub = lys_getnext(sub, NULL, (moveto_mod ? moveto_mod : lys_node_module(set->val.snodes[i].snode)), 0))) { |
| if (!moveto_snode_check(sub, root_type, name_dict, moveto_mod, options)) { |
| idx = set_snode_insert_node(set, sub, LYXP_NODE_ELEM); |
| /* we need to prevent these nodes to be considered in this moveto */ |
| if ((idx < orig_used) && (idx > i)) { |
| set->val.snodes[idx].in_ctx = 2; |
| temp_ctx = 1; |
| } |
| } |
| } |
| |
| /* skip nodes without children - leaves, leaflists, and anyxmls (ouput root will eval to true) */ |
| } else if (!(set->val.snodes[i].snode->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA))) { |
| sub = NULL; |
| while ((sub = lys_getnext(sub, set->val.snodes[i].snode, NULL, 0))) { |
| if (!moveto_snode_check(sub, root_type, name_dict, moveto_mod, options)) { |
| idx = set_snode_insert_node(set, sub, LYXP_NODE_ELEM); |
| if ((idx < orig_used) && (idx > i)) { |
| set->val.snodes[idx].in_ctx = 2; |
| temp_ctx = 1; |
| } |
| } |
| } |
| } |
| } |
| lydict_remove(ctx, name_dict); |
| |
| /* correct temporary in_ctx values */ |
| if (temp_ctx) { |
| for (i = 0; i < orig_used; ++i) { |
| if (set->val.snodes[i].in_ctx == 2) { |
| set->val.snodes[i].in_ctx = 1; |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Move context \p set to a node and all its descendants. Handles '//' and '*', 'NAME', |
| * 'PREFIX:*', or 'PREFIX:NAME'. Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY). |
| * Context position aware. |
| * |
| * @param[in] set Set to use. |
| * @param[in] cur_node Original context node. |
| * @param[in] qname Qualified node name to move to. |
| * @param[in] qname_len Length of \p qname. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, ECIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| moveto_node_alldesc(struct lyxp_set *set, struct lyd_node *cur_node, const char *qname, uint16_t qname_len, |
| int options) |
| { |
| uint32_t i; |
| int pref_len, all = 0, replace, match, ret; |
| struct lyd_node *next, *elem, *start; |
| struct lys_module *moveto_mod; |
| enum lyxp_node_type root_type; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| moveto_get_root(cur_node, options, &root_type); |
| |
| /* prefix */ |
| if (strnchr(qname, ':', qname_len) && cur_node) { |
| pref_len = strnchr(qname, ':', qname_len) - qname; |
| moveto_mod = moveto_resolve_model(qname, pref_len, cur_node->schema->module->ctx, NULL, 1); |
| if (!moveto_mod) { |
| LOGINT; |
| return -1; |
| } |
| qname += pref_len + 1; |
| qname_len -= pref_len + 1; |
| } else { |
| moveto_mod = NULL; |
| } |
| |
| /* replace the original nodes (and throws away all text and attr nodes, root is replaced by a child) */ |
| ret = moveto_node(set, cur_node, "*", 1, options); |
| if (ret) { |
| return ret; |
| } |
| |
| if ((qname_len == 1) && (qname[0] == '*')) { |
| all = 1; |
| } |
| |
| /* this loop traverses all the nodes in the set and addds/keeps only |
| * those that match qname */ |
| for (i = 0; i < set->used; ) { |
| /* TREE DFS */ |
| start = set->val.nodes[i].node; |
| replace = 0; |
| for (elem = next = start; elem; elem = next) { |
| |
| /* dummy and context check */ |
| if ((elem->validity & LYD_VAL_INUSE) || ((root_type == LYXP_NODE_ROOT_CONFIG) && (elem->schema->flags & LYS_CONFIG_R))) { |
| goto skip_children; |
| } |
| |
| match = 1; |
| |
| /* module check */ |
| if (moveto_mod && (lys_node_module(elem->schema) != moveto_mod)) { |
| match = 0; |
| } |
| |
| /* name check */ |
| if (!all && (strncmp(elem->schema->name, qname, qname_len) || elem->schema->name[qname_len])) { |
| match = 0; |
| } |
| |
| /* when check */ |
| if ((options & LYXP_WHEN) && !LYD_WHEN_DONE(elem->when_status)) { |
| return EXIT_FAILURE; |
| } |
| |
| if (match && (elem != start)) { |
| if (set_dup_node_check(set, elem, LYXP_NODE_ELEM, i) > -1) { |
| /* we'll process it later */ |
| goto skip_children; |
| } else if (replace) { |
| set->val.nodes[i].node = elem; |
| assert(set->val.nodes[i].type == LYXP_NODE_ELEM); |
| set->val.nodes[i].pos = 0; |
| replace = 0; |
| } else { |
| set_insert_node(set, elem, 0, LYXP_NODE_ELEM, i + 1); |
| ++i; |
| } |
| } else if (!match && (elem == start)) { |
| /* we need to replace a node that is already in the set */ |
| replace = 1; |
| } |
| |
| /* TREE DFS NEXT ELEM */ |
| /* select element for the next run - children first */ |
| next = elem->child; |
| if (elem->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) { |
| next = NULL; |
| } |
| if (!next) { |
| skip_children: |
| /* no children, so try siblings, but only if it's not the start, |
| * that is considered to be the root and it's siblings are not traversed */ |
| if (elem != start) { |
| next = elem->next; |
| } else { |
| break; |
| } |
| } |
| while (!next) { |
| /* no siblings, go back through the parents */ |
| if (elem->parent == start) { |
| /* we are done, no next element to process */ |
| break; |
| } |
| /* parent is already processed, go to its sibling */ |
| elem = elem->parent; |
| next = elem->next; |
| } |
| } |
| |
| if (replace) { |
| set_remove_node(set, i); |
| } else { |
| ++i; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| static int |
| moveto_snode_alldesc(struct lyxp_set *set, struct lys_node *cur_node, const char *qname, uint16_t qname_len, |
| int options) |
| { |
| int i, orig_used, pref_len, all = 0, match, idx; |
| struct lys_node *next, *elem, *start; |
| struct lys_module *moveto_mod; |
| struct ly_ctx *ctx; |
| enum lyxp_node_type root_type; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set->type != LYXP_SET_SNODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| ctx = cur_node->module->ctx; |
| moveto_snode_get_root(cur_node, options, &root_type); |
| |
| /* add all matching direct descendant nodes */ |
| idx = moveto_snode(set, cur_node, qname, qname_len, options); |
| if (idx) { |
| return idx; |
| } |
| |
| /* prefix */ |
| if (strnchr(qname, ':', qname_len)) { |
| pref_len = strnchr(qname, ':', qname_len) - qname; |
| moveto_mod = moveto_resolve_model(qname, pref_len, ctx, cur_node, 1); |
| if (!moveto_mod) { |
| LOGVAL(LYE_XPATH_INMOD, LY_VLOG_NONE, NULL, pref_len, qname); |
| return -1; |
| } |
| qname += pref_len + 1; |
| qname_len -= pref_len + 1; |
| } else { |
| moveto_mod = NULL; |
| } |
| |
| if ((qname_len == 1) && (qname[0] == '*')) { |
| all = 1; |
| } |
| |
| orig_used = set->used; |
| for (i = 0; i < orig_used; ++i) { |
| if (set->val.snodes[i].in_ctx != 1) { |
| continue; |
| } |
| |
| /* TREE DFS */ |
| start = set->val.snodes[i].snode; |
| for (elem = next = start; elem; elem = next) { |
| |
| /* context/nodetype check */ |
| if ((root_type == LYXP_NODE_ROOT_CONFIG) && (elem->flags & LYS_CONFIG_R)) { |
| /* valid node, but it is hidden in this context */ |
| goto skip_children; |
| } |
| switch (elem->nodetype) { |
| case LYS_USES: |
| case LYS_CHOICE: |
| case LYS_CASE: |
| /* schema-only nodes */ |
| goto next_iter; |
| case LYS_INPUT: |
| if (options & LYXP_SNODE_OUTPUT) { |
| goto skip_children; |
| } |
| goto next_iter; |
| case LYS_OUTPUT: |
| if (!(options & LYXP_SNODE_OUTPUT)) { |
| goto skip_children; |
| } |
| goto next_iter; |
| case LYS_GROUPING: |
| goto skip_children; |
| default: |
| break; |
| } |
| |
| match = 1; |
| |
| /* module check */ |
| if (moveto_mod && (lys_node_module(elem) != moveto_mod)) { |
| match = 0; |
| } |
| |
| /* name check */ |
| if (!all && (strncmp(elem->name, qname, qname_len) || elem->name[qname_len])) { |
| match = 0; |
| } |
| |
| if (match && (elem != start)) { |
| if ((idx = set_snode_dup_node_check(set, elem, LYXP_NODE_ELEM, i)) > -1) { |
| set->val.snodes[idx].in_ctx = 1; |
| if (idx > i) { |
| /* we will process it later in the set */ |
| goto skip_children; |
| } |
| } else { |
| set_snode_insert_node(set, elem, LYXP_NODE_ELEM); |
| } |
| } else if (!match && (elem == start)) { |
| /* start node must match! */ |
| LOGINT; |
| } |
| |
| next_iter: |
| /* TREE DFS NEXT ELEM */ |
| /* select element for the next run - children first */ |
| next = elem->child; |
| if (elem->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) { |
| next = NULL; |
| } |
| if (!next) { |
| skip_children: |
| /* no children, so try siblings, but only if it's not the start, |
| * that is considered to be the root and it's siblings are not traversed */ |
| if (elem != start) { |
| next = elem->next; |
| } else { |
| break; |
| } |
| } |
| while (!next) { |
| /* no siblings, go back through the parents */ |
| if (lys_parent(elem) == start) { |
| /* we are done, no next element to process */ |
| break; |
| } |
| /* parent is already processed, go to its sibling */ |
| elem = lys_parent(elem); |
| next = elem->next; |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Move context \p set to an attribute. Handles '/' and '@*', '@NAME', '@PREFIX:*', |
| * or '@PREFIX:NAME'. Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY). |
| * Indirectly context position aware. |
| * |
| * @param[in,out] set Set to use. |
| * @param[in] qname Qualified node name to move to. |
| * @param[in] qname_len Length of \p qname. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| moveto_attr(struct lyxp_set *set, struct lyd_node *cur_node, const char *qname, uint16_t qname_len, int UNUSED(options)) |
| { |
| uint32_t i; |
| int replaced, all = 0, pref_len; |
| struct lys_module *moveto_mod; |
| struct lyd_attr *sub; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| /* prefix */ |
| if (strnchr(qname, ':', qname_len) && cur_node) { |
| pref_len = strnchr(qname, ':', qname_len) - qname; |
| moveto_mod = moveto_resolve_model(qname, pref_len, cur_node->schema->module->ctx, NULL, 1); |
| if (!moveto_mod) { |
| LOGINT; |
| return -1; |
| } |
| qname += pref_len + 1; |
| qname_len -= pref_len + 1; |
| } else { |
| moveto_mod = NULL; |
| } |
| |
| if ((qname_len == 1) && (qname[0] == '*')) { |
| all = 1; |
| } |
| |
| for (i = 0; i < set->used; ) { |
| replaced = 0; |
| |
| /* only attributes of an elem (not dummy) can be in the result, skip all the rest; |
| * our attributes are always qualified */ |
| if ((set->val.nodes[i].type == LYXP_NODE_ELEM) && !(set->val.nodes[i].node->validity & LYD_VAL_INUSE)) { |
| LY_TREE_FOR(set->val.nodes[i].node->attr, sub) { |
| |
| /* check "namespace" */ |
| if (moveto_mod && (sub->annotation->module != moveto_mod)) { |
| /* no match */ |
| continue; |
| } |
| |
| if (all || (!strncmp(sub->name, qname, qname_len) && !sub->name[qname_len])) { |
| /* match */ |
| if (!replaced) { |
| set->val.attrs[i].attr = sub; |
| set->val.attrs[i].type = LYXP_NODE_ATTR; |
| /* pos does not change */ |
| replaced = 1; |
| } else { |
| set_insert_node(set, (struct lyd_node *)sub, set->val.nodes[i].pos, LYXP_NODE_ATTR, i + 1); |
| } |
| ++i; |
| } |
| } |
| } |
| |
| if (!replaced) { |
| /* no match */ |
| set_remove_node(set, i); |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Move context \p set1 to union with \p set2. \p set2 is emptied afterwards. |
| * Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY). Context position aware. |
| * |
| * @param[in,out] set1 Set to use for the result. |
| * @param[in] set2 Set that is copied to \p set1. |
| * @param[in] cur_node Original context node. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| moveto_union(struct lyxp_set *set1, struct lyxp_set *set2, struct lyd_node *cur_node, int options) |
| { |
| if (((set1->type != LYXP_SET_NODE_SET) && (set1->type != LYXP_SET_EMPTY)) |
| || ((set2->type != LYXP_SET_NODE_SET) && (set2->type != LYXP_SET_EMPTY))) { |
| LOGVAL(LYE_XPATH_INOP_2, LY_VLOG_NONE, NULL, "union", print_set_type(set1), print_set_type(set2)); |
| return -1; |
| } |
| |
| /* set2 is empty or both set1 and set2 */ |
| if (set2->type == LYXP_SET_EMPTY) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set1->type == LYXP_SET_EMPTY) { |
| memcpy(set1, set2, sizeof *set1); |
| /* dynamic memory belongs to set1 now, do not free */ |
| set2->type = LYXP_SET_EMPTY; |
| return EXIT_SUCCESS; |
| } |
| |
| #ifndef NDEBUG |
| /* we assume sets are sorted */ |
| if ((set_sort(set1, cur_node, options) > 1) || (set_sort(set2, cur_node, options) > 1)) { |
| LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__); |
| } |
| #endif |
| |
| /* sort, remove duplicates */ |
| if (set_sorted_merge(set1, set2, cur_node, options)) { |
| return -1; |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Move context \p set to an attribute in any of the descendants. Handles '//' and '@*', |
| * '@NAME', '@PREFIX:*', or '@PREFIX:NAME'. Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY). |
| * Context position aware. |
| * |
| * @param[in,out] set Set to use. |
| * @param[in] cur_node Original context node. |
| * @param[in] qname Qualified node name to move to. |
| * @param[in] qname_len Length of \p qname. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| moveto_attr_alldesc(struct lyxp_set *set, struct lyd_node *cur_node, const char *qname, uint16_t qname_len, |
| int options) |
| { |
| uint32_t i; |
| int pref_len, replaced, all = 0, ret; |
| struct lyd_attr *sub; |
| struct lys_module *moveto_mod; |
| struct lyxp_set *set_all_desc = NULL; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| /* prefix */ |
| if (strnchr(qname, ':', qname_len)) { |
| pref_len = strnchr(qname, ':', qname_len) - qname; |
| moveto_mod = moveto_resolve_model(qname, pref_len, cur_node->schema->module->ctx, NULL, 1); |
| if (!moveto_mod) { |
| LOGINT; |
| return -1; |
| } |
| qname += pref_len + 1; |
| qname_len -= pref_len + 1; |
| } else { |
| moveto_mod = NULL; |
| } |
| |
| /* can be optimized similarly to moveto_node_alldesc() and save considerable amount of memory, |
| * but it likely won't be used much, so it's a waste of time */ |
| /* copy the context */ |
| set_all_desc = set_copy(set); |
| /* get all descendant nodes (the original context nodes are removed) */ |
| ret = moveto_node_alldesc(set_all_desc, cur_node, "*", 1, options); |
| if (ret) { |
| lyxp_set_free(set_all_desc); |
| return ret; |
| } |
| /* prepend the original context nodes */ |
| if (moveto_union(set, set_all_desc, cur_node, options)) { |
| lyxp_set_free(set_all_desc); |
| return -1; |
| } |
| lyxp_set_free(set_all_desc); |
| |
| if ((qname_len == 1) && (qname[0] == '*')) { |
| all = 1; |
| } |
| |
| for (i = 0; i < set->used; ) { |
| replaced = 0; |
| |
| /* only attributes of an elem can be in the result, skip all the rest, |
| * we have all attributes qualified in lyd tree */ |
| if (set->val.nodes[i].type == LYXP_NODE_ELEM) { |
| LY_TREE_FOR(set->val.nodes[i].node->attr, sub) { |
| /* check "namespace" */ |
| if (moveto_mod && (sub->annotation->module != moveto_mod)) { |
| /* no match */ |
| continue; |
| } |
| |
| if (all || (!strncmp(sub->name, qname, qname_len) && !sub->name[qname_len])) { |
| /* match */ |
| if (!replaced) { |
| set->val.attrs[i].attr = sub; |
| set->val.attrs[i].type = LYXP_NODE_ATTR; |
| /* pos does not change */ |
| replaced = 1; |
| } else { |
| set_insert_node(set, (struct lyd_node *)sub, set->val.attrs[i].pos, LYXP_NODE_ATTR, i + 1); |
| } |
| ++i; |
| } |
| } |
| } |
| |
| if (!replaced) { |
| /* no match */ |
| set_remove_node(set, i); |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Move context \p set to self. Handles '/' or '//' and '.'. Result is LYXP_SET_NODE_SET |
| * (or LYXP_SET_EMPTY). Context position aware. |
| * |
| * @param[in,out] set Set to use. |
| * @param[in] cur_node Original context node. |
| * @param[in] all_desc Whether to go to all descendants ('//') or not ('/'). |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| moveto_self(struct lyxp_set *set, struct lyd_node *cur_node, int all_desc, int options) |
| { |
| struct lyd_node *sub; |
| uint32_t i, cont_i; |
| enum lyxp_node_type root_type; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| /* nothing to do */ |
| if (!all_desc) { |
| return EXIT_SUCCESS; |
| } |
| |
| moveto_get_root(cur_node, options, &root_type); |
| |
| /* add all the children, they get added recursively */ |
| for (i = 0; i < set->used; ++i) { |
| cont_i = 0; |
| |
| /* do not touch attributes and text nodes */ |
| if ((set->val.nodes[i].type == LYXP_NODE_TEXT) || (set->val.nodes[i].type == LYXP_NODE_ATTR)) { |
| continue; |
| } |
| |
| /* skip anydata/anyxml and dummy nodes */ |
| if ((set->val.nodes[i].node->schema->nodetype & LYS_ANYDATA) || (set->val.nodes[i].node->validity & LYD_VAL_INUSE)) { |
| continue; |
| } |
| |
| /* add all the children ... */ |
| if (!(set->val.nodes[i].node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST))) { |
| LY_TREE_FOR(set->val.nodes[i].node->child, sub) { |
| /* context check */ |
| if ((root_type == LYXP_NODE_ROOT_CONFIG) && (sub->schema->flags & LYS_CONFIG_R)) { |
| continue; |
| } |
| |
| /* when check */ |
| if ((options & LYXP_WHEN) && !LYD_WHEN_DONE(sub->when_status)) { |
| return EXIT_FAILURE; |
| } |
| |
| if (set_dup_node_check(set, sub, LYXP_NODE_ELEM, -1) == -1) { |
| set_insert_node(set, sub, 0, LYXP_NODE_ELEM, i + cont_i + 1); |
| ++cont_i; |
| } |
| } |
| |
| /* ... or add their text node, ... */ |
| } else { |
| /* ... but only non-empty */ |
| sub = set->val.nodes[i].node; |
| if (((struct lyd_node_leaf_list *)sub)->value_str) { |
| if (set_dup_node_check(set, sub, LYXP_NODE_TEXT, -1) == -1) { |
| set_insert_node(set, sub, set->val.nodes[i].pos, LYXP_NODE_TEXT, i + 1); |
| } |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| static int |
| moveto_snode_self(struct lyxp_set *set, struct lys_node *cur_node, int all_desc, int options) |
| { |
| const struct lys_node *sub; |
| uint32_t i; |
| enum lyxp_node_type root_type; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set->type != LYXP_SET_SNODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| /* nothing to do */ |
| if (!all_desc) { |
| return EXIT_SUCCESS; |
| } |
| |
| moveto_snode_get_root(cur_node, options, &root_type); |
| |
| /* add all the children, they get added recursively */ |
| for (i = 0; i < set->used; ++i) { |
| if (set->val.snodes[i].in_ctx != 1) { |
| continue; |
| } |
| |
| /* add all the children */ |
| if (set->val.snodes[i].snode->nodetype & (LYS_LIST | LYS_CONTAINER)) { |
| sub = NULL; |
| while ((sub = lys_getnext(sub, set->val.snodes[i].snode, NULL, 0))) { |
| /* RPC input/output check */ |
| if (options & LYXP_SNODE_OUTPUT) { |
| if (lys_parent(sub)->nodetype == LYS_INPUT) { |
| continue; |
| } |
| } else { |
| if (lys_parent(sub)->nodetype == LYS_OUTPUT) { |
| continue; |
| } |
| } |
| |
| /* context check */ |
| if ((root_type == LYXP_NODE_ROOT_CONFIG) && (sub->flags & LYS_CONFIG_R)) { |
| continue; |
| } |
| |
| set_snode_insert_node(set, sub, LYXP_NODE_ELEM); |
| /* throw away the insert index, we want to consider that node again, recursively */ |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Move context \p set to parent. Handles '/' or '//' and '..'. Result is LYXP_SET_NODE_SET |
| * (or LYXP_SET_EMPTY). Context position aware. |
| * |
| * @param[in] set Set to use. |
| * @param[in] cur_node Original context node. |
| * @param[in] all_desc Whether to go to all descendants ('//') or not ('/'). |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| moveto_parent(struct lyxp_set *set, struct lyd_node *cur_node, int all_desc, int options) |
| { |
| int ret; |
| uint32_t i; |
| struct lyd_node *node, *new_node; |
| const struct lyd_node *root; |
| enum lyxp_node_type root_type, new_type; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set->type != LYXP_SET_NODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| if (all_desc) { |
| /* <path>//.. == <path>//./.. */ |
| ret = moveto_self(set, cur_node, 1, options); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| root = moveto_get_root(cur_node, options, &root_type); |
| |
| for (i = 0; i < set->used; ) { |
| node = set->val.nodes[i].node; |
| |
| if (set->val.nodes[i].type == LYXP_NODE_ELEM) { |
| new_node = node->parent; |
| } else if (set->val.nodes[i].type == LYXP_NODE_TEXT) { |
| new_node = node; |
| } else if (set->val.nodes[i].type == LYXP_NODE_ATTR) { |
| new_node = (struct lyd_node *)lyd_attr_parent(root, set->val.attrs[i].attr); |
| if (!new_node) { |
| LOGINT; |
| return -1; |
| } |
| } else { |
| /* root does not have a parent */ |
| set_remove_node(set, i); |
| continue; |
| } |
| |
| /* when check */ |
| if ((options & LYXP_WHEN) && new_node && !LYD_WHEN_DONE(new_node->when_status)) { |
| return EXIT_FAILURE; |
| } |
| |
| /* node already there can also be the root */ |
| if (root == node) { |
| if (options && (cur_node->schema->flags & LYS_CONFIG_W)) { |
| new_type = LYXP_NODE_ROOT_CONFIG; |
| } else { |
| new_type = LYXP_NODE_ROOT; |
| } |
| new_node = node; |
| |
| /* node has no parent */ |
| } else if (!new_node) { |
| if (options && (cur_node->schema->flags & LYS_CONFIG_W)) { |
| new_type = LYXP_NODE_ROOT_CONFIG; |
| } else { |
| new_type = LYXP_NODE_ROOT; |
| } |
| #ifndef NDEBUG |
| for (; node->prev->next; node = node->prev); |
| if (node != root) { |
| LOGINT; |
| } |
| #endif |
| new_node = (struct lyd_node *)root; |
| |
| /* node has a standard parent (it can equal the root, it's not the root yet since they are fake) */ |
| } else { |
| new_type = LYXP_NODE_ELEM; |
| } |
| |
| assert((new_type == LYXP_NODE_ELEM) || ((new_type == root_type) && (new_node == root))); |
| |
| if (set_dup_node_check(set, new_node, new_type, -1) > -1) { |
| set_remove_node(set, i); |
| } else { |
| set->val.nodes[i].node = new_node; |
| set->val.nodes[i].type = new_type; |
| set->val.nodes[i].pos = 0; |
| |
| ++i; |
| } |
| } |
| |
| #ifndef NDEBUG |
| if (set_sort(set, cur_node, options) > 1) { |
| LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__); |
| } |
| if (set_sorted_dup_node_clean(set)) { |
| LOGERR(LY_EINT, "XPath set includes duplicates (%s).", __func__); |
| } |
| #endif |
| |
| return EXIT_SUCCESS; |
| } |
| |
| static int |
| moveto_snode_parent(struct lyxp_set *set, struct lys_node *cur_node, int all_desc, int options) |
| { |
| int idx, i, orig_used, temp_ctx = 0; |
| struct lys_node *node, *new_node; |
| const struct lys_node *root; |
| enum lyxp_node_type root_type, new_type; |
| |
| if (!set || (set->type == LYXP_SET_EMPTY)) { |
| return EXIT_SUCCESS; |
| } |
| |
| if (set->type != LYXP_SET_SNODE_SET) { |
| LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set)); |
| return -1; |
| } |
| |
| if (all_desc) { |
| /* <path>//.. == <path>//./.. */ |
| idx = moveto_snode_self(set, cur_node, 1, options); |
| if (idx) { |
| return idx; |
| } |
| } |
| |
| root = moveto_snode_get_root(cur_node, options, &root_type); |
| |
| orig_used = set->used; |
| for (i = 0; i < orig_used; ++i) { |
| if (set->val.snodes[i].in_ctx != 1) { |
| continue; |
| } |
| set->val.snodes[i].in_ctx = 0; |
| |
| node = set->val.snodes[i].snode; |
| |
| if (set->val.snodes[i].type == LYXP_NODE_ELEM) { |
| for (new_node = lys_parent(node); |
| new_node && (new_node->nodetype & (LYS_USES | LYS_CHOICE | LYS_CASE | LYS_INPUT | LYS_OUTPUT)); |
| new_node = lys_parent(new_node)); |
| } else { |
| /* root does not have a parent */ |
| continue; |
| } |
| |
| /* node already there can also be the root */ |
| if (root == node) { |
| if ((options & (LYXP_SNODE_MUST | LYXP_SNODE_WHEN)) && (cur_node->flags & LYS_CONFIG_W)) { |
| new_type = LYXP_NODE_ROOT_CONFIG; |
| } else { |
| new_type = LYXP_NODE_ROOT; |
| } |
| new_node = node; |
| |
| /* node has no parent */ |
| } else if (!new_node) { |
| if ((options & (LYXP_SNODE_MUST | LYXP_SNODE_WHEN)) && (cur_node->flags & LYS_CONFIG_W)) { |
| new_type = LYXP_NODE_ROOT_CONFIG; |
| } else { |
| new_type = LYXP_NODE_ROOT; |
| } |
| #ifndef NDEBUG |
| node = (struct lys_node *)lys_getnext(NULL, NULL, lys_node_module(node), 0); |
| if (node != root) { |
| LOGINT; |
| } |
| #endif |
| new_node = (struct lys_node *)root; |
| |
| /* node has a standard parent (it can equal the root, it's not the root yet since they are fake) */ |
| } else { |
| new_type = LYXP_NODE_ELEM; |
| } |
| |
| assert((new_type == LYXP_NODE_ELEM) || ((new_type == root_type) && (new_node == root))); |
| |
| idx = set_snode_insert_node(set, new_node, new_type); |
| if ((idx < orig_used) && (idx > i)) { |
| set->val.snodes[idx].in_ctx = 2; |
| temp_ctx = 1; |
| } |
| } |
| |
| if (temp_ctx) { |
| for (i = 0; i < orig_used; ++i) { |
| if (set->val.snodes[i].in_ctx == 2) { |
| set->val.snodes[i].in_ctx = 1; |
| } |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Move context \p set to the result of a comparison. Handles '=', '!=', '<=', '<', '>=', or '>'. |
| * Result is LYXP_SET_BOOLEAN. Indirectly context position aware. |
| * |
| * @param[in,out] set1 Set to use for the result. |
| * @param[in] set2 Set acting as the second operand for \p op. |
| * @param[in] op Comparison operator to process. |
| * @param[in] cur_node Original context node. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| moveto_op_comp(struct lyxp_set *set1, struct lyxp_set *set2, const char *op, struct lyd_node *cur_node, |
| struct lys_module *local_mod, int options) |
| { |
| /* |
| * NODE SET + NODE SET = STRING + STRING /1 STRING, 2 STRING |
| * NODE SET + STRING = STRING + STRING /1 STRING (2 STRING) |
| * NODE SET + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER) |
| * NODE SET + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN) |
| * STRING + NODE SET = STRING + STRING /(1 STRING) 2 STRING |
| * NUMBER + NODE SET = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER |
| * BOOLEAN + NODE SET = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN |
| * |
| * '=' or '!=' |
| * BOOLEAN + BOOLEAN |
| * BOOLEAN + STRING = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN |
| * BOOLEAN + NUMBER = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN |
| * STRING + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN) |
| * NUMBER + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN) |
| * NUMBER + NUMBER |
| * NUMBER + STRING = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER |
| * STRING + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER) |
| * STRING + STRING |
| * |
| * '<=', '<', '>=', '>' |
| * NUMBER + NUMBER |
| * BOOLEAN + BOOLEAN = NUMBER + NUMBER /1 NUMBER, 2 NUMBER |
| * BOOLEAN + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER) |
| * BOOLEAN + STRING = NUMBER + NUMBER /1 NUMBER, 2 NUMBER |
| * NUMBER + STRING = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER |
| * STRING + STRING = NUMBER + NUMBER /1 NUMBER, 2 NUMBER |
| * STRING + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER) |
| * NUMBER + BOOLEAN = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER |
| * STRING + BOOLEAN = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER |
| */ |
| int result; |
| |
| /* we can evaluate it immediately */ |
| if ((set1->type == set2->type) && (set1->type != LYXP_SET_EMPTY) && (set1->type != LYXP_SET_NODE_SET) |
| && (((op[0] == '=') || (op[0] == '!')) || ((set1->type != LYXP_SET_BOOLEAN) && (set1->type != LYXP_SET_STRING)))) { |
| |
| /* compute result */ |
| if (op[0] == '=') { |
| if (set1->type == LYXP_SET_BOOLEAN) { |
| result = (set1->val.bool == set2->val.bool); |
| } else if (set1->type == LYXP_SET_NUMBER) { |
| result = (set1->val.num == set2->val.num); |
| } else { |
| result = (ly_strequal(set1->val.str, set2->val.str, 0)); |
| } |
| } else if (op[0] == '!') { |
| if (set1->type == LYXP_SET_BOOLEAN) { |
| result = (set1->val.bool != set2->val.bool); |
| } else if (set1->type == LYXP_SET_NUMBER) { |
| result = (set1->val.num != set2->val.num); |
| } else { |
| result = (!ly_strequal(set1->val.str, set2->val.str, 0)); |
| } |
| } else { |
| if (set1->type != LYXP_SET_NUMBER) { |
| LOGINT; |
| return -1; |
| } |
| |
| if (op[0] == '<') { |
| if (op[1] == '=') { |
| result = (set1->val.num <= set2->val.num); |
| } else { |
| result = (set1->val.num < set2->val.num); |
| } |
| } else { |
| if (op[1] == '=') { |
| result = (set1->val.num >= set2->val.num); |
| } else { |
| result = (set1->val.num > set2->val.num); |
| } |
| } |
| } |
| |
| /* assign result */ |
| if (result) { |
| set_fill_boolean(set1, 1); |
| } else { |
| set_fill_boolean(set1, 0); |
| } |
| |
| lyxp_set_cast(set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return EXIT_SUCCESS; |
| } |
| |
| /* convert first */ |
| if (((set1->type == LYXP_SET_NODE_SET) || (set1->type == LYXP_SET_EMPTY) || (set1->type == LYXP_SET_STRING)) |
| && ((set2->type == LYXP_SET_NODE_SET) || (set2->type == LYXP_SET_EMPTY) || (set2->type == LYXP_SET_STRING)) |
| && ((set1->type != LYXP_SET_STRING) || (set2->type != LYXP_SET_STRING))) { |
| if (lyxp_set_cast(set1, LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(set2, LYXP_SET_STRING, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| } else if ((((set1->type == LYXP_SET_NODE_SET) || (set1->type == LYXP_SET_EMPTY) || (set1->type == LYXP_SET_BOOLEAN)) |
| && ((set2->type == LYXP_SET_NODE_SET) || (set2->type == LYXP_SET_EMPTY) || (set2->type == LYXP_SET_BOOLEAN))) |
| || (((op[0] == '=') || (op[0] == '!')) && ((set1->type == LYXP_SET_BOOLEAN) || (set2->type == LYXP_SET_BOOLEAN)))) { |
| lyxp_set_cast(set1, LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| lyxp_set_cast(set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| |
| } else { |
| if (lyxp_set_cast(set1, LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(set2, LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| } |
| |
| /* now we can evaluate */ |
| return moveto_op_comp(set1, set2, op, cur_node, local_mod, options); |
| } |
| |
| /** |
| * @brief Move context \p set to the result of a basic operation. Handles '+', '-', unary '-', '*', 'div', |
| * or 'mod'. Result is LYXP_SET_NUMBER. Indirectly context position aware. |
| * |
| * @param[in,out] set1 Set to use for the result. |
| * @param[in] set2 Set acting as the second operand for \p op. |
| * @param[in] op Operator to process. |
| * @param[in] cur_node Original context node. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| moveto_op_math(struct lyxp_set *set1, struct lyxp_set *set2, const char *op, struct lyd_node *cur_node, |
| struct lys_module *local_mod, int options) |
| { |
| /* unary '-' */ |
| if (!set2 && (op[0] == '-')) { |
| if (lyxp_set_cast(set1, LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| set1->val.num *= -1; |
| lyxp_set_free(set2); |
| return EXIT_SUCCESS; |
| } |
| |
| assert(set1 && set2); |
| |
| if (lyxp_set_cast(set1, LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| if (lyxp_set_cast(set2, LYXP_SET_NUMBER, cur_node, local_mod, options)) { |
| return -1; |
| } |
| |
| switch (op[0]) { |
| /* '+' */ |
| case '+': |
| set1->val.num += set2->val.num; |
| break; |
| |
| /* '-' */ |
| case '-': |
| set1->val.num -= set2->val.num; |
| break; |
| |
| /* '*' */ |
| case '*': |
| set1->val.num *= set2->val.num; |
| break; |
| |
| /* 'div' */ |
| case 'd': |
| set1->val.num /= set2->val.num; |
| break; |
| |
| /* 'mod' */ |
| case 'm': |
| set1->val.num = ((long long)set1->val.num) % ((long long)set2->val.num); |
| break; |
| |
| default: |
| LOGINT; |
| return -1; |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /* |
| * eval functions |
| * |
| * They execute a parsed XPath expression on some data subtree. |
| */ |
| |
| /** |
| * @brief Evaluate Literal. Logs directly on error. |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static void |
| eval_literal(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyxp_set *set) |
| { |
| if (set) { |
| if (exp->tok_len[*exp_idx] == 2) { |
| set_fill_string(set, "", 0); |
| } else { |
| set_fill_string(set, &exp->expr[exp->expr_pos[*exp_idx] + 1], exp->tok_len[*exp_idx] - 2); |
| } |
| } |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| } |
| |
| /** |
| * @brief Evaluate NodeTest. Logs directly on error. |
| * |
| * [5] NodeTest ::= NameTest | NodeType '(' ')' |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in] attr_axis Whether to search attributes or standard nodes. |
| * @param[in] all_desc Whether to search all the descendants or children only. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_node_test(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| int attr_axis, int all_desc, struct lyxp_set *set, int options) |
| { |
| int i, rc = 0; |
| |
| switch (exp->tokens[*exp_idx]) { |
| case LYXP_TOKEN_NAMETEST: |
| if (attr_axis) { |
| if (set && (options & LYXP_SNODE_ALL)) { |
| set_snode_clear_ctx(set); |
| } else { |
| if (all_desc) { |
| rc = moveto_attr_alldesc(set, cur_node, &exp->expr[exp->expr_pos[*exp_idx]], |
| exp->tok_len[*exp_idx], options); |
| } else { |
| rc = moveto_attr(set, cur_node, &exp->expr[exp->expr_pos[*exp_idx]], exp->tok_len[*exp_idx], |
| options); |
| } |
| } |
| } else { |
| if (all_desc) { |
| if (set && (options & LYXP_SNODE_ALL)) { |
| rc = moveto_snode_alldesc(set, (struct lys_node *)cur_node, &exp->expr[exp->expr_pos[*exp_idx]], |
| exp->tok_len[*exp_idx], options); |
| } else { |
| rc = moveto_node_alldesc(set, cur_node, &exp->expr[exp->expr_pos[*exp_idx]], |
| exp->tok_len[*exp_idx], options); |
| } |
| } else { |
| if (set && (set->type == LYXP_SET_SNODE_SET)) { |
| rc = moveto_snode(set, (struct lys_node *)cur_node, &exp->expr[exp->expr_pos[*exp_idx]], |
| exp->tok_len[*exp_idx], options); |
| } else { |
| rc = moveto_node(set, cur_node, &exp->expr[exp->expr_pos[*exp_idx]], exp->tok_len[*exp_idx], |
| options); |
| } |
| } |
| |
| if (!rc && set && (options & LYXP_SNODE_ALL)) { |
| for (i = set->used - 1; i > -1; --i) { |
| if (set->val.snodes[i].in_ctx) { |
| break; |
| } |
| } |
| if (i == -1) { |
| LOGVAL(LYE_XPATH_INSNODE, LY_VLOG_NONE, NULL, |
| exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]], |
| exp->expr_pos[*exp_idx] + exp->tok_len[*exp_idx], exp->expr); |
| return -1; |
| } |
| } |
| } |
| if (rc) { |
| return rc; |
| } |
| |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| break; |
| |
| case LYXP_TOKEN_NODETYPE: |
| if (set) { |
| assert(exp->tok_len[*exp_idx] == 4); |
| if (set->type == LYXP_SET_SNODE_SET) { |
| set_snode_clear_ctx(set); |
| /* just for the debug message underneath */ |
| set = NULL; |
| } else { |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "node", 4)) { |
| if (xpath_node(NULL, 0, cur_node, local_mod, set, options)) { |
| return -1; |
| } |
| } else { |
| assert(!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "text", 4)); |
| if (xpath_text(NULL, 0, cur_node, local_mod, set, options)) { |
| return -1; |
| } |
| } |
| } |
| } |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| /* '(' */ |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| /* ')' */ |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| break; |
| |
| default: |
| LOGINT; |
| return -1; |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate Predicate. Logs directly on error. |
| * |
| * [6] Predicate ::= '[' Expr ']' |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_predicate(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int ret; |
| uint16_t i, j, orig_exp, brack2_exp; |
| uint32_t orig_pos, orig_size, pred_in_ctx; |
| uint8_t **pred_repeat, rep_size; |
| struct lyxp_set set2; |
| |
| /* '[' */ |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| if (!set) { |
| ret = eval_expr(exp, exp_idx, cur_node, local_mod, NULL, options); |
| if (ret) { |
| return ret; |
| } |
| } else if (set->type == LYXP_SET_NODE_SET) { |
| #ifndef NDEBUG |
| /* we (possibly) need the set sorted, it can affect the result (if the predicate result is a number) */ |
| if (set_sort(set, cur_node, options) > 1) { |
| LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__); |
| } |
| #endif |
| |
| orig_exp = *exp_idx; |
| |
| /* find the predicate end */ |
| for (brack2_exp = orig_exp; exp->tokens[brack2_exp] != LYXP_TOKEN_BRACK2; ++brack2_exp); |
| |
| /* copy predicate repeats, since they get deleted each time (probably not an ideal solution) */ |
| pred_repeat = calloc(brack2_exp - orig_exp, sizeof *pred_repeat); |
| if (!pred_repeat) { |
| LOGMEM; |
| return -1; |
| } |
| for (j = 0; j < brack2_exp - orig_exp; ++j) { |
| if (exp->repeat[orig_exp + j]) { |
| for (rep_size = 0; exp->repeat[orig_exp + j][rep_size]; ++rep_size); |
| ++rep_size; |
| pred_repeat[j] = malloc(rep_size * sizeof **pred_repeat); |
| if (!pred_repeat[j]) { |
| LOGMEM; |
| for (i = 0; i < j; ++i) { |
| free(pred_repeat[j]); |
| } |
| free(pred_repeat); |
| return -1; |
| } |
| memcpy(pred_repeat[j], exp->repeat[orig_exp + j], rep_size * sizeof **pred_repeat); |
| } |
| } |
| |
| orig_size = set->used; |
| for (i = 0, orig_pos = 1; i < set->used; ++orig_pos) { |
| set2.type = LYXP_SET_EMPTY; |
| set_insert_node(&set2, set->val.nodes[i].node, set->val.nodes[i].pos, set->val.nodes[i].type, 0); |
| /* remember the node context position for position() and context size for last() */ |
| set2.ctx_pos = orig_pos; |
| set2.ctx_size = orig_size; |
| *exp_idx = orig_exp; |
| |
| /* replace repeats */ |
| for (j = 0; j < brack2_exp - orig_exp; ++j) { |
| if (pred_repeat[j]) { |
| for (rep_size = 0; pred_repeat[j][rep_size]; ++rep_size); |
| ++rep_size; |
| memcpy(exp->repeat[orig_exp + j], pred_repeat[j], rep_size * sizeof **pred_repeat); |
| } |
| } |
| |
| ret = eval_expr(exp, exp_idx, cur_node, local_mod, &set2, options); |
| if (ret) { |
| for (j = 0; j < brack2_exp - orig_exp; ++j) { |
| free(pred_repeat[j]); |
| } |
| free(pred_repeat); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* number is a position */ |
| if (set2.type == LYXP_SET_NUMBER) { |
| if ((long long)set2.val.num == orig_pos) { |
| set2.val.num = 1; |
| } else { |
| set2.val.num = 0; |
| } |
| } |
| lyxp_set_cast(&set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| |
| /* predicate satisfied or not? */ |
| if (set2.val.bool) { |
| ++i; |
| } else { |
| set_remove_node(set, i); |
| } |
| } |
| |
| /* free predicate repeats */ |
| for (j = 0; j < brack2_exp - orig_exp; ++j) { |
| free(pred_repeat[j]); |
| } |
| free(pred_repeat); |
| |
| } else if (set->type == LYXP_SET_SNODE_SET) { |
| orig_exp = *exp_idx; |
| |
| /* find the predicate end */ |
| for (brack2_exp = orig_exp; exp->tokens[brack2_exp] != LYXP_TOKEN_BRACK2; ++brack2_exp); |
| |
| /* copy predicate repeats, since they get deleted each time (probably not an ideal solution) */ |
| pred_repeat = calloc(brack2_exp - orig_exp, sizeof *pred_repeat); |
| if (!pred_repeat) { |
| LOGMEM; |
| return -1; |
| } |
| for (j = 0; j < brack2_exp - orig_exp; ++j) { |
| if (exp->repeat[orig_exp + j]) { |
| for (rep_size = 0; exp->repeat[orig_exp + j][rep_size]; ++rep_size); |
| ++rep_size; |
| pred_repeat[j] = malloc(rep_size * sizeof **pred_repeat); |
| if (!pred_repeat[j]) { |
| LOGMEM; |
| for (i = 0; i < j; ++i) { |
| free(pred_repeat[j]); |
| } |
| free(pred_repeat); |
| return -1; |
| } |
| memcpy(pred_repeat[j], exp->repeat[orig_exp + j], rep_size * sizeof **pred_repeat); |
| } |
| } |
| |
| /* set special in_ctx to all the valid snodes */ |
| pred_in_ctx = set_snode_new_in_ctx(set); |
| |
| /* use the valid snodes one-by-one */ |
| for (i = 0; i < set->used; ++i) { |
| if (set->val.snodes[i].in_ctx != pred_in_ctx) { |
| continue; |
| } |
| set->val.snodes[i].in_ctx = 1; |
| |
| *exp_idx = orig_exp; |
| |
| /* replace repeats */ |
| for (j = 0; j < brack2_exp - orig_exp; ++j) { |
| if (pred_repeat[j]) { |
| for (rep_size = 0; pred_repeat[j][rep_size]; ++rep_size); |
| ++rep_size; |
| memcpy(exp->repeat[orig_exp + j], pred_repeat[j], rep_size * sizeof **pred_repeat); |
| } |
| } |
| |
| ret = eval_expr(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| for (j = 0; j < brack2_exp - orig_exp; ++j) { |
| free(pred_repeat[j]); |
| } |
| free(pred_repeat); |
| return ret; |
| } |
| |
| set->val.snodes[i].in_ctx = pred_in_ctx; |
| } |
| |
| /* restore the state as it was before the predicate */ |
| for (i = 0; i < set->used; ++i) { |
| if (set->val.snodes[i].in_ctx == 1) { |
| set->val.snodes[i].in_ctx = 0; |
| } else if (set->val.snodes[i].in_ctx == pred_in_ctx) { |
| set->val.snodes[i].in_ctx = 1; |
| } |
| } |
| |
| /* free predicate repeats */ |
| for (j = 0; j < brack2_exp - orig_exp; ++j) { |
| free(pred_repeat[j]); |
| } |
| free(pred_repeat); |
| } else { |
| set2.type = LYXP_SET_EMPTY; |
| set_fill_set(&set2, set); |
| |
| ret = eval_expr(exp, exp_idx, cur_node, local_mod, &set2, options); |
| if (ret) { |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| lyxp_set_cast(&set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| if (!set2.val.bool) { |
| lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| } |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| } |
| |
| /* ']' */ |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate RelativeLocationPath. Logs directly on error. |
| * |
| * [3] RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step |
| * [4] Step ::= '@'? NodeTest Predicate* | '.' | '..' |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in] all_desc Whether to search all the descendants or children only. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_relative_location_path(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| int all_desc, struct lyxp_set *set, int options) |
| { |
| int attr_axis, ret; |
| |
| goto step; |
| do { |
| /* evaluate '/' or '//' */ |
| if (exp->tok_len[*exp_idx] == 1) { |
| all_desc = 0; |
| } else { |
| assert(exp->tok_len[*exp_idx] == 2); |
| all_desc = 1; |
| } |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| step: |
| /* Step */ |
| attr_axis = 0; |
| switch (exp->tokens[*exp_idx]) { |
| case LYXP_TOKEN_DOT: |
| /* evaluate '.' */ |
| if (set && (options & LYXP_SNODE_ALL)) { |
| ret = moveto_snode_self(set, (struct lys_node *)cur_node, all_desc, options); |
| } else { |
| ret = moveto_self(set, cur_node, all_desc, options); |
| } |
| if (ret) { |
| return ret; |
| } |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| break; |
| case LYXP_TOKEN_DDOT: |
| /* evaluate '..' */ |
| if (set && (options & LYXP_SNODE_ALL)) { |
| ret = moveto_snode_parent(set, (struct lys_node *)cur_node, all_desc, options); |
| } else { |
| ret = moveto_parent(set, cur_node, all_desc, options); |
| } |
| if (ret) { |
| return ret; |
| } |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| break; |
| |
| case LYXP_TOKEN_AT: |
| /* evaluate '@' */ |
| attr_axis = 1; |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| /* fall through */ |
| case LYXP_TOKEN_NAMETEST: |
| case LYXP_TOKEN_NODETYPE: |
| ret = eval_node_test(exp, exp_idx, cur_node, local_mod, attr_axis, all_desc, set, options); |
| if (ret) { |
| return ret; |
| } |
| while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_BRACK1)) { |
| ret = eval_predicate(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| return ret; |
| } |
| } |
| break; |
| default: |
| LOGINT; |
| return -1; |
| } |
| } while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_OPERATOR_PATH)); |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate AbsoluteLocationPath. Logs directly on error. |
| * |
| * [2] AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_absolute_location_path(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int all_desc, ret; |
| |
| if (set) { |
| /* no matter what tokens follow, we need to be at the root */ |
| if (options & LYXP_SNODE_ALL) { |
| moveto_snode_root(set, (struct lys_node *)cur_node, options); |
| } else { |
| moveto_root(set, cur_node, options); |
| } |
| } |
| |
| /* '/' RelativeLocationPath? */ |
| if (exp->tok_len[*exp_idx] == 1) { |
| /* evaluate '/' - deferred */ |
| all_desc = 0; |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 0)) { |
| return EXIT_SUCCESS; |
| } |
| switch (exp->tokens[*exp_idx]) { |
| case LYXP_TOKEN_DOT: |
| case LYXP_TOKEN_DDOT: |
| case LYXP_TOKEN_AT: |
| case LYXP_TOKEN_NAMETEST: |
| case LYXP_TOKEN_NODETYPE: |
| ret = eval_relative_location_path(exp, exp_idx, cur_node, local_mod, all_desc, set, options); |
| if (ret) { |
| return ret; |
| } |
| break; |
| default: |
| break; |
| } |
| |
| /* '//' RelativeLocationPath */ |
| } else { |
| /* evaluate '//' - deferred so as not to waste memory by remembering all the nodes */ |
| all_desc = 1; |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| ret = eval_relative_location_path(exp, exp_idx, cur_node, local_mod, all_desc, set, options); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate FunctionCall. Logs directly on error. |
| * |
| * [8] FunctionCall ::= FunctionName '(' ( Expr ( ',' Expr )* )? ')' |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_function_call(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int rc = EXIT_FAILURE; |
| int (*xpath_func)(struct lyxp_set **, uint16_t, struct lyd_node *, struct lys_module *, struct lyxp_set *, int) = NULL; |
| uint16_t arg_count = 0, i; |
| struct lyxp_set **args = NULL, **args_aux; |
| |
| if (set) { |
| /* FunctionName */ |
| switch (exp->tok_len[*exp_idx]) { |
| case 3: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "not", 3)) { |
| xpath_func = &xpath_not; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "sum", 3)) { |
| xpath_func = &xpath_sum; |
| } |
| break; |
| case 4: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "lang", 4)) { |
| xpath_func = &xpath_lang; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "last", 4)) { |
| xpath_func = &xpath_last; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "name", 4)) { |
| xpath_func = &xpath_name; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "true", 4)) { |
| xpath_func = &xpath_true; |
| } |
| break; |
| case 5: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "count", 5)) { |
| xpath_func = &xpath_count; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "false", 5)) { |
| xpath_func = &xpath_false; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "floor", 5)) { |
| xpath_func = &xpath_floor; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "round", 5)) { |
| xpath_func = &xpath_round; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "deref", 5)) { |
| xpath_func = &xpath_deref; |
| } |
| break; |
| case 6: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "concat", 6)) { |
| xpath_func = &xpath_concat; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "number", 6)) { |
| xpath_func = &xpath_number; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "string", 6)) { |
| xpath_func = &xpath_string; |
| } |
| break; |
| case 7: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "boolean", 7)) { |
| xpath_func = &xpath_boolean; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "ceiling", 7)) { |
| xpath_func = &xpath_ceiling; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "current", 7)) { |
| xpath_func = &xpath_current; |
| } |
| break; |
| case 8: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "contains", 8)) { |
| xpath_func = &xpath_contains; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "position", 8)) { |
| xpath_func = &xpath_position; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "re-match", 8)) { |
| xpath_func = &xpath_re_match; |
| } |
| break; |
| case 9: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring", 9)) { |
| xpath_func = &xpath_substring; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "translate", 9)) { |
| xpath_func = &xpath_translate; |
| } |
| break; |
| case 10: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "local-name", 10)) { |
| xpath_func = &xpath_local_name; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "enum-value", 10)) { |
| xpath_func = &xpath_enum_value; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "bit-is-set", 10)) { |
| xpath_func = &xpath_bit_is_set; |
| } |
| break; |
| case 11: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "starts-with", 11)) { |
| xpath_func = &xpath_starts_with; |
| } |
| break; |
| case 12: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "derived-from", 12)) { |
| xpath_func = &xpath_derived_from; |
| } |
| break; |
| case 13: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "namespace-uri", 13)) { |
| xpath_func = &xpath_namespace_uri; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "string-length", 13)) { |
| xpath_func = &xpath_string_length; |
| } |
| break; |
| case 15: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "normalize-space", 15)) { |
| xpath_func = &xpath_normalize_space; |
| } else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring-after", 15)) { |
| xpath_func = &xpath_substring_after; |
| } |
| break; |
| case 16: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring-before", 16)) { |
| xpath_func = &xpath_substring_before; |
| } |
| break; |
| case 20: |
| if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "derived-from-or-self", 20)) { |
| xpath_func = &xpath_derived_from_or_self; |
| } |
| break; |
| } |
| |
| if (!xpath_func) { |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[*exp_idx]]); |
| LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL, |
| "Unknown XPath function \"%.*s\".", exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]]); |
| return -1; |
| } |
| } |
| |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| /* '(' */ |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| /* ( Expr ( ',' Expr )* )? */ |
| if (exp->tokens[*exp_idx] != LYXP_TOKEN_PAR2) { |
| if (set) { |
| args = malloc(sizeof *args); |
| if (!args) { |
| LOGMEM; |
| goto cleanup; |
| } |
| arg_count = 1; |
| args[0] = set_copy(set); |
| if (!args[0]) { |
| goto cleanup; |
| } |
| |
| if ((rc = eval_expr(exp, exp_idx, cur_node, local_mod, args[0], options))) { |
| goto cleanup; |
| } |
| } else { |
| if ((rc = eval_expr(exp, exp_idx, cur_node, local_mod, NULL, options))) { |
| goto cleanup; |
| } |
| } |
| } |
| while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_COMMA)) { |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| if (set) { |
| ++arg_count; |
| args_aux = realloc(args, arg_count * sizeof *args); |
| if (!args_aux) { |
| arg_count--; |
| LOGMEM; |
| goto cleanup; |
| } |
| args = args_aux; |
| args[arg_count - 1] = set_copy(set); |
| if (!args[arg_count - 1]) { |
| goto cleanup; |
| } |
| |
| if ((rc = eval_expr(exp, exp_idx, cur_node, local_mod, args[arg_count - 1], options))) { |
| goto cleanup; |
| } |
| } else { |
| if ((rc = eval_expr(exp, exp_idx, cur_node, local_mod, NULL, options))) { |
| goto cleanup; |
| } |
| } |
| } |
| |
| /* ')' */ |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| if (set) { |
| /* evaluate function */ |
| rc = xpath_func(args, arg_count, cur_node, local_mod, set, options); |
| } else { |
| rc = EXIT_SUCCESS; |
| } |
| |
| cleanup: |
| for (i = 0; i < arg_count; ++i) { |
| lyxp_set_free(args[i]); |
| } |
| free(args); |
| |
| return rc; |
| } |
| |
| /** |
| * @brief Evaluate Number. Logs directly on error. |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * |
| * @return EXIT_SUCCESS on success, -1 on error. |
| */ |
| static int |
| eval_number(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyxp_set *set) |
| { |
| long double num; |
| char *endptr; |
| |
| if (set) { |
| errno = 0; |
| num = strtold(&exp->expr[exp->expr_pos[*exp_idx]], &endptr); |
| if (errno) { |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[*exp_idx]]); |
| LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL, "Failed to convert \"%.*s\" into a long double (%s).", |
| exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]], strerror(errno)); |
| return -1; |
| } else if (endptr - &exp->expr[exp->expr_pos[*exp_idx]] != exp->tok_len[*exp_idx]) { |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[*exp_idx]]); |
| LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL, "Failed to convert \"%.*s\" into a long double.", |
| exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]]); |
| return -1; |
| } |
| |
| set_fill_number(set, num); |
| } |
| |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate PathExpr. Logs directly on error. |
| * |
| * [9] PathExpr ::= LocationPath | PrimaryExpr Predicate* |
| * | PrimaryExpr Predicate* '/' RelativeLocationPath |
| * | PrimaryExpr Predicate* '//' RelativeLocationPath |
| * [1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath |
| * [7] PrimaryExpr ::= '(' Expr ')' | Literal | Number | FunctionCall |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_path_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int all_desc, ret; |
| |
| switch (exp->tokens[*exp_idx]) { |
| case LYXP_TOKEN_PAR1: |
| /* '(' Expr ')' */ |
| |
| /* '(' */ |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| /* Expr */ |
| ret = eval_expr(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| return ret; |
| } |
| |
| /* ')' */ |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| goto predicate; |
| |
| case LYXP_TOKEN_DOT: |
| case LYXP_TOKEN_DDOT: |
| case LYXP_TOKEN_AT: |
| case LYXP_TOKEN_NAMETEST: |
| case LYXP_TOKEN_NODETYPE: |
| /* RelativeLocationPath */ |
| ret = eval_relative_location_path(exp, exp_idx, cur_node, local_mod, 0, set, options); |
| if (ret) { |
| return ret; |
| } |
| break; |
| |
| case LYXP_TOKEN_FUNCNAME: |
| /* FunctionCall */ |
| if (!set || (options & LYXP_SNODE_ALL)) { |
| if (set) { |
| /* the only function returning node-set - thus relevant */ |
| if ((exp->tok_len[*exp_idx] == 7) && !strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "current", 7)) { |
| xpath_current(NULL, 0, cur_node, local_mod, set, options); |
| } else if ((exp->tok_len[*exp_idx] == 5) && !strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "deref", 5)) { |
| ret = eval_function_call(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| return ret; |
| } |
| goto predicate; |
| } else { |
| set_snode_clear_ctx(set); |
| } |
| } |
| ret = eval_function_call(exp, exp_idx, cur_node, local_mod, NULL, options); |
| } else { |
| ret = eval_function_call(exp, exp_idx, cur_node, local_mod, set, options); |
| } |
| if (ret) { |
| return ret; |
| } |
| |
| goto predicate; |
| |
| case LYXP_TOKEN_OPERATOR_PATH: |
| /* AbsoluteLocationPath */ |
| ret = eval_absolute_location_path(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| return ret; |
| } |
| break; |
| |
| case LYXP_TOKEN_LITERAL: |
| /* Literal */ |
| if (!set || (options & LYXP_SNODE_ALL)) { |
| if (set) { |
| set_snode_clear_ctx(set); |
| } |
| eval_literal(exp, exp_idx, NULL); |
| } else { |
| eval_literal(exp, exp_idx, set); |
| } |
| |
| goto predicate; |
| |
| case LYXP_TOKEN_NUMBER: |
| /* Number */ |
| if (!set || (options & LYXP_SNODE_ALL)) { |
| if (set) { |
| set_snode_clear_ctx(set); |
| } |
| ret = eval_number(exp, exp_idx, NULL); |
| } else { |
| ret = eval_number(exp, exp_idx, set); |
| } |
| if (ret) { |
| return ret; |
| } |
| |
| goto predicate; |
| |
| default: |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, |
| print_token(exp->tokens[*exp_idx]), &exp->expr[exp->expr_pos[*exp_idx]]); |
| return -1; |
| } |
| |
| return EXIT_SUCCESS; |
| |
| predicate: |
| /* Predicate* */ |
| while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_BRACK1)) { |
| ret = eval_predicate(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| /* ('/' or '//') RelativeLocationPath */ |
| if ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_OPERATOR_PATH)) { |
| |
| /* evaluate '/' or '//' */ |
| if (exp->tok_len[*exp_idx] == 1) { |
| all_desc = 0; |
| } else { |
| assert(exp->tok_len[*exp_idx] == 2); |
| all_desc = 1; |
| } |
| |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| ret = eval_relative_location_path(exp, exp_idx, cur_node, local_mod, all_desc, set, options); |
| if (ret) { |
| return ret; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate UnaryExpr. Logs directly on error. |
| * |
| * [16] UnaryExpr ::= UnionExpr | '-' UnaryExpr |
| * [17] UnionExpr ::= PathExpr | UnionExpr '|' PathExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_unary_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int unary_minus, ret; |
| uint16_t op_exp; |
| struct lyxp_set orig_set, set2; |
| |
| /* ('-')* */ |
| unary_minus = -1; |
| while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_MATH, 0) |
| && (exp->expr[exp->expr_pos[*exp_idx]] == '-')) { |
| if (unary_minus == -1) { |
| unary_minus = *exp_idx; |
| } else { |
| /* double '-' makes '+', ignore */ |
| unary_minus = -1; |
| } |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| } |
| |
| memset(&orig_set, 0, sizeof orig_set); |
| memset(&set2, 0, sizeof set2); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_UNI)) { |
| /* there is an operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| set_fill_set(&orig_set, set); |
| } else { |
| op_exp = 0; |
| } |
| |
| /* PathExpr */ |
| ret = eval_path_expr(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* ('|' PathExpr)* */ |
| while (op_exp) { |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_UNI)) { |
| /* there is another operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| } else { |
| op_exp = 0; |
| } |
| |
| if (!set) { |
| ret = eval_path_expr(exp, exp_idx, cur_node, local_mod, NULL, options); |
| if (ret) { |
| return ret; |
| } |
| continue; |
| } |
| |
| set_fill_set(&set2, &orig_set); |
| ret = eval_path_expr(exp, exp_idx, cur_node, local_mod, &set2, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* eval */ |
| if (options & LYXP_SNODE_ALL) { |
| set_snode_merge(set, &set2); |
| } else if (moveto_union(set, &set2, cur_node, options)) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return -1; |
| } |
| } |
| |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| /* now we have all the unions in set and no other memory allocated */ |
| |
| if (set && (unary_minus > -1) && !(options & LYXP_SNODE_ALL)) { |
| if (moveto_op_math(set, NULL, &exp->expr[exp->expr_pos[unary_minus]], cur_node, local_mod, options)) { |
| return -1; |
| } |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate MultiplicativeExpr. Logs directly on error. |
| * |
| * [15] MultiplicativeExpr ::= UnaryExpr |
| * | MultiplicativeExpr '*' UnaryExpr |
| * | MultiplicativeExpr 'div' UnaryExpr |
| * | MultiplicativeExpr 'mod' UnaryExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_multiplicative_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int ret; |
| uint16_t this_op, op_exp; |
| struct lyxp_set orig_set, set2; |
| |
| memset(&orig_set, 0, sizeof orig_set); |
| memset(&set2, 0, sizeof set2); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_MATH) |
| && ((exp->expr[exp->expr_pos[op_exp]] == '*') || (exp->tok_len[op_exp] == 3))) { |
| /* there is an operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| set_fill_set(&orig_set, set); |
| } else { |
| op_exp = 0; |
| } |
| |
| /* UnaryExpr */ |
| ret = eval_unary_expr(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* ('*' / 'div' / 'mod' UnaryExpr)* */ |
| while (op_exp) { |
| this_op = *exp_idx; |
| |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_MATH) |
| && ((exp->expr[exp->expr_pos[op_exp]] == '*') || (exp->tok_len[op_exp] == 3))) { |
| /* there is another operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| } else { |
| op_exp = 0; |
| } |
| |
| if (!set) { |
| ret = eval_unary_expr(exp, exp_idx, cur_node, local_mod, NULL, options); |
| if (ret) { |
| return ret; |
| } |
| continue; |
| } |
| |
| set_fill_set(&set2, &orig_set); |
| ret = eval_unary_expr(exp, exp_idx, cur_node, local_mod, &set2, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* eval */ |
| if (options & LYXP_SNODE_ALL) { |
| set_snode_merge(set, &set2); |
| set_snode_clear_ctx(set); |
| } else { |
| if (moveto_op_math(set, &set2, &exp->expr[exp->expr_pos[this_op]], cur_node, local_mod, options)) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return -1; |
| } |
| } |
| } |
| |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate AdditiveExpr. Logs directly on error. |
| * |
| * [14] AdditiveExpr ::= MultiplicativeExpr |
| * | AdditiveExpr '+' MultiplicativeExpr |
| * | AdditiveExpr '-' MultiplicativeExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_additive_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int ret; |
| uint16_t this_op, op_exp; |
| struct lyxp_set orig_set, set2; |
| |
| memset(&orig_set, 0, sizeof orig_set); |
| memset(&set2, 0, sizeof set2); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_MATH) |
| && ((exp->expr[exp->expr_pos[op_exp]] == '+') || (exp->expr[exp->expr_pos[op_exp]] == '-'))) { |
| /* there is an operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| set_fill_set(&orig_set, set); |
| } else { |
| op_exp = 0; |
| } |
| |
| /* MultiplicativeExpr */ |
| ret = eval_multiplicative_expr(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* ('+' / '-' MultiplicativeExpr)* */ |
| while (op_exp) { |
| this_op = *exp_idx; |
| |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_MATH) |
| && ((exp->expr[exp->expr_pos[op_exp]] == '+') || (exp->expr[exp->expr_pos[op_exp]] == '-'))) { |
| /* there is another operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| } else { |
| op_exp = 0; |
| } |
| |
| if (!set) { |
| ret = eval_multiplicative_expr(exp, exp_idx, cur_node, local_mod, NULL, options); |
| if (ret) { |
| return ret; |
| } |
| continue; |
| } |
| |
| set_fill_set(&set2, &orig_set); |
| ret = eval_multiplicative_expr(exp, exp_idx, cur_node, local_mod, &set2, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* eval */ |
| if (options & LYXP_SNODE_ALL) { |
| set_snode_merge(set, &set2); |
| set_snode_clear_ctx(set); |
| } else { |
| if (moveto_op_math(set, &set2, &exp->expr[exp->expr_pos[this_op]], cur_node, local_mod, options)) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return -1; |
| } |
| } |
| } |
| |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate RelationalExpr. Logs directly on error. |
| * |
| * [13] RelationalExpr ::= AdditiveExpr |
| * | RelationalExpr '<' AdditiveExpr |
| * | RelationalExpr '>' AdditiveExpr |
| * | RelationalExpr '<=' AdditiveExpr |
| * | RelationalExpr '>=' AdditiveExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_relational_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int ret; |
| uint16_t this_op, op_exp; |
| struct lyxp_set orig_set, set2; |
| |
| memset(&orig_set, 0, sizeof orig_set); |
| memset(&set2, 0, sizeof set2); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_COMP) |
| && ((exp->expr[exp->expr_pos[op_exp]] == '<') || (exp->expr[exp->expr_pos[op_exp]] == '>'))) { |
| /* there is an operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| set_fill_set(&orig_set, set); |
| } else { |
| op_exp = 0; |
| } |
| |
| /* AdditiveExpr */ |
| ret = eval_additive_expr(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* ('<' / '>' / '<=' / '>=' AdditiveExpr)* */ |
| while (op_exp) { |
| this_op = *exp_idx; |
| |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_COMP) |
| && ((exp->expr[exp->expr_pos[op_exp]] == '<') || (exp->expr[exp->expr_pos[op_exp]] == '>'))) { |
| /* there is another operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| } else { |
| op_exp = 0; |
| } |
| |
| if (!set) { |
| ret = eval_additive_expr(exp, exp_idx, cur_node, local_mod, NULL, options); |
| if (ret) { |
| return ret; |
| } |
| continue; |
| } |
| |
| set_fill_set(&set2, &orig_set); |
| ret = eval_additive_expr(exp, exp_idx, cur_node, local_mod, &set2, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* eval */ |
| if (options & LYXP_SNODE_ALL) { |
| set_snode_merge(set, &set2); |
| set_snode_clear_ctx(set); |
| } else { |
| if (moveto_op_comp(set, &set2, &exp->expr[exp->expr_pos[this_op]], cur_node, local_mod, options)) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return -1; |
| } |
| } |
| } |
| |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate EqualityExpr. Logs directly on error. |
| * |
| * [12] EqualityExpr ::= RelationalExpr | EqualityExpr '=' RelationalExpr |
| * | EqualityExpr '!=' RelationalExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_equality_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int ret; |
| uint16_t this_op, op_exp; |
| struct lyxp_set orig_set, set2; |
| |
| memset(&orig_set, 0, sizeof orig_set); |
| memset(&set2, 0, sizeof set2); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_COMP) |
| && ((exp->expr[exp->expr_pos[op_exp]] == '=') || (exp->expr[exp->expr_pos[op_exp]] == '!'))) { |
| /* there is an operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| set_fill_set(&orig_set, set); |
| } else { |
| op_exp = 0; |
| } |
| |
| /* RelationalExpr */ |
| ret = eval_relational_expr(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* ('=' / '!=' RelationalExpr)* */ |
| while (op_exp) { |
| this_op = *exp_idx; |
| |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_COMP) |
| && ((exp->expr[exp->expr_pos[op_exp]] == '=') || (exp->expr[exp->expr_pos[op_exp]] == '!'))) { |
| /* there is another operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| } else { |
| op_exp = 0; |
| } |
| |
| if (!set) { |
| ret = eval_relational_expr(exp, exp_idx, cur_node, local_mod, NULL, options); |
| if (ret) { |
| return ret; |
| } |
| continue; |
| } |
| |
| set_fill_set(&set2, &orig_set); |
| ret = eval_relational_expr(exp, exp_idx, cur_node, local_mod, &set2, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* eval */ |
| if (options & LYXP_SNODE_ALL) { |
| set_snode_merge(set, &set2); |
| set_snode_clear_ctx(set); |
| } else { |
| if (moveto_op_comp(set, &set2, &exp->expr[exp->expr_pos[this_op]], cur_node, local_mod, options)) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return -1; |
| } |
| } |
| } |
| |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate AndExpr. Logs directly on error. |
| * |
| * [11] AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_and_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int ret; |
| uint16_t op_exp; |
| struct lyxp_set orig_set, set2; |
| |
| memset(&orig_set, 0, sizeof orig_set); |
| memset(&set2, 0, sizeof set2); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_LOG) && (exp->tok_len[op_exp] == 3)) { |
| /* there is an operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| set_fill_set(&orig_set, set); |
| } else { |
| op_exp = 0; |
| } |
| |
| /* EqualityExpr */ |
| ret = eval_equality_expr(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* cast to boolean, we know that will be the final result */ |
| if (op_exp) { |
| if (set && (options & LYXP_SNODE_ALL)) { |
| set_snode_clear_ctx(set); |
| } else { |
| lyxp_set_cast(set, LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| } |
| } |
| |
| /* ('and' EqualityExpr)* */ |
| while (op_exp) { |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (!set || !set->val.bool ? "skipped" : "parsed"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_LOG) && (exp->tok_len[op_exp] == 3)) { |
| /* there is another operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| } else { |
| op_exp = 0; |
| } |
| |
| /* lazy evaluation */ |
| if (!set || ((set->type == LYXP_SET_BOOLEAN) && !set->val.bool)) { |
| ret = eval_equality_expr(exp, exp_idx, cur_node, local_mod, NULL, options); |
| if (ret) { |
| return ret; |
| } |
| continue; |
| } |
| |
| set_fill_set(&set2, &orig_set); |
| ret = eval_equality_expr(exp, exp_idx, cur_node, local_mod, &set2, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* eval - just get boolean value actually */ |
| if (set->type == LYXP_SET_SNODE_SET) { |
| set_snode_clear_ctx(&set2); |
| set_snode_merge(set, &set2); |
| } else { |
| lyxp_set_cast(&set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| set_fill_set(set, &set2); |
| } |
| } |
| |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return EXIT_SUCCESS; |
| } |
| |
| /** |
| * @brief Evaluate Expr. Logs directly on error. |
| * |
| * [10] Expr ::= AndExpr | Expr 'or' AndExpr |
| * |
| * @param[in] exp Parsed XPath expression. |
| * @param[in] exp_idx Position in the expression \p exp. |
| * @param[in] cur_node Start node for the expression \p exp. |
| * @param[in,out] set Context and result set. On NULL the rule is only parsed. |
| * @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation. |
| * |
| * @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error. |
| */ |
| static int |
| eval_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod, |
| struct lyxp_set *set, int options) |
| { |
| int ret; |
| uint16_t op_exp; |
| struct lyxp_set orig_set, set2; |
| |
| memset(&orig_set, 0, sizeof orig_set); |
| memset(&set2, 0, sizeof set2); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_LOG) && (exp->tok_len[op_exp] == 2)) { |
| /* there is an operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| set_fill_set(&orig_set, set); |
| } else { |
| op_exp = 0; |
| } |
| |
| /* AndExpr */ |
| ret = eval_and_expr(exp, exp_idx, cur_node, local_mod, set, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* cast to boolean, we know that will be the final result */ |
| if (op_exp) { |
| if (set && (options & LYXP_SNODE_ALL)) { |
| set_snode_clear_ctx(set); |
| } else { |
| lyxp_set_cast(set, LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| } |
| } |
| |
| /* ('or' AndExpr)* */ |
| while (op_exp) { |
| LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (!set || set->val.bool ? "skipped" : "parsed"), |
| print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]); |
| ++(*exp_idx); |
| |
| op_exp = exp_repeat_peek(exp, *exp_idx); |
| if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_LOG) && (exp->tok_len[op_exp] == 2)) { |
| /* there is another operator */ |
| exp_repeat_pop(exp, *exp_idx); |
| } else { |
| op_exp = 0; |
| } |
| |
| /* lazy evaluation */ |
| if (!set || ((set->type == LYXP_SET_BOOLEAN) && set->val.bool)) { |
| ret = eval_and_expr(exp, exp_idx, cur_node, local_mod, NULL, options); |
| if (ret) { |
| return ret; |
| } |
| continue; |
| } |
| |
| set_fill_set(&set2, &orig_set); |
| ret = eval_and_expr(exp, exp_idx, cur_node, local_mod, &set2, options); |
| if (ret) { |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return ret; |
| } |
| |
| /* eval - just get boolean value actually */ |
| if (set->type == LYXP_SET_SNODE_SET) { |
| set_snode_clear_ctx(&set2); |
| set_snode_merge(set, &set2); |
| } else { |
| lyxp_set_cast(&set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options); |
| set_fill_set(set, &set2); |
| } |
| } |
| |
| lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options); |
| return EXIT_SUCCESS; |
| } |
| |
| int |
| lyxp_eval(const char *expr, const struct lyd_node *cur_node, enum lyxp_node_type cur_node_type, |
| const struct lys_module *local_mod, struct lyxp_set *set, int options) |
| { |
| struct lyxp_expr *exp; |
| uint16_t exp_idx = 0; |
| int rc = -1; |
| |
| if (!expr || !set) { |
| ly_errno = LY_EINVAL; |
| return EXIT_FAILURE; |
| } |
| |
| exp = lyxp_parse_expr(expr); |
| if (!exp) { |
| rc = -1; |
| goto finish; |
| } |
| |
| rc = reparse_expr(exp, &exp_idx); |
| if (rc) { |
| goto finish; |
| } else if (exp->used > exp_idx) { |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[exp_idx]]); |
| LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL, "Unparsed characters \"%s\" left at the end of an XPath expression.", |
| &exp->expr[exp->expr_pos[exp_idx]]); |
| rc = -1; |
| goto finish; |
| } |
| |
| print_expr_struct_debug(exp); |
| |
| exp_idx = 0; |
| memset(set, 0, sizeof *set); |
| if (cur_node) { |
| set_insert_node(set, (struct lyd_node *)cur_node, 0, cur_node_type, 0); |
| } |
| |
| rc = eval_expr(exp, &exp_idx, (struct lyd_node *)cur_node, (struct lys_module *)local_mod, set, options); |
| if ((rc == -1) && cur_node) { |
| LOGPATH(LY_VLOG_LYD, cur_node); |
| } |
| |
| finish: |
| lyxp_expr_free(exp); |
| return rc; |
| } |
| |
| #if 0 |
| |
| /* full xml printing of set elements, not used currently */ |
| |
| void |
| lyxp_set_print_xml(FILE *f, struct lyxp_set *set) |
| { |
| uint32_t i; |
| char *str_num; |
| struct lyout out; |
| |
| out.type = LYOUT_STREAM; |
| out.method.f = f; |
| |
| switch (set->type) { |
| case LYXP_SET_EMPTY: |
| ly_print(&out, "Empty XPath set\n\n"); |
| break; |
| case LYXP_SET_BOOLEAN: |
| ly_print(&out, "Boolean XPath set:\n"); |
| ly_print(&out, "%s\n\n", set->value.bool ? "true" : "false"); |
| break; |
| case LYXP_SET_STRING: |
| ly_print(&out, "String XPath set:\n"); |
| ly_print(&out, "\"%s\"\n\n", set->value.str); |
| break; |
| case LYXP_SET_NUMBER: |
| ly_print(&out, "Number XPath set:\n"); |
| |
| if (isnan(set->value.num)) { |
| str_num = strdup("NaN"); |
| } else if ((set->value.num == 0) || (set->value.num == -0.0f)) { |
| str_num = strdup("0"); |
| } else if (isinf(set->value.num) && !signbit(set->value.num)) { |
| str_num = strdup("Infinity"); |
| } else if (isinf(set->value.num) && signbit(set->value.num)) { |
| str_num = strdup("-Infinity"); |
| } else if ((long long)set->value.num == set->value.num) { |
| if (asprintf(&str_num, "%lld", (long long)set->value.num) == -1) { |
| str_num = NULL; |
| } |
| } else { |
| if (asprintf(&str_num, "%03.1Lf", set->value.num) == -1) { |
| str_num = NULL; |
| } |
| } |
| if (!str_num) { |
| LOGMEM; |
| return; |
| } |
| ly_print(&out, "%s\n\n", str_num); |
| free(str_num); |
| break; |
| case LYXP_SET_NODE_SET: |
| ly_print(&out, "Node XPath set:\n"); |
| |
| for (i = 0; i < set->used; ++i) { |
| ly_print(&out, "%d. ", i + 1); |
| switch (set->node_type[i]) { |
| case LYXP_NODE_ROOT_ALL: |
| ly_print(&out, "ROOT all\n\n"); |
| break; |
| case LYXP_NODE_ROOT_CONFIG: |
| ly_print(&out, "ROOT config\n\n"); |
| break; |
| case LYXP_NODE_ROOT_STATE: |
| ly_print(&out, "ROOT state\n\n"); |
| break; |
| case LYXP_NODE_ROOT_NOTIF: |
| ly_print(&out, "ROOT notification \"%s\"\n\n", set->value.nodes[i]->schema->name); |
| break; |
| case LYXP_NODE_ROOT_RPC: |
| ly_print(&out, "ROOT rpc \"%s\"\n\n", set->value.nodes[i]->schema->name); |
| break; |
| case LYXP_NODE_ROOT_OUTPUT: |
| ly_print(&out, "ROOT output \"%s\"\n\n", set->value.nodes[i]->schema->name); |
| break; |
| case LYXP_NODE_ELEM: |
| ly_print(&out, "ELEM \"%s\"\n", set->value.nodes[i]->schema->name); |
| xml_print_node(&out, 1, set->value.nodes[i], 1, LYP_FORMAT); |
| ly_print(&out, "\n"); |
| break; |
| case LYXP_NODE_TEXT: |
| ly_print(&out, "TEXT \"%s\"\n\n", ((struct lyd_node_leaf_list *)set->value.nodes[i])->value_str); |
| break; |
| case LYXP_NODE_ATTR: |
| ly_print(&out, "ATTR \"%s\" = \"%s\"\n\n", set->value.attrs[i]->name, set->value.attrs[i]->value); |
| break; |
| } |
| } |
| break; |
| } |
| } |
| |
| #endif |
| |
| int |
| lyxp_set_cast(struct lyxp_set *set, enum lyxp_set_type target, const struct lyd_node *cur_node, |
| const struct lys_module *local_mod, int options) |
| { |
| long double num; |
| char *str; |
| |
| if (!set || (set->type == target)) { |
| return EXIT_SUCCESS; |
| } |
| |
| /* it's not possible to convert anything into a node set */ |
| assert((target != LYXP_SET_NODE_SET) && ((set->type != LYXP_SET_SNODE_SET) || (target == LYXP_SET_EMPTY))); |
| |
| if (set->type == LYXP_SET_SNODE_SET) { |
| free(set->val.snodes); |
| return -1; |
| } |
| |
| /* to STRING */ |
| if ((target == LYXP_SET_STRING) || ((target == LYXP_SET_NUMBER) |
| && ((set->type == LYXP_SET_NODE_SET) || (set->type == LYXP_SET_EMPTY)))) { |
| switch (set->type) { |
| case LYXP_SET_NUMBER: |
| if (isnan(set->val.num)) { |
| set->val.str = strdup("NaN"); |
| } else if ((set->val.num == 0) || (set->val.num == -0.0f)) { |
| set->val.str = strdup("0"); |
| } else if (isinf(set->val.num) && !signbit(set->val.num)) { |
| set->val.str = strdup("Infinity"); |
| } else if (isinf(set->val.num) && signbit(set->val.num)) { |
| set->val.str = strdup("-Infinity"); |
| } else if ((long long)set->val.num == set->val.num) { |
| if (asprintf(&str, "%lld", (long long)set->val.num) == -1) { |
| LOGMEM; |
| return -1; |
| } |
| set->val.str = str; |
| } else { |
| if (asprintf(&str, "%03.1Lf", set->val.num) == -1) { |
| LOGMEM; |
| return -1; |
| } |
| set->val.str = str; |
| } |
| break; |
| case LYXP_SET_BOOLEAN: |
| if (set->val.bool) { |
| set->val.str = strdup("true"); |
| } else { |
| set->val.str = strdup("false"); |
| } |
| break; |
| case LYXP_SET_NODE_SET: |
| assert(set->used); |
| |
| #ifndef NDEBUG |
| /* we need the set sorted, it affects the result */ |
| if (set_sort(set, cur_node, options) > 1) { |
| LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__); |
| } |
| #endif |
| |
| str = cast_node_set_to_string(set, (struct lyd_node *)cur_node, (struct lys_module *)local_mod, options); |
| if (!str) { |
| return -1; |
| } |
| free(set->val.nodes); |
| set->val.str = str; |
| break; |
| case LYXP_SET_EMPTY: |
| set->val.str = strdup(""); |
| if (!set->val.str) { |
| LOGMEM; |
| return -1; |
| } |
| break; |
| default: |
| LOGINT; |
| return -1; |
| } |
| set->type = LYXP_SET_STRING; |
| } |
| |
| /* to NUMBER */ |
| if (target == LYXP_SET_NUMBER) { |
| switch (set->type) { |
| case LYXP_SET_STRING: |
| num = cast_string_to_number(set->val.str); |
| free(set->val.str); |
| set->val.num = num; |
| break; |
| case LYXP_SET_BOOLEAN: |
| if (set->val.bool) { |
| set->val.num = 1; |
| } else { |
| set->val.num = 0; |
| } |
| break; |
| default: |
| LOGINT; |
| return -1; |
| } |
| set->type = LYXP_SET_NUMBER; |
| } |
| |
| /* to BOOLEAN */ |
| if (target == LYXP_SET_BOOLEAN) { |
| switch (set->type) { |
| case LYXP_SET_NUMBER: |
| if ((set->val.num == 0) || (set->val.num == -0.0f) || isnan(set->val.num)) { |
| set->val.bool = 0; |
| } else { |
| set->val.bool = 1; |
| } |
| break; |
| case LYXP_SET_STRING: |
| if (set->val.str[0]) { |
| free(set->val.str); |
| set->val.bool = 1; |
| } else { |
| free(set->val.str); |
| set->val.bool = 0; |
| } |
| break; |
| case LYXP_SET_NODE_SET: |
| free(set->val.nodes); |
| |
| assert(set->used); |
| set->val.bool = 1; |
| break; |
| case LYXP_SET_EMPTY: |
| set->val.bool = 0; |
| break; |
| default: |
| LOGINT; |
| return -1; |
| } |
| set->type = LYXP_SET_BOOLEAN; |
| } |
| |
| /* to EMPTY */ |
| if (target == LYXP_SET_EMPTY) { |
| switch (set->type) { |
| case LYXP_SET_NUMBER: |
| case LYXP_SET_BOOLEAN: |
| /* nothing to do */ |
| break; |
| case LYXP_SET_STRING: |
| free(set->val.str); |
| break; |
| case LYXP_SET_NODE_SET: |
| free(set->val.nodes); |
| break; |
| default: |
| LOGINT; |
| return -1; |
| } |
| set->type = LYXP_SET_EMPTY; |
| } |
| |
| return EXIT_SUCCESS; |
| } |
| |
| void |
| lyxp_set_free(struct lyxp_set *set) |
| { |
| if (!set) { |
| return; |
| } |
| |
| if (set->type == LYXP_SET_NODE_SET) { |
| free(set->val.nodes); |
| } else if (set->type == LYXP_SET_SNODE_SET) { |
| free(set->val.snodes); |
| } else if (set->type == LYXP_SET_STRING) { |
| free(set->val.str); |
| } |
| free(set); |
| } |
| |
| int |
| lyxp_atomize(const char *expr, const struct lys_node *cur_snode, enum lyxp_node_type cur_snode_type, |
| struct lyxp_set *set, int options) |
| { |
| struct lyxp_expr *exp; |
| uint16_t exp_idx = 0; |
| int rc = -1; |
| |
| exp = lyxp_parse_expr(expr); |
| if (!exp) { |
| rc = -1; |
| goto finish; |
| } |
| |
| rc = reparse_expr(exp, &exp_idx); |
| if (rc) { |
| goto finish; |
| } else if (exp->used > exp_idx) { |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[exp_idx]]); |
| LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL, "Unparsed characters \"%s\" left at the end of an XPath expression.", |
| &exp->expr[exp->expr_pos[exp_idx]]); |
| rc = -1; |
| goto finish; |
| } |
| |
| print_expr_struct_debug(exp); |
| |
| exp_idx = 0; |
| memset(set, 0, sizeof *set); |
| set->type = LYXP_SET_SNODE_SET; |
| set_snode_insert_node(set, cur_snode, cur_snode_type); |
| |
| rc = eval_expr(exp, &exp_idx, (struct lyd_node *)cur_snode, lys_node_module(cur_snode), set, options); |
| |
| finish: |
| lyxp_expr_free(exp); |
| return rc; |
| } |
| |
| int |
| lyxp_node_atomize(const struct lys_node *node, struct lyxp_set *set, int warn_on_fwd_ref) |
| { |
| struct lys_node *ctx_snode; |
| enum lyxp_node_type ctx_snode_type; |
| struct lyxp_set tmp_set; |
| uint8_t must_size = 0; |
| uint32_t i; |
| int opts, ret = EXIT_SUCCESS; |
| struct lys_when *when = NULL; |
| struct lys_restr *must = NULL; |
| char *path; |
| |
| assert(!warn_on_fwd_ref || !*ly_vlog_hide_location()); |
| |
| memset(&tmp_set, 0, sizeof tmp_set); |
| memset(set, 0, sizeof *set); |
| |
| /* check if we will be traversing RPC output */ |
| opts = 0; |
| for (ctx_snode = (struct lys_node *)node; ctx_snode && (ctx_snode->nodetype != LYS_OUTPUT); ctx_snode = lys_parent(ctx_snode)); |
| if (ctx_snode) { |
| opts |= LYXP_SNODE_OUTPUT; |
| } |
| |
| switch (node->nodetype) { |
| case LYS_CONTAINER: |
| when = ((struct lys_node_container *)node)->when; |
| must = ((struct lys_node_container *)node)->must; |
| must_size = ((struct lys_node_container *)node)->must_size; |
| break; |
| case LYS_CHOICE: |
| when = ((struct lys_node_choice *)node)->when; |
| break; |
| case LYS_LEAF: |
| when = ((struct lys_node_leaf *)node)->when; |
| must = ((struct lys_node_leaf *)node)->must; |
| must_size = ((struct lys_node_leaf *)node)->must_size; |
| break; |
| case LYS_LEAFLIST: |
| when = ((struct lys_node_leaflist *)node)->when; |
| must = ((struct lys_node_leaflist *)node)->must; |
| must_size = ((struct lys_node_leaflist *)node)->must_size; |
| break; |
| case LYS_LIST: |
| when = ((struct lys_node_list *)node)->when; |
| must = ((struct lys_node_list *)node)->must; |
| must_size = ((struct lys_node_list *)node)->must_size; |
| break; |
| case LYS_ANYXML: |
| case LYS_ANYDATA: |
| when = ((struct lys_node_anydata *)node)->when; |
| must = ((struct lys_node_anydata *)node)->must; |
| must_size = ((struct lys_node_anydata *)node)->must_size; |
| break; |
| case LYS_CASE: |
| when = ((struct lys_node_case *)node)->when; |
| break; |
| case LYS_NOTIF: |
| must = ((struct lys_node_notif *)node)->must; |
| must_size = ((struct lys_node_notif *)node)->must_size; |
| break; |
| case LYS_INPUT: |
| case LYS_OUTPUT: |
| must = ((struct lys_node_inout *)node)->must; |
| must_size = ((struct lys_node_inout *)node)->must_size; |
| break; |
| case LYS_USES: |
| when = ((struct lys_node_uses *)node)->when; |
| break; |
| case LYS_AUGMENT: |
| when = ((struct lys_node_augment *)node)->when; |
| break; |
| default: |
| /* nothing to check */ |
| break; |
| } |
| |
| if (warn_on_fwd_ref) { |
| /* hide errors, we can print only warnings */ |
| ly_vlog_hide(1); |
| } |
| |
| /* check "when" */ |
| if (when) { |
| resolve_when_ctx_snode(node, &ctx_snode, &ctx_snode_type); |
| if (lyxp_atomize(when->cond, ctx_snode, ctx_snode_type, &tmp_set, LYXP_SNODE_WHEN | opts)) { |
| free(tmp_set.val.snodes); |
| if ((ly_errno != LY_EVALID) || ((ly_vecode != LYVE_XPATH_INSNODE) && (ly_vecode != LYVE_XPATH_INMOD))) { |
| LOGVAL(LYE_SPEC, LY_VLOG_LYS, node, "Invalid when condition \"%s\".", when->cond); |
| ret = -1; |
| goto finish; |
| } else if (!warn_on_fwd_ref) { |
| LOGVAL(LYE_SPEC, LY_VLOG_LYS, node, "Invalid when condition \"%s\".", when->cond); |
| ret = EXIT_FAILURE; |
| goto finish; |
| } |
| ly_vlog_hide(0); |
| LOGWRN(ly_errmsg()); |
| path = lys_path(node); |
| LOGWRN("Invalid when condition \"%s\". (%s)", when->cond, path); |
| free(path); |
| ly_vlog_hide(1); |
| |
| ret = EXIT_FAILURE; |
| memset(&tmp_set, 0, sizeof tmp_set); |
| } else { |
| set_snode_merge(set, &tmp_set); |
| memset(&tmp_set, 0, sizeof tmp_set); |
| } |
| } |
| |
| /* check "must" */ |
| for (i = 0; i < must_size; ++i) { |
| if (lyxp_atomize(must[i].expr, node, LYXP_NODE_ELEM, &tmp_set, LYXP_SNODE_MUST | opts)) { |
| free(tmp_set.val.snodes); |
| if ((ly_errno != LY_EVALID) || (ly_vecode != LYVE_XPATH_INSNODE)) { |
| LOGVAL(LYE_SPEC, LY_VLOG_LYS, node, "Invalid must restriction \"%s\".", must[i].expr); |
| ret = -1; |
| goto finish; |
| } else if (!warn_on_fwd_ref) { |
| LOGVAL(LYE_SPEC, LY_VLOG_LYS, node, "Invalid must restriction \"%s\".", must[i].expr); |
| ret = EXIT_FAILURE; |
| goto finish; |
| } |
| ly_vlog_hide(0); |
| LOGWRN(ly_errmsg()); |
| path = lys_path(node); |
| LOGWRN("Invalid must restriction \"%s\". (%s)", must[i].expr, path); |
| free(path); |
| ly_vlog_hide(1); |
| |
| ret = EXIT_FAILURE; |
| memset(&tmp_set, 0, sizeof tmp_set); |
| } else { |
| set_snode_merge(set, &tmp_set); |
| memset(&tmp_set, 0, sizeof tmp_set); |
| } |
| } |
| |
| finish: |
| if (warn_on_fwd_ref) { |
| ly_vlog_hide(0); |
| } |
| if (ret) { |
| free(set->val.snodes); |
| memset(set, 0, sizeof *set); |
| } |
| return ret; |
| } |
| |
| int |
| lyxp_node_check_syntax(const struct lys_node *node) |
| { |
| uint8_t must_size = 0; |
| uint16_t exp_idx; |
| uint32_t i; |
| struct lys_when *when = NULL; |
| struct lys_restr *must = NULL; |
| struct lyxp_expr *expr; |
| |
| switch (node->nodetype) { |
| case LYS_CONTAINER: |
| when = ((struct lys_node_container *)node)->when; |
| must = ((struct lys_node_container *)node)->must; |
| must_size = ((struct lys_node_container *)node)->must_size; |
| break; |
| case LYS_CHOICE: |
| when = ((struct lys_node_choice *)node)->when; |
| break; |
| case LYS_LEAF: |
| when = ((struct lys_node_leaf *)node)->when; |
| must = ((struct lys_node_leaf *)node)->must; |
| must_size = ((struct lys_node_leaf *)node)->must_size; |
| break; |
| case LYS_LEAFLIST: |
| when = ((struct lys_node_leaflist *)node)->when; |
| must = ((struct lys_node_leaflist *)node)->must; |
| must_size = ((struct lys_node_leaflist *)node)->must_size; |
| break; |
| case LYS_LIST: |
| when = ((struct lys_node_list *)node)->when; |
| must = ((struct lys_node_list *)node)->must; |
| must_size = ((struct lys_node_list *)node)->must_size; |
| break; |
| case LYS_ANYXML: |
| case LYS_ANYDATA: |
| when = ((struct lys_node_anydata *)node)->when; |
| must = ((struct lys_node_anydata *)node)->must; |
| must_size = ((struct lys_node_anydata *)node)->must_size; |
| break; |
| case LYS_CASE: |
| when = ((struct lys_node_case *)node)->when; |
| break; |
| case LYS_NOTIF: |
| must = ((struct lys_node_notif *)node)->must; |
| must_size = ((struct lys_node_notif *)node)->must_size; |
| break; |
| case LYS_INPUT: |
| case LYS_OUTPUT: |
| must = ((struct lys_node_inout *)node)->must; |
| must_size = ((struct lys_node_inout *)node)->must_size; |
| break; |
| case LYS_USES: |
| when = ((struct lys_node_uses *)node)->when; |
| break; |
| case LYS_AUGMENT: |
| when = ((struct lys_node_augment *)node)->when; |
| break; |
| default: |
| /* nothing to check */ |
| break; |
| } |
| |
| /* check "when" */ |
| if (when) { |
| expr = lyxp_parse_expr(when->cond); |
| if (!expr) { |
| return -1; |
| } |
| |
| exp_idx = 0; |
| if (reparse_expr(expr, &exp_idx)) { |
| lyxp_expr_free(expr); |
| return -1; |
| } else if (exp_idx != expr->used) { |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, print_token(expr->tokens[exp_idx]), &expr->expr[expr->expr_pos[exp_idx]]); |
| lyxp_expr_free(expr); |
| return -1; |
| } |
| lyxp_expr_free(expr); |
| } |
| |
| /* check "must" */ |
| for (i = 0; i < must_size; ++i) { |
| expr = lyxp_parse_expr(must[i].expr); |
| if (!expr) { |
| return -1; |
| } |
| |
| exp_idx = 0; |
| if (reparse_expr(expr, &exp_idx)) { |
| lyxp_expr_free(expr); |
| return -1; |
| } else if (exp_idx != expr->used) { |
| LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, print_token(expr->tokens[exp_idx]), &expr->expr[expr->expr_pos[exp_idx]]); |
| lyxp_expr_free(expr); |
| return -1; |
| } |
| lyxp_expr_free(expr); |
| } |
| |
| return 0; |
| } |