blob: a887f79ea335d034e2ae7cb7938e1e7c8ae27586 [file] [log] [blame]
/**
* @file xpath.c
* @author Michal Vasko <mvasko@cesnet.cz>
* @brief YANG XPath evaluation functions
*
* Copyright (c) 2015 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE
/* needed by libmath functions isfinite(), isinf(), isnan(), signbit(), ... */
#define _ISOC99_SOURCE
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <limits.h>
#include <errno.h>
#include <math.h>
#include <pcre.h>
#include "xpath.h"
#include "libyang.h"
#include "xml_internal.h"
#include "tree_schema.h"
#include "tree_data.h"
#include "context.h"
#include "tree_internal.h"
#include "common.h"
#include "resolve.h"
#include "printer.h"
#include "parser.h"
#include "dict_private.h"
static const struct lyd_node *moveto_get_root(const struct lyd_node *cur_node, int options,
enum lyxp_node_type *root_type);
static int eval_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options);
static int reparse_expr(struct lyxp_expr *exp, uint16_t *exp_idx);
void
lyxp_expr_free(struct lyxp_expr *expr)
{
uint16_t i;
if (!expr) {
return;
}
free(expr->expr);
free(expr->tokens);
free(expr->expr_pos);
free(expr->tok_len);
if (expr->repeat) {
for (i = 0; i < expr->used; ++i) {
free(expr->repeat[i]);
}
}
free(expr->repeat);
free(expr);
}
/**
* @brief Print the type of an XPath \p set.
*
* @param[in] set Set to use.
*
* @return Set type string.
*/
static const char *
print_set_type(struct lyxp_set *set)
{
switch (set->type) {
case LYXP_SET_EMPTY:
return "empty";
case LYXP_SET_NODE_SET:
return "node set";
case LYXP_SET_SNODE_SET:
return "schema node set";
case LYXP_SET_BOOLEAN:
return "boolean";
case LYXP_SET_NUMBER:
return "number";
case LYXP_SET_STRING:
return "string";
}
return NULL;
}
/**
* @brief Print an XPath token \p tok type.
*
* @param[in] tok Token to use.
*
* @return Token type string.
*/
static const char *
print_token(enum lyxp_token tok)
{
switch (tok) {
case LYXP_TOKEN_PAR1:
return "(";
case LYXP_TOKEN_PAR2:
return ")";
case LYXP_TOKEN_BRACK1:
return "[";
case LYXP_TOKEN_BRACK2:
return "]";
case LYXP_TOKEN_DOT:
return ".";
case LYXP_TOKEN_DDOT:
return "..";
case LYXP_TOKEN_AT:
return "@";
case LYXP_TOKEN_COMMA:
return ",";
case LYXP_TOKEN_NAMETEST:
return "NameTest";
case LYXP_TOKEN_NODETYPE:
return "NodeType";
case LYXP_TOKEN_FUNCNAME:
return "FunctionName";
case LYXP_TOKEN_OPERATOR_LOG:
return "Operator(Logic)";
case LYXP_TOKEN_OPERATOR_COMP:
return "Operator(Comparison)";
case LYXP_TOKEN_OPERATOR_MATH:
return "Operator(Math)";
case LYXP_TOKEN_OPERATOR_UNI:
return "Operator(Union)";
case LYXP_TOKEN_OPERATOR_PATH:
return "Operator(Path)";
case LYXP_TOKEN_LITERAL:
return "Literal";
case LYXP_TOKEN_NUMBER:
return "Number";
default:
LOGINT;
return "";
}
}
/**
* @brief Print the whole expression \p exp to debug output.
*
* @param[in] exp Expression to use.
*/
static void
print_expr_struct_debug(struct lyxp_expr *exp)
{
uint16_t i, j;
char tmp[128];
if (!exp || (ly_log_level < LY_LLDBG)) {
return;
}
LOGDBG(LY_LDGXPATH, "expression \"%s\":", exp->expr);
for (i = 0; i < exp->used; ++i) {
sprintf(tmp, "\ttoken %s, in expression \"%.*s\"", print_token(exp->tokens[i]), exp->tok_len[i],
&exp->expr[exp->expr_pos[i]]);
if (exp->repeat[i]) {
sprintf(tmp + strlen(tmp), " (repeat %d", exp->repeat[i][0]);
for (j = 1; exp->repeat[i][j]; ++j) {
sprintf(tmp + strlen(tmp), ", %d", exp->repeat[i][j]);
}
strcat(tmp, ")");
}
LOGDBG(LY_LDGXPATH, tmp);
}
}
#ifndef NDEBUG
/**
* @brief Print XPath set content to debug output.
*
* @param[in] set Set to print.
*/
static void
print_set_debug(struct lyxp_set *set)
{
uint32_t i;
char *str_num;
struct lyxp_set_nodes *item;
struct lyxp_set_snodes *sitem;
if (ly_log_level < LY_LLDBG) {
return;
}
switch (set->type) {
case LYXP_SET_NODE_SET:
LOGDBG(LY_LDGXPATH, "set NODE SET:");
for (i = 0; i < set->used; ++i) {
item = &set->val.nodes[i];
switch (item->type) {
case LYXP_NODE_ROOT:
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ROOT", i + 1, item->pos);
break;
case LYXP_NODE_ROOT_CONFIG:
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ROOT CONFIG", i + 1, item->pos);
break;
case LYXP_NODE_ELEM:
if ((item->node->schema->nodetype == LYS_LIST)
&& (item->node->child->schema->nodetype == LYS_LEAF)) {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s (1st child val: %s)", i + 1, item->pos,
item->node->schema->name,
((struct lyd_node_leaf_list *)item->node->child)->value_str);
} else if (item->node->schema->nodetype == LYS_LEAFLIST) {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s (val: %s)", i + 1, item->pos,
item->node->schema->name,
((struct lyd_node_leaf_list *)item->node)->value_str);
} else {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ELEM %s", i + 1, item->pos, item->node->schema->name);
}
break;
case LYXP_NODE_TEXT:
if (item->node->schema->nodetype & LYS_ANYDATA) {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): TEXT <%s>", i + 1, item->pos,
item->node->schema->nodetype == LYS_ANYXML ? "anyxml" : "anydata");
} else {
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): TEXT %s", i + 1, item->pos,
((struct lyd_node_leaf_list *)item->node)->value_str);
}
break;
case LYXP_NODE_ATTR:
LOGDBG(LY_LDGXPATH, "\t%d (pos %u): ATTR %s = %s", i + 1, item->pos, set->val.attrs[i].attr->name,
set->val.attrs[i].attr->value);
break;
}
}
break;
case LYXP_SET_SNODE_SET:
LOGDBG(LY_LDGXPATH, "set SNODE SET:");
for (i = 0; i < set->used; ++i) {
sitem = &set->val.snodes[i];
switch (sitem->type) {
case LYXP_NODE_ROOT:
LOGDBG(LY_LDGXPATH, "\t%d (%u): ROOT", i + 1, sitem->in_ctx);
break;
case LYXP_NODE_ROOT_CONFIG:
LOGDBG(LY_LDGXPATH, "\t%d (%u): ROOT CONFIG", i + 1, sitem->in_ctx);
break;
case LYXP_NODE_ELEM:
LOGDBG(LY_LDGXPATH, "\t%d (%u): ELEM %s", i + 1, sitem->in_ctx, sitem->snode->name);
break;
default:
LOGINT;
break;
}
}
break;
case LYXP_SET_EMPTY:
LOGDBG(LY_LDGXPATH, "set EMPTY");
break;
case LYXP_SET_BOOLEAN:
LOGDBG(LY_LDGXPATH, "set BOOLEAN");
LOGDBG(LY_LDGXPATH, "\t%s", (set->val.bool ? "true" : "false"));
break;
case LYXP_SET_STRING:
LOGDBG(LY_LDGXPATH, "set STRING");
LOGDBG(LY_LDGXPATH, "\t%s", set->val.str);
break;
case LYXP_SET_NUMBER:
LOGDBG(LY_LDGXPATH, "set NUMBER");
if (isnan(set->val.num)) {
str_num = strdup("NaN");
} else if ((set->val.num == 0) || (set->val.num == -0.0f)) {
str_num = strdup("0");
} else if (isinf(set->val.num) && !signbit(set->val.num)) {
str_num = strdup("Infinity");
} else if (isinf(set->val.num) && signbit(set->val.num)) {
str_num = strdup("-Infinity");
} else if ((long long)set->val.num == set->val.num) {
if (asprintf(&str_num, "%lld", (long long)set->val.num) == -1) {
str_num = NULL;
}
} else {
if (asprintf(&str_num, "%03.1Lf", set->val.num) == -1) {
str_num = NULL;
}
}
if (!str_num) {
LOGMEM;
return;
}
LOGDBG(LY_LDGXPATH, "\t%s", str_num);
free(str_num);
}
}
#endif
/**
* @brief Realloc the string \p str.
*
* @param[in] needed How much free space is required.
* @param[in,out] str Pointer to the string to use.
* @param[in,out] used Used bytes in \p str.
* @param[in,out] size Allocated bytes in \p str.
*/
static void
cast_string_realloc(uint16_t needed, char **str, uint16_t *used, uint16_t *size)
{
if (*size - *used < needed) {
do {
*size += LYXP_STRING_CAST_SIZE_STEP;
} while (*size - *used < needed);
*str = ly_realloc(*str, *size * sizeof(char));
if (!(*str)) {
LOGMEM;
}
}
}
/**
* @brief Cast nodes recursively to one string \p str.
*
* @param[in] node Node to cast.
* @param[in] fake_cont Whether to put the data into a "fake" container.
* @param[in] root_type Type of the XPath root.
* @param[in] indent Current indent.
* @param[in,out] str Resulting string.
* @param[in,out] used Used bytes in \p str.
* @param[in,out] size Allocated bytes in \p str.
*/
static void
cast_string_recursive(struct lyd_node *node, struct lys_module *local_mod, int fake_cont, enum lyxp_node_type root_type,
uint16_t indent, char **str, uint16_t *used, uint16_t *size)
{
char *buf, *line, *ptr;
const char *value_str;
struct lyd_node *child;
struct lyd_node_anydata *any;
if ((root_type == LYXP_NODE_ROOT_CONFIG) && (node->schema->flags & LYS_CONFIG_R)) {
return;
}
if (fake_cont) {
cast_string_realloc(1, str, used, size);
strcpy(*str + (*used - 1), "\n");
++(*used);
++indent;
}
switch (node->schema->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
case LYS_RPC:
case LYS_NOTIF:
cast_string_realloc(1, str, used, size);
strcpy(*str + (*used - 1), "\n");
++(*used);
LY_TREE_FOR(node->child, child) {
cast_string_recursive(child, local_mod, 0, root_type, indent + 1, str, used, size);
}
break;
case LYS_LEAF:
case LYS_LEAFLIST:
value_str = ((struct lyd_node_leaf_list *)node)->value_str;
if (!value_str) {
value_str = "";
}
/* make value canonical */
if (((struct lyd_node_leaf_list *)node)->value_type & LY_TYPE_IDENT) {
if (!strncmp(value_str, local_mod->name, strlen(local_mod->name))
&& (value_str[strlen(local_mod->name)] == ':')) {
value_str += strlen(local_mod->name) + 1;
}
}
/* print indent */
cast_string_realloc(indent * 2 + strlen(value_str) + 1, str, used, size);
memset(*str + (*used - 1), ' ', indent * 2);
*used += indent * 2;
/* print value */
if (*used == 1) {
sprintf(*str + (*used - 1), "%s", value_str);
*used += strlen(value_str);
} else {
sprintf(*str + (*used - 1), "%s\n", value_str);
*used += strlen(value_str) + 1;
}
break;
case LYS_ANYXML:
case LYS_ANYDATA:
any = (struct lyd_node_anydata *)node;
if (!(void*)any->value.tree) {
/* no content */
buf = strdup("");
} else {
switch (any->value_type) {
case LYD_ANYDATA_CONSTSTRING:
case LYD_ANYDATA_SXML:
case LYD_ANYDATA_JSON:
buf = strdup(any->value.str);
if (!buf) {
LOGMEM;
return;
}
break;
case LYD_ANYDATA_DATATREE:
lyd_print_mem(&buf, any->value.tree, LYD_XML, LYP_WITHSIBLINGS);
break;
case LYD_ANYDATA_XML:
lyxml_print_mem(&buf, any->value.xml, LYXML_PRINT_SIBLINGS);
break;
case LYD_ANYDATA_STRING:
case LYD_ANYDATA_SXMLD:
case LYD_ANYDATA_JSOND:
/* dynamic strings are used only as input parameters */
assert(0);
break;
}
}
line = strtok_r(buf, "\n", &ptr);
do {
cast_string_realloc(indent * 2 + strlen(line) + 1, str, used, size);
memset(*str + (*used - 1), ' ', indent * 2);
*used += indent * 2;
strcpy(*str + (*used - 1), line);
*used += strlen(line);
strcpy(*str + (*used - 1), "\n");
*used += 1;
} while ((line = strtok_r(NULL, "\n", &ptr)));
free(buf);
break;
default:
LOGINT;
break;
}
if (fake_cont) {
cast_string_realloc(1, str, used, size);
strcpy(*str + (*used - 1), "\n");
++(*used);
--indent;
}
}
/**
* @brief Cast an element into a string.
*
* @param[in] node Node to cast.
* @param[in] fake_cont Whether to put the data into a "fake" container.
* @param[in] root_type Type of the XPath root.
*
* @return Element cast to dynamically-allocated string.
*/
static char *
cast_string_elem(struct lyd_node *node, struct lys_module *local_mod, int fake_cont, enum lyxp_node_type root_type)
{
char *str;
uint16_t used, size;
str = malloc(LYXP_STRING_CAST_SIZE_START * sizeof(char));
if (!str) {
LOGMEM;
return NULL;
}
str[0] = '\0';
used = 1;
size = LYXP_STRING_CAST_SIZE_START;
cast_string_recursive(node, local_mod, fake_cont, root_type, 0, &str, &used, &size);
if (size > used) {
str = ly_realloc(str, used * sizeof(char));
if (!str) {
LOGMEM;
return NULL;
}
}
return str;
}
/**
* @brief Cast a LYXP_SET_NODE_SET set into a string.
* Context position aware.
*
* @param[in] set Set to cast.
* @param[in] cur_node Original context node.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return Cast string in the dictionary.
*/
static char *
cast_node_set_to_string(struct lyxp_set *set, struct lyd_node *cur_node, struct lys_module *local_mod, int options)
{
enum lyxp_node_type root_type;
if ((set->val.nodes[0].type != LYXP_NODE_ATTR) && (set->val.nodes[0].node->validity & LYD_VAL_INUSE)) {
LOGVAL(LYE_XPATH_DUMMY, LY_VLOG_LYD, set->val.nodes[0].node, set->val.nodes[0].node->schema->name);
return NULL;
}
moveto_get_root(cur_node, options, &root_type);
switch (set->val.nodes[0].type) {
case LYXP_NODE_ROOT:
case LYXP_NODE_ROOT_CONFIG:
return cast_string_elem(set->val.nodes[0].node, local_mod, 1, root_type);
case LYXP_NODE_ELEM:
case LYXP_NODE_TEXT:
return cast_string_elem(set->val.nodes[0].node, local_mod, 0, root_type);
case LYXP_NODE_ATTR:
return strdup(set->val.attrs[0].attr->value_str);
}
LOGINT;
return NULL;
}
/**
* @brief Cast a string into an XPath number.
*
* @param[in] str String to use.
*
* @return Cast number.
*/
static long double
cast_string_to_number(const char *str)
{
long double num;
char *ptr;
errno = 0;
num = strtold(str, &ptr);
if (errno || *ptr) {
num = NAN;
}
return num;
}
/*
* lyxp_set manipulation functions
*/
/**
* @brief Create a deep copy of a \p set.
*
* @param[in] set Set to copy.
*
* @return Copy of \p set.
*/
static struct lyxp_set *
set_copy(struct lyxp_set *set)
{
struct lyxp_set *ret;
if (!set) {
return NULL;
}
ret = malloc(sizeof *ret);
if (!ret) {
LOGMEM;
return NULL;
}
if ((set->type == LYXP_SET_NODE_SET) || (set->type == LYXP_SET_SNODE_SET)) {
ret->type = set->type;
ret->val.nodes = malloc(set->used * sizeof *ret->val.nodes);
if (!ret->val.nodes) {
LOGMEM;
free(ret);
return NULL;
}
memcpy(ret->val.nodes, set->val.nodes, set->used * sizeof *ret->val.nodes);
ret->used = ret->size = set->used;
ret->ctx_pos = set->ctx_pos;
ret->ctx_size = set->ctx_size;
} else {
memcpy(ret, set, sizeof *ret);
if (set->type == LYXP_SET_STRING) {
ret->val.str = strdup(set->val.str);
}
}
return ret;
}
/**
* @brief Fill XPath set with a string. Any current data are disposed of.
*
* @param[in] set Set to fill.
* @param[in] string String to fill into \p set.
* @param[in] str_len Length of \p string. 0 is a valid value!
* @param[in] ctx libyang context to use.
*/
static void
set_fill_string(struct lyxp_set *set, const char *string, uint16_t str_len)
{
if (set->type == LYXP_SET_NODE_SET) {
free(set->val.nodes);
} else if (set->type == LYXP_SET_STRING) {
free(set->val.str);
}
set->type = LYXP_SET_STRING;
if ((str_len == 0) && (string[0] != '\0')) {
string = "";
}
set->val.str = strndup(string, str_len);
}
/**
* @brief Fill XPath set with a number. Any current data are disposed of.
*
* @param[in] set Set to fill.
* @param[in] number Number to fill into \p set.
*/
static void
set_fill_number(struct lyxp_set *set, long double number)
{
if (set->type == LYXP_SET_NODE_SET) {
free(set->val.nodes);
} else if (set->type == LYXP_SET_STRING) {
free(set->val.str);
}
set->type = LYXP_SET_NUMBER;
set->val.num = number;
}
/**
* @brief Fill XPath set with a boolean. Any current data are disposed of.
*
* @param[in] set Set to fill.
* @param[in] boolean Boolean to fill into \p set.
*/
static void
set_fill_boolean(struct lyxp_set *set, int boolean)
{
if (set->type == LYXP_SET_NODE_SET) {
free(set->val.nodes);
} else if (set->type == LYXP_SET_STRING) {
free(set->val.str);
}
set->type = LYXP_SET_BOOLEAN;
set->val.bool = boolean;
}
/**
* @brief Fill XPath set with the value from another set (deep assign).
* Any current data are disposed of.
*
* @param[in] trg Set to fill.
* @param[in] src Source set to copy into \p trg.
*/
static void
set_fill_set(struct lyxp_set *trg, struct lyxp_set *src)
{
if (!trg || !src) {
return;
}
if (src->type == LYXP_SET_SNODE_SET) {
trg->type = LYXP_SET_SNODE_SET;
trg->used = src->used;
trg->size = src->used;
trg->val.snodes = ly_realloc(trg->val.snodes, trg->size * sizeof *trg->val.nodes);
if (!trg->val.nodes) {
LOGMEM;
memset(trg, 0, sizeof *trg);
return;
}
memcpy(trg->val.nodes, src->val.nodes, src->used * sizeof *src->val.nodes);
} else if (src->type == LYXP_SET_BOOLEAN) {
set_fill_boolean(trg, src->val.bool);
} else if (src->type == LYXP_SET_NUMBER) {
set_fill_number(trg, src->val.num);
} else if (src->type == LYXP_SET_STRING) {
set_fill_string(trg, src->val.str, strlen(src->val.str));
} else {
if (trg->type == LYXP_SET_NODE_SET) {
free(trg->val.nodes);
} else if (trg->type == LYXP_SET_STRING) {
free(trg->val.str);
}
if (src->type == LYXP_SET_EMPTY) {
trg->type = LYXP_SET_EMPTY;
} else {
assert(src->type == LYXP_SET_NODE_SET);
trg->type = LYXP_SET_NODE_SET;
trg->used = src->used;
trg->size = src->used;
trg->ctx_pos = src->ctx_pos;
trg->ctx_size = src->ctx_size;
trg->val.nodes = malloc(trg->used * sizeof *trg->val.nodes);
if (!trg->val.nodes) {
LOGMEM;
memset(trg, 0, sizeof *trg);
return;
}
memcpy(trg->val.nodes, src->val.nodes, src->used * sizeof *src->val.nodes);
}
}
}
static void
set_snode_clear_ctx(struct lyxp_set *set)
{
uint32_t i;
for (i = 0; i < set->used; ++i) {
if (set->val.snodes[i].in_ctx == 1) {
set->val.snodes[i].in_ctx = 0;
}
}
}
/**
* @brief Remove a node from a set. Removing last node changes
* \p set into LYXP_SET_EMPTY. Context position aware.
*
* @param[in] set Set to use.
* @param[in] idx Index from \p set of the node to be removed.
*/
static void
set_remove_node(struct lyxp_set *set, uint32_t idx)
{
assert(set && (set->type == LYXP_SET_NODE_SET));
assert(idx < set->used);
--set->used;
if (set->used) {
memmove(&set->val.nodes[idx], &set->val.nodes[idx + 1],
(set->used - idx) * sizeof *set->val.nodes);
} else {
free(set->val.nodes);
/* this changes it to LYXP_SET_EMPTY */
memset(set, 0, sizeof *set);
}
}
/**
* @brief Check for duplicates in a node set.
*
* @param[in] set Set to check.
* @param[in] node Node to look for in \p set.
* @param[in] node_type Type of \p node.
* @param[in] skip_idx Index from \p set to skip.
*
* @return Position of the duplicate or -1 if there is none.
*/
static int
set_dup_node_check(struct lyxp_set *set, void *node, enum lyxp_node_type node_type, int skip_idx)
{
uint32_t i;
for (i = 0; i < set->used; ++i) {
if ((skip_idx > -1) && (i == (unsigned)skip_idx)) {
continue;
}
if ((set->val.nodes[i].node == node) && (set->val.nodes[i].type == node_type)) {
return i;
}
}
return -1;
}
static int
set_snode_dup_node_check(struct lyxp_set *set, const struct lys_node *node, enum lyxp_node_type node_type, int skip_idx)
{
uint32_t i;
for (i = 0; i < set->used; ++i) {
if ((skip_idx > -1) && (i == (unsigned)skip_idx)) {
continue;
}
if ((set->val.snodes[i].snode == node) && (set->val.snodes[i].type == node_type)) {
return i;
}
}
return -1;
}
static void
set_snode_merge(struct lyxp_set *set1, struct lyxp_set *set2)
{
uint32_t orig_used, i, j;
assert(((set1->type == LYXP_SET_SNODE_SET) || (set1->type == LYXP_SET_EMPTY))
&& ((set2->type == LYXP_SET_SNODE_SET) || (set2->type == LYXP_SET_EMPTY)));
if (set2->type == LYXP_SET_EMPTY) {
return;
}
if (set1->type == LYXP_SET_EMPTY) {
memcpy(set1, set2, sizeof *set1);
return;
}
if (set1->used + set2->used > set1->size) {
set1->size = set1->used + set2->used;
set1->val.snodes = ly_realloc(set1->val.snodes, set1->size * sizeof *set1->val.snodes);
if (!set1->val.snodes) {
LOGMEM;
return;
}
}
orig_used = set1->used;
for (i = 0; i < set2->used; ++i) {
for (j = 0; j < orig_used; ++j) {
/* detect duplicities */
if (set1->val.snodes[j].snode == set2->val.snodes[i].snode) {
break;
}
}
if (j == orig_used) {
memcpy(&set1->val.snodes[set1->used], &set2->val.snodes[i], sizeof *set2->val.snodes);
++set1->used;
}
}
free(set2->val.snodes);
memset(set2, 0, sizeof *set2);
}
/**
* @brief Insert a node into a set. Context position aware.
*
* @param[in] set Set to use.
* @param[in] node Node to insert to \p set.
* @param[in] pos Sort position of \p node. If left 0, it is filled just before sorting.
* @param[in] node_type Node type of \p node.
* @param[in] idx Index in \p set to insert into.
*/
static void
set_insert_node(struct lyxp_set *set, const void *node, uint32_t pos, enum lyxp_node_type node_type, uint32_t idx)
{
assert(set && ((set->type == LYXP_SET_NODE_SET) || (set->type == LYXP_SET_EMPTY)));
if (set->type == LYXP_SET_EMPTY) {
/* first item */
if (idx) {
/* no real harm done, but it is a bug */
LOGINT;
idx = 0;
}
set->val.nodes = malloc(LYXP_SET_SIZE_START * sizeof *set->val.nodes);
if (!set->val.nodes) {
LOGMEM;
return;
}
set->type = LYXP_SET_NODE_SET;
set->used = 0;
set->size = LYXP_SET_SIZE_START;
set->ctx_pos = 1;
set->ctx_size = 1;
} else {
/* not an empty set */
if (set->used == set->size) {
/* set is full */
set->val.nodes = ly_realloc(set->val.nodes, (set->size + LYXP_SET_SIZE_STEP) * sizeof *set->val.nodes);
if (!set->val.nodes) {
LOGMEM;
return;
}
set->size += LYXP_SET_SIZE_STEP;
}
if (idx > set->used) {
LOGINT;
idx = set->used;
}
/* make space for the new node */
if (idx < set->used) {
memmove(&set->val.nodes[idx + 1], &set->val.nodes[idx], (set->used - idx) * sizeof *set->val.nodes);
}
}
/* finally assign the value */
set->val.nodes[idx].node = (struct lyd_node *)node;
set->val.nodes[idx].type = node_type;
set->val.nodes[idx].pos = pos;
++set->used;
}
static int
set_snode_insert_node(struct lyxp_set *set, const struct lys_node *node, enum lyxp_node_type node_type)
{
int ret;
assert(set->type == LYXP_SET_SNODE_SET);
ret = set_snode_dup_node_check(set, node, node_type, -1);
if (ret > -1) {
set->val.snodes[ret].in_ctx = 1;
} else {
if (set->used == set->size) {
set->val.snodes = ly_realloc(set->val.snodes, (set->size + LYXP_SET_SIZE_STEP) * sizeof *set->val.snodes);
if (!set->val.snodes) {
LOGMEM;
return -1;
}
set->size += LYXP_SET_SIZE_STEP;
}
ret = set->used;
set->val.snodes[ret].snode = (struct lys_node *)node;
set->val.snodes[ret].type = node_type;
set->val.snodes[ret].in_ctx = 1;
++set->used;
}
return ret;
}
static uint32_t
set_snode_new_in_ctx(struct lyxp_set *set)
{
uint32_t ret_ctx, i;
assert(set->type == LYXP_SET_SNODE_SET);
ret_ctx = 3;
retry:
for (i = 0; i < set->used; ++i) {
if (set->val.snodes[i].in_ctx >= ret_ctx) {
ret_ctx = set->val.snodes[i].in_ctx + 1;
goto retry;
}
}
for (i = 0; i < set->used; ++i) {
if (set->val.snodes[i].in_ctx == 1) {
set->val.snodes[i].in_ctx = ret_ctx;
}
}
return ret_ctx;
}
/**
* @brief Get unique \p node position in the data.
*
* @param[in] node Node to find.
* @param[in] node_type Node type of \p node.
* @param[in] root Root node.
* @param[in] root_type Type of the XPath \p root node.
* @param[in] prev Node that we think is before \p node in DFS from \p root. Can optionally
* be used to increase efficiency and start the DFS from this node.
* @param[in] prev_pos Node \p prev position. Optional, but must be set if \p prev is set.
*
* @return Node position.
*/
static uint32_t
get_node_pos(const struct lyd_node *node, enum lyxp_node_type node_type, const struct lyd_node *root,
enum lyxp_node_type root_type, const struct lyd_node **prev, uint32_t *prev_pos)
{
const struct lyd_node *next, *elem, *top_sibling;
uint32_t pos = 1;
assert(prev && prev_pos && !root->prev->next);
if ((node_type == LYXP_NODE_ROOT) || (node_type == LYXP_NODE_ROOT_CONFIG)) {
return 0;
}
if (*prev) {
/* start from the previous element instead from the root */
elem = next = *prev;
pos = *prev_pos;
for (top_sibling = elem; top_sibling->parent; top_sibling = top_sibling->parent);
goto dfs_search;
}
LY_TREE_FOR(root, top_sibling) {
/* TREE DFS */
LY_TREE_DFS_BEGIN(top_sibling, next, elem) {
dfs_search:
if ((root_type == LYXP_NODE_ROOT_CONFIG) && (elem->schema->flags & LYS_CONFIG_R)) {
goto skip_children;
}
if (elem == node) {
break;
}
++pos;
/* TREE DFS END */
/* select element for the next run - children first */
next = elem->child;
/* child exception for lyd_node_leaf and lyd_node_leaflist, but not the root */
if (elem->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) {
next = NULL;
}
if (!next) {
skip_children:
/* no children */
if (elem == top_sibling) {
/* we are done, root has no children */
elem = NULL;
break;
}
/* try siblings */
next = elem->next;
}
while (!next) {
/* no siblings, go back through parents */
if (elem->parent == top_sibling->parent) {
/* we are done, no next element to process */
elem = NULL;
break;
}
/* parent is already processed, go to its sibling */
elem = elem->parent;
next = elem->next;
}
}
/* node found */
if (elem) {
break;
}
}
if (!elem) {
if (!(*prev)) {
/* we went from root and failed to find it, cannot be */
LOGINT;
return 0;
} else {
/* node is before prev, we assumed otherwise :( */
//LOGDBG(LY_LDGXPATH, "get_node_pos optimalization fail.");
*prev = NULL;
*prev_pos = 0;
elem = next = top_sibling = root;
pos = 1;
goto dfs_search;
}
}
/*if (*prev) {
LOGDBG(LY_LDGXPATH, "get_node_pos optimalization success.");
}*/
/* remember the last found node for next time */
*prev = node;
*prev_pos = pos;
return pos;
}
/**
* @brief Assign (fill) missing node positions.
*
* @param[in] set Set to fill positions in.
* @param[in] root Context root node.
* @param[in] root_type Context root type.
*
* @return 0 on success, -1 on error.
*/
static int
set_assign_pos(struct lyxp_set *set, const struct lyd_node *root, enum lyxp_node_type root_type)
{
const struct lyd_node *prev = NULL, *tmp_node;
uint32_t i, tmp_pos = 0;
for (i = 0; i < set->used; ++i) {
if (!set->val.nodes[i].pos) {
tmp_node = NULL;
switch (set->val.nodes[i].type) {
case LYXP_NODE_ATTR:
tmp_node = lyd_attr_parent(root, set->val.attrs[i].attr);
if (!tmp_node) {
LOGINT;
return -1;
}
/* fallthrough */
case LYXP_NODE_ELEM:
case LYXP_NODE_TEXT:
if (!tmp_node) {
tmp_node = set->val.nodes[i].node;
}
set->val.nodes[i].pos = get_node_pos(tmp_node, set->val.nodes[i].type, root, root_type, &prev, &tmp_pos);
break;
default:
/* all roots have position 0 */
break;
}
}
}
return 0;
}
/**
* @brief Get unique \p attr position in the parent attributes.
*
* @param[in] attr Attr to use.
* @param[in] parent Parent of \p attr.
*
* @return Attribute position.
*/
static uint16_t
get_attr_pos(struct lyd_attr *attr, const struct lyd_node *parent)
{
uint16_t pos = 0;
struct lyd_attr *attr2;
for (attr2 = parent->attr; attr2 && (attr2 != attr); attr2 = attr2->next) {
++pos;
}
assert(attr2);
return pos;
}
/**
* @brief Compare 2 nodes in respect to XPath document order.
*
* @param[in] idx1 Index of the 1st node in \p set1.
* @param[in] set1 Set with the 1st node on index \p idx1.
* @param[in] idx2 Index of the 2nd node in \p set2.
* @param[in] set2 Set with the 2nd node on index \p idx2.
* @param[in] root Context root node.
*
* @return If 1st > 2nd returns 1, 1st == 2nd returns 0, and 1st < 2nd returns -1.
*/
static int
set_sort_compare(struct lyxp_set_nodes *item1, struct lyxp_set_nodes *item2,
const struct lyd_node *root)
{
const struct lyd_node *tmp_node;
uint32_t attr_pos1 = 0, attr_pos2 = 0;
if (item1->pos < item2->pos) {
return -1;
}
if (item1->pos > item2->pos) {
return 1;
}
/* node positions are equal, the fun case */
/* 1st ELEM - == - 2nd TEXT, 1st TEXT - == - 2nd ELEM */
/* special case since text nodes are actually saved as their parents */
if ((item1->node == item2->node) && (item1->type != item2->type)) {
if (item1->type == LYXP_NODE_ELEM) {
assert(item2->type == LYXP_NODE_TEXT);
return -1;
} else {
assert((item1->type == LYXP_NODE_TEXT) && (item2->type == LYXP_NODE_ELEM));
return 1;
}
}
/* we need attr positions now */
if (item1->type == LYXP_NODE_ATTR) {
tmp_node = lyd_attr_parent(root, (struct lyd_attr *)item1->node);
if (!tmp_node) {
LOGINT;
return -1;
}
attr_pos1 = get_attr_pos((struct lyd_attr *)item1->node, tmp_node);
}
if (item2->type == LYXP_NODE_ATTR) {
tmp_node = lyd_attr_parent(root, (struct lyd_attr *)item2->node);
if (!tmp_node) {
LOGINT;
return -1;
}
attr_pos2 = get_attr_pos((struct lyd_attr *)item2->node, tmp_node);
}
/* 1st ROOT - 2nd ROOT, 1st ELEM - 2nd ELEM, 1st TEXT - 2nd TEXT, 1st ATTR - =pos= - 2nd ATTR */
/* check for duplicates */
if (item1->node == item2->node) {
assert((item1->type == item2->type) && ((item1->type != LYXP_NODE_ATTR) || (attr_pos1 == attr_pos2)));
return 0;
}
/* 1st ELEM - 2nd TEXT, 1st ELEM - any pos - 2nd ATTR */
/* elem is always first, 2nd node is after it */
if (item1->type == LYXP_NODE_ELEM) {
assert(item2->type != LYXP_NODE_ELEM);
return -1;
}
/* 1st TEXT - 2nd ELEM, 1st TEXT - any pos - 2nd ATTR, 1st ATTR - any pos - 2nd ELEM, 1st ATTR - >pos> - 2nd ATTR */
/* 2nd is before 1st */
if (((item1->type == LYXP_NODE_TEXT)
&& ((item2->type == LYXP_NODE_ELEM) || (item2->type == LYXP_NODE_ATTR)))
|| ((item1->type == LYXP_NODE_ATTR) && (item2->type == LYXP_NODE_ELEM))
|| (((item1->type == LYXP_NODE_ATTR) && (item2->type == LYXP_NODE_ATTR))
&& (attr_pos1 > attr_pos2))) {
return 1;
}
/* 1st ATTR - any pos - 2nd TEXT, 1st ATTR <pos< - 2nd ATTR */
/* 2nd is after 1st */
return -1;
}
#ifndef NDEBUG
/**
* @brief Bubble sort \p set into XPath document order.
* Context position aware. Unused in the 'Release' build target.
*
* @param[in] set Set to sort.
* @param[in] cur_node Original context node.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return How many times the whole set was traversed.
*/
static int
set_sort(struct lyxp_set *set, const struct lyd_node *cur_node, int options)
{
uint32_t i, j;
int ret = 0, cmp, inverted, change;
const struct lyd_node *root;
enum lyxp_node_type root_type;
struct lyxp_set_nodes item;
if ((set->type != LYXP_SET_NODE_SET) || (set->used == 1)) {
return 0;
}
/* get root */
root = moveto_get_root(cur_node, options, &root_type);
/* fill positions */
if (set_assign_pos(set, root, root_type)) {
return -1;
}
LOGDBG(LY_LDGXPATH, "SORT BEGIN");
print_set_debug(set);
for (i = 0; i < set->used; ++i) {
inverted = 0;
change = 0;
for (j = 1; j < set->used - i; ++j) {
/* compare node positions */
if (inverted) {
cmp = set_sort_compare(&set->val.nodes[j], &set->val.nodes[j - 1], root);
} else {
cmp = set_sort_compare(&set->val.nodes[j - 1], &set->val.nodes[j], root);
}
/* swap if needed */
if ((inverted && (cmp < 0)) || (!inverted && (cmp > 0))) {
change = 1;
item = set->val.nodes[j - 1];
set->val.nodes[j - 1] = set->val.nodes[j];
set->val.nodes[j] = item;
} else {
/* whether node_pos1 should be smaller than node_pos2 or the other way around */
inverted = !inverted;
}
}
++ret;
if (!change) {
break;
}
}
LOGDBG(LY_LDGXPATH, "SORT END %d", ret);
print_set_debug(set);
return ret;
}
/**
* @brief Remove duplicate entries in a sorted node set.
*
* @param[in] set Sorted set to check.
*
* @return EXIT_SUCCESS if no duplicates were found,
* EXIT_FAILURE otherwise.
*/
static int
set_sorted_dup_node_clean(struct lyxp_set *set)
{
uint32_t i = 0;
int ret = EXIT_SUCCESS;
if (set->used > 1) {
while (i < set->used - 1) {
if ((set->val.nodes[i].node == set->val.nodes[i + 1].node)
&& (set->val.nodes[i].type == set->val.nodes[i + 1].type)) {
set_remove_node(set, i + 1);
ret = EXIT_FAILURE;
} else {
++i;
}
}
}
return ret;
}
#endif
/**
* @brief Merge 2 sorted sets into one.
*
* @param[in,out] trg Set to merge into. Duplicates are removed.
* @param[in] src Set to be merged into \p trg. It is cast to #LYXP_SET_EMPTY on success.
* @param[in] cur_node Original context node.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return 0 on success, -1 on error.
*/
static int
set_sorted_merge(struct lyxp_set *trg, struct lyxp_set *src, struct lyd_node *cur_node, int options)
{
uint32_t i, j, count, dup_count;
int cmp;
const struct lyd_node *root;
enum lyxp_node_type root_type;
if (((trg->type != LYXP_SET_NODE_SET) && (trg->type != LYXP_SET_EMPTY))
|| ((src->type != LYXP_SET_NODE_SET) && (src->type != LYXP_SET_EMPTY))) {
return -1;
}
if (src->type == LYXP_SET_EMPTY) {
return 0;
} else if (trg->type == LYXP_SET_EMPTY) {
set_fill_set(trg, src);
lyxp_set_cast(src, LYXP_SET_EMPTY, cur_node, NULL, options);
return 0;
}
/* get root */
root = moveto_get_root(cur_node, options, &root_type);
/* fill positions */
if (set_assign_pos(trg, root, root_type) || set_assign_pos(src, root, root_type)) {
return -1;
}
#ifndef NDEBUG
LOGDBG(LY_LDGXPATH, "MERGE target");
print_set_debug(trg);
LOGDBG(LY_LDGXPATH, "MERGE source");
print_set_debug(src);
#endif
/* make memory for the merge (duplicates are not detected yet, so space
* will likely be wasted on them, too bad) */
if (trg->size - trg->used < src->used) {
trg->size = trg->used + src->used;
trg->val.nodes = ly_realloc(trg->val.nodes, trg->size * sizeof *trg->val.nodes);
if (!trg->val.nodes) {
LOGMEM;
return -1;
}
}
i = 0;
j = 0;
count = 0;
dup_count = 0;
do {
cmp = set_sort_compare(&src->val.nodes[i], &trg->val.nodes[j], root);
if (!cmp) {
if (!count) {
/* duplicate, just skip it */
++i;
++j;
} else {
/* we are copying something already, so let's copy the duplicate too,
* we are hoping that afterwards there are some more nodes to
* copy and this way we can copy them all together */
++count;
++dup_count;
++i;
++j;
}
} else if (cmp < 0) {
/* inserting src node into trg, just remember it for now */
++count;
++i;
} else if (count) {
copy_nodes:
/* time to actually copy the nodes, we have found the largest block of nodes */
memmove(&trg->val.nodes[j + (count - dup_count)],
&trg->val.nodes[j],
(trg->used - j) * sizeof *trg->val.nodes);
memcpy(&trg->val.nodes[j - dup_count], &src->val.nodes[i - count], count * sizeof *src->val.nodes);
trg->used += count - dup_count;
/* do not change i, except the copying above, we are basically doing exactly what is in the else branch below */
j += count - dup_count;
count = 0;
dup_count = 0;
} else {
++j;
}
} while ((i < src->used) && (j < trg->used));
if ((i < src->used) || count) {
/* loop ended, but we need to copy something at trg end */
count += src->used - i;
i = src->used;
goto copy_nodes;
}
#ifndef NDEBUG
LOGDBG(LY_LDGXPATH, "MERGE result");
print_set_debug(trg);
#endif
lyxp_set_cast(src, LYXP_SET_EMPTY, cur_node, NULL, options);
return 0;
}
/*
* (re)parse functions
*
* Parse functions parse the expression into
* tokens (syntactic analysis).
*
* Reparse functions perform semantic analysis
* (do not save the result, just a check) of
* the expression and fill repeat indices.
*/
/**
* @brief Add \p token into the expression \p exp.
*
* @param[in] exp Expression to use.
* @param[in] token Token to add.
* @param[in] expr_pos Token position in the XPath expression.
* @param[in] tok_len Token length in the XPath expression.
*/
static void
exp_add_token(struct lyxp_expr *exp, enum lyxp_token token, uint16_t expr_pos, uint16_t tok_len)
{
if (exp->used == exp->size) {
exp->size += LYXP_EXPR_SIZE_STEP;
exp->tokens = ly_realloc(exp->tokens, exp->size * sizeof *exp->tokens);
if (!exp->tokens) {
LOGMEM;
return;
}
exp->expr_pos = ly_realloc(exp->expr_pos, exp->size * sizeof *exp->expr_pos);
if (!exp->expr_pos) {
LOGMEM;
return;
}
exp->tok_len = ly_realloc(exp->tok_len, exp->size * sizeof *exp->tok_len);
if (!exp->tok_len) {
LOGMEM;
return;
}
}
exp->tokens[exp->used] = token;
exp->expr_pos[exp->used] = expr_pos;
exp->tok_len[exp->used] = tok_len;
++exp->used;
}
/**
* @brief Look at the next token and check its kind.
*
* @param[in] exp Expression to use.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] want_tok Expected token.
* @param[in] strict Whether the token is strictly required (print error if
* not the next one) or we simply want to check whether it is the next or not.
*
* @return EXIT_SUCCESS if the current token matches the expected one,
* -1 otherwise.
*/
static int
exp_check_token(struct lyxp_expr *exp, uint16_t exp_idx, enum lyxp_token want_tok, int strict)
{
if (exp->used == exp_idx) {
if (strict) {
LOGVAL(LYE_XPATH_EOF, LY_VLOG_NONE, NULL);
}
return -1;
}
if (want_tok && (exp->tokens[exp_idx] != want_tok)) {
if (strict) {
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL,
print_token(exp->tokens[exp_idx]), &exp->expr[exp->expr_pos[exp_idx]]);
}
return -1;
}
return EXIT_SUCCESS;
}
/**
* @brief Stack operation peek on the repeat array.
*
* @param[in] exp Expression to use.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return Last repeat or 0.
*/
static uint16_t
exp_repeat_peek(struct lyxp_expr *exp, uint16_t exp_idx)
{
uint16_t i;
if (!exp->repeat[exp_idx]) {
return 0;
}
for (i = 0; exp->repeat[exp_idx][i + 1]; ++i);
return exp->repeat[exp_idx][i];
}
/**
* @brief Stack operation pop on the repeat array.
*
* @param[in] exp Expression to use.
* @param[in] exp_idx Position in the expression \p exp.
*/
static void
exp_repeat_pop(struct lyxp_expr *exp, uint16_t exp_idx)
{
uint16_t i;
if (!exp->repeat[exp_idx]) {
LOGINT;
return;
}
for (i = 0; exp->repeat[exp_idx][i + 1]; ++i);
exp->repeat[exp_idx][i] = 0;
}
/**
* @brief Stack operation push on the repeat array.
*
* @param[in] exp Expression to use.
* @param[in] exp_idx Position in the expresion \p exp.
* @param[in] repeat_op_idx Index from \p exp of the operator token. This value is pushed.
*/
static void
exp_repeat_push(struct lyxp_expr *exp, uint16_t exp_idx, uint16_t repeat_op_idx)
{
uint16_t i;
if (exp->repeat[exp_idx]) {
for (i = 0; exp->repeat[exp_idx][i]; ++i);
exp->repeat[exp_idx] = realloc(exp->repeat[exp_idx], (i + 2) * sizeof *exp->repeat[exp_idx]);
if (!exp->repeat[exp_idx]) {
LOGMEM;
return;
}
exp->repeat[exp_idx][i] = repeat_op_idx;
exp->repeat[exp_idx][i + 1] = 0;
} else {
exp->repeat[exp_idx] = calloc(2, sizeof *exp->repeat[exp_idx]);
if (!exp->repeat[exp_idx]) {
LOGMEM;
return;
}
exp->repeat[exp_idx][0] = repeat_op_idx;
}
}
/**
* @brief Reparse Predicate. Logs directly on error.
*
* [6] Predicate ::= '[' Expr ']'
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
reparse_predicate(struct lyxp_expr *exp, uint16_t *exp_idx)
{
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_BRACK1, 1)) {
return -1;
}
++(*exp_idx);
if (reparse_expr(exp, exp_idx)) {
return -1;
}
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_BRACK2, 1)) {
return -1;
}
++(*exp_idx);
return EXIT_SUCCESS;
}
/**
* @brief Reparse RelativeLocationPath. Logs directly on error.
*
* [3] RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step
* [4] Step ::= '@'? NodeTest Predicate* | '.' | '..'
* [5] NodeTest ::= NameTest | NodeType '(' ')'
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on forward reference, -1 on error.
*/
static int
reparse_relative_location_path(struct lyxp_expr *exp, uint16_t *exp_idx)
{
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) {
return -1;
}
goto step;
do {
/* '/' or '//' */
++(*exp_idx);
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) {
return -1;
}
step:
/* Step */
switch (exp->tokens[*exp_idx]) {
case LYXP_TOKEN_DOT:
++(*exp_idx);
break;
case LYXP_TOKEN_DDOT:
++(*exp_idx);
break;
case LYXP_TOKEN_AT:
++(*exp_idx);
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) {
return -1;
}
if ((exp->tokens[*exp_idx] != LYXP_TOKEN_NAMETEST) && (exp->tokens[*exp_idx] != LYXP_TOKEN_NODETYPE)) {
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL,
print_token(exp->tokens[*exp_idx]), &exp->expr[exp->expr_pos[*exp_idx]]);
return -1;
}
/* fall through */
case LYXP_TOKEN_NAMETEST:
++(*exp_idx);
goto reparse_predicate;
break;
case LYXP_TOKEN_NODETYPE:
++(*exp_idx);
/* '(' */
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR1, 1)) {
return -1;
}
++(*exp_idx);
/* ')' */
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR2, 1)) {
return -1;
}
++(*exp_idx);
reparse_predicate:
/* Predicate* */
while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_BRACK1)) {
if (reparse_predicate(exp, exp_idx)) {
return -1;
}
}
break;
default:
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL,
print_token(exp->tokens[*exp_idx]), &exp->expr[exp->expr_pos[*exp_idx]]);
return -1;
}
} while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_OPERATOR_PATH));
return EXIT_SUCCESS;
}
/**
* @brief Reparse AbsoluteLocationPath. Logs directly on error.
*
* [2] AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
reparse_absolute_location_path(struct lyxp_expr *exp, uint16_t *exp_idx)
{
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_PATH, 1)) {
return -1;
}
/* '/' RelativeLocationPath? */
if (exp->tok_len[*exp_idx] == 1) {
/* '/' */
++(*exp_idx);
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 0)) {
return EXIT_SUCCESS;
}
switch (exp->tokens[*exp_idx]) {
case LYXP_TOKEN_DOT:
case LYXP_TOKEN_DDOT:
case LYXP_TOKEN_AT:
case LYXP_TOKEN_NAMETEST:
case LYXP_TOKEN_NODETYPE:
if (reparse_relative_location_path(exp, exp_idx)) {
return -1;
}
/* fall through */
default:
break;
}
/* '//' RelativeLocationPath */
} else {
/* '//' */
++(*exp_idx);
if (reparse_relative_location_path(exp, exp_idx)) {
return -1;
}
}
return EXIT_SUCCESS;
}
/**
* @brief Reparse FunctionCall. Logs directly on error.
*
* [8] FunctionCall ::= FunctionName '(' ( Expr ( ',' Expr )* )? ')'
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
reparse_function_call(struct lyxp_expr *exp, uint16_t *exp_idx)
{
int min_arg_count = -1, max_arg_count, arg_count;
uint16_t func_exp_idx;
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_FUNCNAME, 1)) {
return -1;
}
func_exp_idx = *exp_idx;
switch (exp->tok_len[*exp_idx]) {
case 3:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "not", 3)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "sum", 3)) {
min_arg_count = 1;
max_arg_count = 1;
}
break;
case 4:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "lang", 4)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "last", 4)) {
min_arg_count = 0;
max_arg_count = 0;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "name", 4)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "true", 4)) {
min_arg_count = 0;
max_arg_count = 0;
}
break;
case 5:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "count", 5)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "false", 5)) {
min_arg_count = 0;
max_arg_count = 0;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "floor", 5)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "round", 5)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "deref", 5)) {
min_arg_count = 1;
max_arg_count = 1;
}
break;
case 6:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "concat", 6)) {
min_arg_count = 2;
max_arg_count = 3;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "number", 6)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "string", 6)) {
min_arg_count = 0;
max_arg_count = 1;
}
break;
case 7:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "boolean", 7)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "ceiling", 7)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "current", 7)) {
min_arg_count = 0;
max_arg_count = 0;
}
break;
case 8:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "contains", 8)) {
min_arg_count = 2;
max_arg_count = 2;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "position", 8)) {
min_arg_count = 0;
max_arg_count = 0;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "re-match", 8)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 9:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring", 9)) {
min_arg_count = 2;
max_arg_count = 3;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "translate", 9)) {
min_arg_count = 3;
max_arg_count = 3;
}
break;
case 10:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "local-name", 10)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "enum-value", 10)) {
min_arg_count = 1;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "bit-is-set", 10)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 11:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "starts-with", 11)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 12:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "derived-from", 12)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 13:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "namespace-uri", 13)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "string-length", 13)) {
min_arg_count = 0;
max_arg_count = 1;
}
break;
case 15:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "normalize-space", 15)) {
min_arg_count = 0;
max_arg_count = 1;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring-after", 15)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 16:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring-before", 16)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
case 20:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "derived-from-or-self", 20)) {
min_arg_count = 2;
max_arg_count = 2;
}
break;
}
if (min_arg_count == -1) {
LOGVAL(LYE_XPATH_INFUNC, LY_VLOG_NONE, NULL, exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]]);
return -1;
}
++(*exp_idx);
/* '(' */
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR1, 1)) {
return -1;
}
++(*exp_idx);
/* ( Expr ( ',' Expr )* )? */
arg_count = 0;
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) {
return -1;
}
if (exp->tokens[*exp_idx] != LYXP_TOKEN_PAR2) {
++arg_count;
if (reparse_expr(exp, exp_idx)) {
return -1;
}
}
while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_COMMA)) {
++(*exp_idx);
++arg_count;
if (reparse_expr(exp, exp_idx)) {
return -1;
}
}
/* ')' */
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR2, 1)) {
return -1;
}
++(*exp_idx);
if ((arg_count < min_arg_count) || (arg_count > max_arg_count)) {
LOGVAL(LYE_XPATH_INARGCOUNT, LY_VLOG_NONE, NULL, arg_count, exp->tok_len[func_exp_idx],
&exp->expr[exp->expr_pos[func_exp_idx]]);
return -1;
}
return EXIT_SUCCESS;
}
/**
* @brief Reparse PathExpr. Logs directly on error.
*
* [9] PathExpr ::= LocationPath | PrimaryExpr Predicate*
* | PrimaryExpr Predicate* '/' RelativeLocationPath
* | PrimaryExpr Predicate* '//' RelativeLocationPath
* [1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath
* [7] PrimaryExpr ::= '(' Expr ')' | Literal | Number | FunctionCall
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
reparse_path_expr(struct lyxp_expr *exp, uint16_t *exp_idx)
{
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 1)) {
return -1;
}
switch (exp->tokens[*exp_idx]) {
case LYXP_TOKEN_PAR1:
/* '(' Expr ')' Predicate* */
++(*exp_idx);
if (reparse_expr(exp, exp_idx)) {
return -1;
}
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_PAR2, 1)) {
return -1;
}
++(*exp_idx);
goto predicate;
break;
case LYXP_TOKEN_DOT:
case LYXP_TOKEN_DDOT:
case LYXP_TOKEN_AT:
case LYXP_TOKEN_NAMETEST:
case LYXP_TOKEN_NODETYPE:
/* RelativeLocationPath */
if (reparse_relative_location_path(exp, exp_idx)) {
return -1;
}
break;
case LYXP_TOKEN_FUNCNAME:
/* FunctionCall */
if (reparse_function_call(exp, exp_idx)) {
return -1;
}
goto predicate;
break;
case LYXP_TOKEN_OPERATOR_PATH:
/* AbsoluteLocationPath */
if (reparse_absolute_location_path(exp, exp_idx)) {
return -1;
}
break;
case LYXP_TOKEN_LITERAL:
/* Literal */
++(*exp_idx);
goto predicate;
break;
case LYXP_TOKEN_NUMBER:
/* Number */
++(*exp_idx);
goto predicate;
break;
default:
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL,
print_token(exp->tokens[*exp_idx]), &exp->expr[exp->expr_pos[*exp_idx]]);
return -1;
}
return EXIT_SUCCESS;
predicate:
/* Predicate* */
while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_BRACK1)) {
if (reparse_predicate(exp, exp_idx)) {
return -1;
}
}
/* ('/' or '//') RelativeLocationPath */
if ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_OPERATOR_PATH)) {
/* '/' or '//' */
++(*exp_idx);
if (reparse_relative_location_path(exp, exp_idx)) {
return -1;
}
}
return EXIT_SUCCESS;
}
/**
* @brief Reparse UnaryExpr. Logs directly on error.
*
* [16] UnaryExpr ::= UnionExpr | '-' UnaryExpr
* [17] UnionExpr ::= PathExpr | UnionExpr '|' PathExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
reparse_unary_expr(struct lyxp_expr *exp, uint16_t *exp_idx)
{
uint16_t prev_exp;
/* ('-')* */
while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_MATH, 0)
&& (exp->expr[exp->expr_pos[*exp_idx]] == '-')) {
++(*exp_idx);
}
/* PathExpr */
prev_exp = *exp_idx;
if (reparse_path_expr(exp, exp_idx)) {
return -1;
}
/* ('|' PathExpr)* */
while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_UNI, 0)) {
exp_repeat_push(exp, prev_exp, *exp_idx);
++(*exp_idx);
prev_exp = *exp_idx;
if (reparse_path_expr(exp, exp_idx)) {
return -1;
}
}
return EXIT_SUCCESS;
}
/**
* @brief Reparse AdditiveExpr. Logs directly on error.
*
* [14] AdditiveExpr ::= MultiplicativeExpr
* | AdditiveExpr '+' MultiplicativeExpr
* | AdditiveExpr '-' MultiplicativeExpr
* [15] MultiplicativeExpr ::= UnaryExpr
* | MultiplicativeExpr '*' UnaryExpr
* | MultiplicativeExpr 'div' UnaryExpr
* | MultiplicativeExpr 'mod' UnaryExpr
*
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
reparse_additive_expr(struct lyxp_expr *exp, uint16_t *exp_idx)
{
uint16_t prev_add_exp, prev_mul_exp;
goto reparse_multiplicative_expr;
/* ('+' / '-' MultiplicativeExpr)* */
while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_MATH, 0)
&& ((exp->expr[exp->expr_pos[*exp_idx]] == '+') || (exp->expr[exp->expr_pos[*exp_idx]] == '-'))) {
exp_repeat_push(exp, prev_add_exp, *exp_idx);
++(*exp_idx);
reparse_multiplicative_expr:
prev_add_exp = *exp_idx;
prev_mul_exp = *exp_idx;
/* UnaryExpr */
if (reparse_unary_expr(exp, exp_idx)) {
return -1;
}
/* ('*' / 'div' / 'mod' UnaryExpr)* */
while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_MATH, 0)
&& ((exp->expr[exp->expr_pos[*exp_idx]] == '*') || (exp->tok_len[*exp_idx] == 3))) {
exp_repeat_push(exp, prev_mul_exp, *exp_idx);
++(*exp_idx);
prev_mul_exp = *exp_idx;
if (reparse_unary_expr(exp, exp_idx)) {
return -1;
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Reparse EqualityExpr. Logs directly on error.
*
* [12] EqualityExpr ::= RelationalExpr | EqualityExpr '=' RelationalExpr
* | EqualityExpr '!=' RelationalExpr
* [13] RelationalExpr ::= AdditiveExpr
* | RelationalExpr '<' AdditiveExpr
* | RelationalExpr '>' AdditiveExpr
* | RelationalExpr '<=' AdditiveExpr
* | RelationalExpr '>=' AdditiveExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
reparse_equality_expr(struct lyxp_expr *exp, uint16_t *exp_idx)
{
uint16_t prev_eq_exp, prev_rel_exp;
goto reparse_additive_expr;
/* ('=' / '!=' RelationalExpr)* */
while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_COMP, 0)
&& ((exp->expr[exp->expr_pos[*exp_idx]] == '=') || (exp->expr[exp->expr_pos[*exp_idx]] == '!'))) {
exp_repeat_push(exp, prev_eq_exp, *exp_idx);
++(*exp_idx);
reparse_additive_expr:
prev_eq_exp = *exp_idx;
prev_rel_exp = *exp_idx;
/* AdditiveExpr */
if (reparse_additive_expr(exp, exp_idx)) {
return -1;
}
/* ('<' / '>' / '<=' / '>=' AdditiveExpr)* */
while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_COMP, 0)
&& ((exp->expr[exp->expr_pos[*exp_idx]] == '<') || (exp->expr[exp->expr_pos[*exp_idx]] == '>'))) {
exp_repeat_push(exp, prev_rel_exp, *exp_idx);
++(*exp_idx);
prev_rel_exp = *exp_idx;
if (reparse_additive_expr(exp, exp_idx)) {
return -1;
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Reparse Expr. Logs directly on error.
*
* [10] Expr ::= AndExpr | Expr 'or' AndExpr
* [11] AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
reparse_expr(struct lyxp_expr *exp, uint16_t *exp_idx)
{
uint16_t prev_or_exp, prev_and_exp;
goto reparse_equality_expr;
/* ('or' AndExpr)* */
while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_LOG, 0) && (exp->tok_len[*exp_idx] == 2)) {
exp_repeat_push(exp, prev_or_exp, *exp_idx);
++(*exp_idx);
reparse_equality_expr:
prev_or_exp = *exp_idx;
prev_and_exp = *exp_idx;
/* EqualityExpr */
if (reparse_equality_expr(exp, exp_idx)) {
return -1;
}
/* ('and' EqualityExpr)* */
while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_LOG, 0) && (exp->tok_len[*exp_idx] == 3)) {
exp_repeat_push(exp, prev_and_exp, *exp_idx);
++(*exp_idx);
prev_and_exp = *exp_idx;
if (reparse_equality_expr(exp, exp_idx)) {
return -1;
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Parse NCName.
*
* @param[in] ncname Name to parse.
*
* @return Length of \p ncname valid characters.
*/
static uint16_t
parse_ncname(const char *ncname)
{
uint16_t parsed = 0;
int uc;
unsigned int size;
uc = lyxml_getutf8(&ncname[parsed], &size);
if (!is_xmlnamestartchar(uc) || (uc == ':')) {
return parsed;
}
do {
parsed += size;
if (!ncname[parsed]) {
break;
}
uc = lyxml_getutf8(&ncname[parsed], &size);
} while (is_xmlnamechar(uc) && (uc != ':'));
return parsed;
}
struct lyxp_expr *
lyxp_parse_expr(const char *expr)
{
struct lyxp_expr *ret;
uint16_t parsed = 0, tok_len, ncname_len;
enum lyxp_token tok_type;
int prev_function_check = 0;
/* init lyxp_expr structure */
ret = calloc(1, sizeof *ret);
if (!ret) {
LOGMEM;
goto error;
}
ret->expr = strdup(expr);
if (!ret->expr) {
LOGMEM;
goto error;
}
ret->used = 0;
ret->size = LYXP_EXPR_SIZE_START;
ret->tokens = malloc(ret->size * sizeof *ret->tokens);
if (!ret->tokens) {
LOGMEM;
goto error;
}
ret->expr_pos = malloc(ret->size * sizeof *ret->expr_pos);
if (!ret->expr_pos) {
LOGMEM;
goto error;
}
ret->tok_len = malloc(ret->size * sizeof *ret->tok_len);
if (!ret->tok_len) {
LOGMEM;
goto error;
}
while (is_xmlws(expr[parsed])) {
++parsed;
}
do {
if (expr[parsed] == '(') {
/* '(' */
tok_len = 1;
tok_type = LYXP_TOKEN_PAR1;
if (prev_function_check && ret->used && (ret->tokens[ret->used - 1] == LYXP_TOKEN_NAMETEST)) {
/* it is a NodeType/FunctionName after all */
if (((ret->tok_len[ret->used - 1] == 4)
&& (!strncmp(&expr[ret->expr_pos[ret->used - 1]], "node", 4)
|| !strncmp(&expr[ret->expr_pos[ret->used - 1]], "text", 4))) ||
((ret->tok_len[ret->used - 1] == 7)
&& !strncmp(&expr[ret->expr_pos[ret->used - 1]], "comment", 7))) {
ret->tokens[ret->used - 1] = LYXP_TOKEN_NODETYPE;
} else {
ret->tokens[ret->used - 1] = LYXP_TOKEN_FUNCNAME;
}
prev_function_check = 0;
}
} else if (expr[parsed] == ')') {
/* ')' */
tok_len = 1;
tok_type = LYXP_TOKEN_PAR2;
} else if (expr[parsed] == '[') {
/* '[' */
tok_len = 1;
tok_type = LYXP_TOKEN_BRACK1;
} else if (expr[parsed] == ']') {
/* ']' */
tok_len = 1;
tok_type = LYXP_TOKEN_BRACK2;
} else if (!strncmp(&expr[parsed], "..", 2)) {
/* '..' */
tok_len = 2;
tok_type = LYXP_TOKEN_DDOT;
} else if ((expr[parsed] == '.') && (!isdigit(expr[parsed+1]))) {
/* '.' */
tok_len = 1;
tok_type = LYXP_TOKEN_DOT;
} else if (expr[parsed] == '@') {
/* '@' */
tok_len = 1;
tok_type = LYXP_TOKEN_AT;
} else if (expr[parsed] == ',') {
/* ',' */
tok_len = 1;
tok_type = LYXP_TOKEN_COMMA;
} else if (expr[parsed] == '\'') {
/* Literal with ' */
for (tok_len = 1; expr[parsed + tok_len] != '\''; ++tok_len);
++tok_len;
tok_type = LYXP_TOKEN_LITERAL;
} else if (expr[parsed] == '\"') {
/* Literal with " */
for (tok_len = 1; expr[parsed + tok_len] != '\"'; ++tok_len);
++tok_len;
tok_type = LYXP_TOKEN_LITERAL;
} else if ((expr[parsed] == '.') || (isdigit(expr[parsed]))) {
/* Number */
for (tok_len = 0; isdigit(expr[parsed + tok_len]); ++tok_len);
if (expr[parsed + tok_len] == '.') {
++tok_len;
for (; isdigit(expr[parsed + tok_len]); ++tok_len);
}
tok_type = LYXP_TOKEN_NUMBER;
} else if (expr[parsed] == '/') {
/* Operator '/', '//' */
if (!strncmp(&expr[parsed], "//", 2)) {
tok_len = 2;
} else {
tok_len = 1;
}
tok_type = LYXP_TOKEN_OPERATOR_PATH;
} else if (!strncmp(&expr[parsed], "!=", 2) || !strncmp(&expr[parsed], "<=", 2)
|| !strncmp(&expr[parsed], ">=", 2)) {
/* Operator '!=', '<=', '>=' */
tok_len = 2;
tok_type = LYXP_TOKEN_OPERATOR_COMP;
} else if (expr[parsed] == '|') {
/* Operator '|' */
tok_len = 1;
tok_type = LYXP_TOKEN_OPERATOR_UNI;
} else if ((expr[parsed] == '+') || (expr[parsed] == '-')) {
/* Operator '+', '-' */
tok_len = 1;
tok_type = LYXP_TOKEN_OPERATOR_MATH;
} else if ((expr[parsed] == '=') || (expr[parsed] == '<') || (expr[parsed] == '>')) {
/* Operator '=', '<', '>' */
tok_len = 1;
tok_type = LYXP_TOKEN_OPERATOR_COMP;
} else if (ret->used && (ret->tokens[ret->used - 1] != LYXP_TOKEN_AT)
&& (ret->tokens[ret->used - 1] != LYXP_TOKEN_PAR1)
&& (ret->tokens[ret->used - 1] != LYXP_TOKEN_BRACK1)
&& (ret->tokens[ret->used - 1] != LYXP_TOKEN_COMMA)
&& (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_LOG)
&& (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_COMP)
&& (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_MATH)
&& (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_UNI)
&& (ret->tokens[ret->used - 1] != LYXP_TOKEN_OPERATOR_PATH)) {
/* Operator '*', 'or', 'and', 'mod', or 'div' */
if (expr[parsed] == '*') {
tok_len = 1;
tok_type = LYXP_TOKEN_OPERATOR_MATH;
} else if (!strncmp(&expr[parsed], "or", 2)) {
tok_len = 2;
tok_type = LYXP_TOKEN_OPERATOR_LOG;
} else if (!strncmp(&expr[parsed], "and", 3)) {
tok_len = 3;
tok_type = LYXP_TOKEN_OPERATOR_LOG;
} else if (!strncmp(&expr[parsed], "mod", 3) || !strncmp(&expr[parsed], "div", 3)) {
tok_len = 3;
tok_type = LYXP_TOKEN_OPERATOR_MATH;
} else {
LOGVAL(LYE_INCHAR, LY_VLOG_NONE, NULL, expr[parsed], &expr[parsed]);
goto error;
}
} else if (expr[parsed] == '*') {
/* NameTest '*' */
tok_len = 1;
tok_type = LYXP_TOKEN_NAMETEST;
} else {
/* NameTest (NCName ':' '*' | QName) or NodeType/FunctionName */
ncname_len = parse_ncname(&expr[parsed]);
if (!ncname_len) {
LOGVAL(LYE_INCHAR, LY_VLOG_NONE, NULL, expr[parsed], &expr[parsed]);
goto error;
}
tok_len = ncname_len;
if (expr[parsed + tok_len] == ':') {
++tok_len;
if (expr[parsed + tok_len] == '*') {
++tok_len;
} else {
ncname_len = parse_ncname(&expr[parsed + tok_len]);
if (!ncname_len) {
LOGVAL(LYE_INCHAR, LY_VLOG_NONE, NULL, expr[parsed], &expr[parsed]);
goto error;
}
tok_len += ncname_len;
}
/* remove old flag to prevent ambiguities */
prev_function_check = 0;
tok_type = LYXP_TOKEN_NAMETEST;
} else {
/* there is no prefix so it can still be NodeType/FunctioName, we can't finally decide now */
prev_function_check = 1;
tok_type = LYXP_TOKEN_NAMETEST;
}
}
/* store the token, move on to the next one */
exp_add_token(ret, tok_type, parsed, tok_len);
parsed += tok_len;
while (is_xmlws(expr[parsed])) {
++parsed;
}
} while (expr[parsed]);
/* prealloc repeat */
ret->repeat = calloc(ret->size, sizeof *ret->repeat);
if (!ret->repeat) {
LOGMEM;
goto error;
}
return ret;
error:
lyxp_expr_free(ret);
return NULL;
}
/*
* XPath functions
*/
/**
* @brief Execute the YANG 1.1 bit-is-set(node-set, string) function. Returns LYXP_SET_BOOLEAN
* depending on whether the first node bit value from the second argument is set.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_bit_is_set(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
struct lyd_node_leaf_list *leaf;
int i, bits_count;
if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_EMPTY)) {
LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "bit-is-set(node-set, string)");
return -1;
}
if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
set_fill_boolean(set, 0);
if (args[0]->type == LYXP_SET_NODE_SET) {
leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[0].node;
if ((leaf->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST))
&& (((struct lys_node_leaf *)leaf->schema)->type.base == LY_TYPE_BITS)) {
bits_count = ((struct lys_node_leaf *)leaf->schema)->type.info.bits.count;
for (i = 0; i < bits_count; ++i) {
if (leaf->value.bit[i] && ly_strequal(leaf->value.bit[i]->name, args[1]->val.str, 0)) {
set_fill_boolean(set, 1);
break;
}
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath boolean(object) function. Returns LYXP_SET_BOOLEAN
* with the argument converted to boolean.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_boolean(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
lyxp_set_cast(args[0], LYXP_SET_BOOLEAN, cur_node, local_mod, options);
set_fill_set(set, args[0]);
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath ceiling(number) function. Returns LYXP_SET_NUMBER
* with the first argument rounded up to the nearest integer.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_ceiling(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (lyxp_set_cast(args[0], LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
if ((long long)args[0]->val.num != args[0]->val.num) {
set_fill_number(set, ((long long)args[0]->val.num) + 1);
} else {
set_fill_number(set, args[0]->val.num);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath concat(string, string, string*) function.
* Returns LYXP_SET_STRING with the concatenation of all the arguments.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_concat(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
uint16_t i;
char *str = NULL;
size_t used = 1;
for (i = 0; i < arg_count; ++i) {
if (lyxp_set_cast(args[i], LYXP_SET_STRING, cur_node, local_mod, options)) {
free(str);
return -1;
}
str = ly_realloc(str, (used + strlen(args[i]->val.str)) * sizeof(char));
if (!str) {
LOGMEM;
return -1;
}
strcpy(str + used - 1, args[i]->val.str);
used += strlen(args[i]->val.str);
}
/* free, kind of */
lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options);
set->type = LYXP_SET_STRING;
set->val.str = str;
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath contains(string, string) function.
* Returns LYXP_SET_BOOLEAN whether the second argument can
* be found in the first or not.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_contains(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (strstr(args[0]->val.str, args[1]->val.str)) {
set_fill_boolean(set, 1);
} else {
set_fill_boolean(set, 0);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath count(node-set) function. Returns LYXP_SET_NUMBER
* with the size of the node-set from the argument.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_count(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node),
struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options))
{
if (args[0]->type == LYXP_SET_EMPTY) {
set_fill_number(set, 0);
return EXIT_SUCCESS;
}
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "count(node-set)");
return -1;
}
set_fill_number(set, args[0]->used);
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath current() function. Returns LYXP_SET_NODE_SET
* with the context with the intial node.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_current(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (arg_count || args) {
LOGVAL(LYE_XPATH_INARGCOUNT, LY_VLOG_NONE, NULL, arg_count, "current()");
return -1;
}
if (options & LYXP_SNODE_ALL) {
set_snode_clear_ctx(set);
set_snode_insert_node(set, (struct lys_node *)cur_node, LYXP_NODE_ELEM);
} else {
lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options);
/* position is filled later */
set_insert_node(set, cur_node, 0, LYXP_NODE_ELEM, 0);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the YANG 1.1 deref(node-set) function. Returns LYXP_SET_NODE_SET with either
* leafref or instance-identifier target node(s).
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_deref(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
struct lyd_node_leaf_list *leaf;
struct lys_node_leaf *sleaf;
if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_SNODE_SET)
&& (args[0]->type != LYXP_SET_EMPTY)) {
LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "deref(node-set)");
return -1;
}
if (options & LYXP_SNODE_ALL) {
assert(args[0]->type == LYXP_SET_SNODE_SET);
set_snode_clear_ctx(set);
sleaf = (struct lys_node_leaf *)args[0]->val.snodes[0].snode;
if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (sleaf->type.base == LY_TYPE_LEAFREF)) {
assert(sleaf->type.info.lref.path && sleaf->type.info.lref.target);
set_insert_node(set, sleaf->type.info.lref.target, 0, LYXP_NODE_ELEM, 0);
}
set_snode_insert_node(set, (struct lys_node *)cur_node, LYXP_NODE_ELEM);
} else {
lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options);
if (args[0]->type != LYXP_SET_EMPTY) {
leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[0].node;
sleaf = (struct lys_node_leaf *)leaf->schema;
if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST))
&& ((sleaf->type.base == LY_TYPE_LEAFREF) || (sleaf->type.base == LY_TYPE_INST))) {
if (leaf->value_type & (LY_TYPE_LEAFREF_UNRES | LY_TYPE_INST_UNRES)) {
/* this is bad */
LOGVAL(LYE_SPEC, LY_VLOG_LYD, args[0]->val.nodes[0].node,
"Trying to dereference an unresolved leafref or instance-identifier.");
return -1;
}
/* works for both leafref and instid */
set_insert_node(set, leaf->value.leafref, 0, LYXP_NODE_ELEM, 0);
}
}
}
return EXIT_SUCCESS;
}
/* return 0 - match, 1 - mismatch */
static int
xpath_derived_from_ident_cmp(struct lys_ident *ident, const char *ident_str)
{
const char *ptr;
int len;
ptr = strchr(ident_str, ':');
if (ptr) {
len = ptr - ident_str;
if (strncmp(ident->module->name, ident_str, len)
|| ident->module->name[len]) {
/* module name mismatch BUG we expect JSON format prefix, but if the 2nd argument was
* not a literal, we may easily be mistaken */
return 1;
}
++ptr;
} else {
ptr = ident_str;
}
len = strlen(ptr);
if (strncmp(ident->name, ptr, len) || ident->name[len]) {
/* name mismatch */
return 1;
}
return 0;
}
/**
* @brief Execute the YANG 1.1 derived-from(node-set, string) function. Returns LYXP_SET_BOOLEAN depending
* on whether the first argument nodes contain a node of an identity derived from the second
* argument identity.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_derived_from(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
uint16_t i, j;
struct lyd_node_leaf_list *leaf;
struct lys_node_leaf *sleaf;
if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_EMPTY)) {
LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "derived-from(node-set, string)");
return -1;
}
if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
set_fill_boolean(set, 0);
if (args[0]->type != LYXP_SET_EMPTY) {
for (i = 0; i < args[0]->used; ++i) {
leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[i].node;
sleaf = (struct lys_node_leaf *)leaf->schema;
if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (sleaf->type.base == LY_TYPE_IDENT)) {
for (j = 0; j < leaf->value.ident->base_size; ++j) {
if (!xpath_derived_from_ident_cmp(leaf->value.ident->base[j], args[1]->val.str)) {
set_fill_boolean(set, 1);
break;
}
}
if (j < leaf->value.ident->base_size) {
break;
}
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the YANG 1.1 derived-from-or-self(node-set, string) function. Returns LYXP_SET_BOOLEAN depending
* on whether the first argument nodes contain a node of an identity that either is or is derived from
* the second argument identity.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_derived_from_or_self(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node,
struct lys_module *local_mod, struct lyxp_set *set, int options)
{
uint16_t i, j;
struct lyd_node_leaf_list *leaf;
struct lys_node_leaf *sleaf;
if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_EMPTY)) {
LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "derived-from-or-self(node-set, string)");
return -1;
}
if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
set_fill_boolean(set, 0);
if (args[0]->type != LYXP_SET_EMPTY) {
for (i = 0; i < args[0]->used; ++i) {
leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[i].node;
sleaf = (struct lys_node_leaf *)leaf->schema;
if ((sleaf->nodetype & (LYS_LEAF | LYS_LEAFLIST)) && (sleaf->type.base == LY_TYPE_IDENT)) {
if (!xpath_derived_from_ident_cmp(leaf->value.ident, args[1]->val.str)) {
set_fill_boolean(set, 1);
break;
}
for (j = 0; j < leaf->value.ident->base_size; ++j) {
if (!xpath_derived_from_ident_cmp(leaf->value.ident->base[j], args[1]->val.str)) {
set_fill_boolean(set, 1);
break;
}
}
if (j < leaf->value.ident->base_size) {
break;
}
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the YANG 1.1 enum-value(node-set) function. Returns LYXP_SET_NUMBER
* with the integer value of the first node's enum value, otherwise NaN.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_enum_value(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node),
struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options))
{
struct lyd_node_leaf_list *leaf;
if ((args[0]->type != LYXP_SET_NODE_SET) && (args[0]->type != LYXP_SET_EMPTY)) {
LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "enum-value(node-set)");
return -1;
}
set_fill_number(set, NAN);
if (args[0]->type == LYXP_SET_NODE_SET) {
leaf = (struct lyd_node_leaf_list *)args[0]->val.nodes[0].node;
if ((leaf->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST))
&& (((struct lys_node_leaf *)leaf->schema)->type.base == LY_TYPE_ENUM)) {
set_fill_number(set, leaf->value.enm->value);
}
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath false() function. Returns LYXP_SET_BOOLEAN
* with false value.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_false(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node),
struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options))
{
set_fill_boolean(set, 0);
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath floor(number) function. Returns LYXP_SET_NUMBER
* with the first argument floored (truncated).
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_floor(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (lyxp_set_cast(args[0], LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
if (isfinite(args[0]->val.num)) {
set_fill_number(set, (long long)args[0]->val.num);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath lang(string) function. Returns LYXP_SET_BOOLEAN
* whether the language of the text matches the one from the argument.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_lang(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
const struct lyd_node *node, *root;
struct lyd_attr *attr = NULL;
int i;
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (set->type == LYXP_SET_EMPTY) {
set_fill_boolean(set, 0);
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "lang(string)");
return -1;
}
switch (set->val.nodes[0].type) {
case LYXP_NODE_ELEM:
case LYXP_NODE_TEXT:
node = set->val.nodes[0].node;
break;
case LYXP_NODE_ATTR:
root = moveto_get_root(cur_node, options, NULL);
node = lyd_attr_parent(root, set->val.attrs[0].attr);
break;
default:
/* nothing to do with roots */
set_fill_boolean(set, 0);
return EXIT_SUCCESS;
}
/* find lang attribute */
for (; node; node = node->parent) {
for (attr = node->attr; attr; attr = attr->next) {
if (attr->name && !strcmp(attr->name, "lang") && !strcmp(attr->annotation->module->name, "xml")) {
break;
}
}
if (attr) {
break;
}
}
/* compare languages */
if (!attr) {
set_fill_boolean(set, 0);
} else {
for (i = 0; args[0]->val.str[i]; ++i) {
if (tolower(args[0]->val.str[i]) != tolower(attr->value_str[i])) {
set_fill_boolean(set, 0);
break;
}
}
if (!args[0]->val.str[i]) {
if (!attr->value_str[i] || (attr->value_str[i] == '-')) {
set_fill_boolean(set, 1);
} else {
set_fill_boolean(set, 0);
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath last() function. Returns LYXP_SET_NUMBER
* with the context size.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_last(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node),
struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options))
{
if (set->type == LYXP_SET_EMPTY) {
set_fill_number(set, 0);
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "last()");
return -1;
}
set_fill_number(set, set->ctx_size);
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath local-name(node-set?) function. Returns LYXP_SET_STRING
* with the node name without namespace from the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_local_name(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *UNUSED(local_mod),
struct lyxp_set *set, int options)
{
struct lyxp_set_nodes *item;
if (arg_count) {
if (args[0]->type == LYXP_SET_EMPTY) {
set_fill_string(set, "", 0);
return EXIT_SUCCESS;
}
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "local-name(node-set?)");
return -1;
}
#ifndef NDEBUG
/* we need the set sorted, it affects the result */
if (set_sort(args[0], cur_node, options) > 1) {
LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__);
}
#else
/* suppress unused variable warning */
(void)cur_node;
#endif
item = &args[0]->val.nodes[0];
} else {
if (set->type == LYXP_SET_EMPTY) {
set_fill_string(set, "", 0);
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "local-name(node-set?)");
return -1;
}
#ifndef NDEBUG
/* we need the set sorted, it affects the result */
if (set_sort(set, cur_node, options) > 1) {
LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__);
}
#endif
item = &set->val.nodes[0];
}
switch (item->type) {
case LYXP_NODE_ROOT:
case LYXP_NODE_ROOT_CONFIG:
case LYXP_NODE_TEXT:
set_fill_string(set, "", 0);
break;
case LYXP_NODE_ELEM:
set_fill_string(set, item->node->schema->name, strlen(item->node->schema->name));
break;
case LYXP_NODE_ATTR:
set_fill_string(set, ((struct lyd_attr *)item->node)->name, strlen(((struct lyd_attr *)item->node)->name));
break;
}
/* UNUSED in 'Release' build type */
(void)options;
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath name(node-set?) function. Returns LYXP_SET_STRING
* with the node name fully qualified (with namespace) from the argument or the context.
* !! This function does not follow its definition and actually copies what local-name()
* function does, for the ietf-ipfix-psamp module that uses it incorrectly. !!
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_name(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
return xpath_local_name(args, arg_count, cur_node, local_mod, set, options);
}
/**
* @brief Execute the XPath namespace-uri(node-set?) function. Returns LYXP_SET_STRING
* with the namespace of the node from the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_namespace_uri(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *UNUSED(local_mod),
struct lyxp_set *set, int options)
{
struct lyxp_set_nodes *item;
struct lys_module *module;
if (arg_count) {
if (args[0]->type == LYXP_SET_EMPTY) {
set_fill_string(set, "", 0);
return EXIT_SUCCESS;
}
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "namespace-uri(node-set?)");
return -1;
}
#ifndef NDEBUG
/* we need the set sorted, it affects the result */
if (set_sort(args[0], cur_node, options) > 1) {
LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__);
}
#else
/* suppress unused variable warning */
(void)cur_node;
#endif
item = &args[0]->val.nodes[0];
} else {
if (set->type == LYXP_SET_EMPTY) {
set_fill_string(set, "", 0);
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "namespace-uri(node-set?)");
return -1;
}
#ifndef NDEBUG
/* we need the set sorted, it affects the result */
if (set_sort(set, cur_node, options) > 1) {
LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__);
}
#endif
item = &set->val.nodes[0];
}
switch (item->type) {
case LYXP_NODE_ROOT:
case LYXP_NODE_ROOT_CONFIG:
case LYXP_NODE_TEXT:
set_fill_string(set, "", 0);
break;
case LYXP_NODE_ELEM:
case LYXP_NODE_ATTR:
if (item->type == LYXP_NODE_ELEM) {
module = item->node->schema->module;
} else { /* LYXP_NODE_ATTR */
module = ((struct lyd_attr *)item->node)->annotation->module;
}
module = lys_main_module(module);
set_fill_string(set, module->ns, strlen(module->ns));
break;
}
/* UNUSED in 'Release' build type */
(void)options;
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath node() function (node type). Returns LYXP_SET_NODE_SET
* with only nodes from the context. In practice it either leaves the context
* as it is or returns an empty node set.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_node(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (set->type != LYXP_SET_NODE_SET) {
lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath normalize-space(string?) function. Returns LYXP_SET_STRING
* with normalized value (no leading, trailing, double white spaces) of the node
* from the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_normalize_space(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
uint16_t i, new_used;
char *new;
int have_spaces = 0, space_before = 0;
if (arg_count) {
set_fill_set(set, args[0]);
}
if (lyxp_set_cast(set, LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
/* is there any normalization necessary? */
for (i = 0; set->val.str[i]; ++i) {
if (is_xmlws(set->val.str[i])) {
if ((i == 0) || space_before || (!set->val.str[i + 1])) {
have_spaces = 1;
break;
}
space_before = 1;
} else {
space_before = 0;
}
}
/* yep, there is */
if (have_spaces) {
/* it's enough, at least one character will go, makes space for ending '\0' */
new = malloc(strlen(set->val.str) * sizeof(char));
if (!new) {
LOGMEM;
return -1;
}
new_used = 0;
space_before = 0;
for (i = 0; set->val.str[i]; ++i) {
if (is_xmlws(set->val.str[i])) {
if ((i == 0) || space_before) {
space_before = 1;
continue;
} else {
space_before = 1;
}
} else {
space_before = 0;
}
new[new_used] = (space_before ? ' ' : set->val.str[i]);
++new_used;
}
/* at worst there is one trailing space now */
if (new_used && is_xmlws(new[new_used - 1])) {
--new_used;
}
new = ly_realloc(new, (new_used + 1) * sizeof(char));
if (!new) {
LOGMEM;
return -1;
}
new[new_used] = '\0';
free(set->val.str);
set->val.str = new;
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath not(boolean) function. Returns LYXP_SET_BOOLEAN
* with the argument converted to boolean and logically inverted.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_not(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
lyxp_set_cast(args[0], LYXP_SET_BOOLEAN, cur_node, local_mod, options);
if (args[0]->val.bool) {
set_fill_boolean(set, 0);
} else {
set_fill_boolean(set, 1);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath bumber(object?) function. Returns LYXP_SET_NUMBER
* with the number representation of either the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_number(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (arg_count) {
if (lyxp_set_cast(args[0], LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
set_fill_set(set, args[0]);
} else {
if (lyxp_set_cast(set, LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath position() function. Returns LYXP_SET_NUMBER
* with the context position.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_position(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node),
struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int options)
{
if (set->type == LYXP_SET_EMPTY) {
set_fill_number(set, 0);
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "position()");
return -1;
}
set_fill_number(set, set->ctx_pos);
/* UNUSED in 'Release' build type */
(void)options;
return EXIT_SUCCESS;
}
/**
* @brief Execute the YANG 1.1 re-match(string, string) function. Returns LYXP_SET_BOOLEAN
* depending on whether the second argument regex matches the first argument string. For details refer to
* YANG 1.1 RFC section 10.2.1.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_re_match(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
pcre *precomp;
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (lyp_check_pattern(args[1]->val.str, &precomp)) {
return -1;
}
if (pcre_exec(precomp, NULL, args[0]->val.str, strlen(args[0]->val.str), 0, 0, NULL, 0)) {
set_fill_boolean(set, 0);
} else {
set_fill_boolean(set, 1);
}
free(precomp);
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath round(number) function. Returns LYXP_SET_NUMBER
* with the rounded first argument. For details refer to
* http://www.w3.org/TR/1999/REC-xpath-19991116/#function-round.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_round(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (lyxp_set_cast(args[0], LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
/* cover only the cases where floor can't be used */
if ((args[0]->val.num == -0.0f) || ((args[0]->val.num < 0) && (args[0]->val.num >= -0.5))) {
set_fill_number(set, -0.0f);
} else {
args[0]->val.num += 0.5;
if (xpath_floor(args, 1, cur_node, local_mod, args[0], options)) {
return -1;
}
set_fill_number(set, args[0]->val.num);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath starts-with(string, string) function.
* Returns LYXP_SET_BOOLEAN whether the second argument is
* the prefix of the first or not.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_starts_with(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (strncmp(args[0]->val.str, args[1]->val.str, strlen(args[1]->val.str))) {
set_fill_boolean(set, 0);
} else {
set_fill_boolean(set, 1);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath string(object?) function. Returns LYXP_SET_STRING
* with the string representation of either the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_string(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (arg_count) {
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
set_fill_set(set, args[0]);
} else {
if (lyxp_set_cast(set, LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath string-length(string?) function. Returns LYXP_SET_NUMBER
* with the length of the string in either the argument or the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_string_length(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
if (arg_count) {
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
set_fill_number(set, strlen(args[0]->val.str));
} else {
if (lyxp_set_cast(set, LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
set_fill_number(set, strlen(set->val.str));
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath substring(string, number, number?) function.
* Returns LYXP_SET_STRING substring of the first argument starting
* on the second argument index ending on the third argument index,
* indexed from 1. For exact definition refer to
* http://www.w3.org/TR/1999/REC-xpath-19991116/#function-substring.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_substring(struct lyxp_set **args, uint16_t arg_count, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int start, len;
uint16_t str_start, str_len, pos;
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
/* start */
if (xpath_round(&args[1], 1, cur_node, local_mod, args[1], options)) {
return -1;
}
if (isfinite(args[1]->val.num)) {
start = args[1]->val.num - 1;
} else if (isinf(args[1]->val.num) && signbit(args[1]->val.num)) {
start = INT_MIN;
} else {
start = INT_MAX;
}
/* len */
if (arg_count == 3) {
if (xpath_round(&args[2], 1, cur_node, local_mod, args[2], options)) {
return -1;
}
if (isfinite(args[2]->val.num)) {
len = args[2]->val.num;
} else if (isnan(args[2]->val.num) || signbit(args[2]->val.num)) {
len = 0;
} else {
len = INT_MAX;
}
} else {
len = INT_MAX;
}
/* find matching character positions */
str_start = 0;
str_len = 0;
for (pos = 0; args[0]->val.str[pos]; ++pos) {
if (pos < start) {
++str_start;
} else if (pos < start + len) {
++str_len;
} else {
break;
}
}
set_fill_string(set, args[0]->val.str + str_start, str_len);
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath substring-after(string, string) function.
* Returns LYXP_SET_STRING with the string succeeding the occurance
* of the second argument in the first or an empty string.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_substring_after(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node,
struct lys_module *local_mod, struct lyxp_set *set, int options)
{
char *ptr;
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
ptr = strstr(args[0]->val.str, args[1]->val.str);
if (ptr) {
set_fill_string(set, ptr + strlen(args[1]->val.str), strlen(ptr + strlen(args[1]->val.str)));
} else {
set_fill_string(set, "", 0);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath substring-before(string, string) function.
* Returns LYXP_SET_STRING with the string preceding the occurance
* of the second argument in the first or an empty string.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_substring_before(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node,
struct lys_module *local_mod, struct lyxp_set *set, int options)
{
char *ptr;
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
ptr = strstr(args[0]->val.str, args[1]->val.str);
if (ptr) {
set_fill_string(set, args[0]->val.str, ptr - args[0]->val.str);
} else {
set_fill_string(set, "", 0);
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath sum(node-set) function. Returns LYXP_SET_NUMBER
* with the sum of all the nodes in the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_sum(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
long double num;
char *str;
uint16_t i;
struct lyxp_set set_item;
set_fill_number(set, 0);
if (args[0]->type == LYXP_SET_EMPTY) {
return EXIT_SUCCESS;
}
if (args[0]->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INARGTYPE, LY_VLOG_NONE, NULL, 1, print_set_type(args[0]), "sum(node-set)");
return -1;
}
set_item.type = LYXP_SET_NODE_SET;
set_item.val.nodes = malloc(sizeof *set_item.val.nodes);
if (!set_item.val.nodes) {
LOGMEM;
return -1;
}
set_item.used = 1;
set_item.size = 1;
for (i = 0; i < args[0]->used; ++i) {
set_item.val.nodes[0] = args[0]->val.nodes[i];
str = cast_node_set_to_string(&set_item, cur_node, local_mod, options);
if (!str) {
return -1;
}
num = cast_string_to_number(str);
free(str);
set->val.num += num;
}
free(set_item.val.nodes);
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath text() function (node type). Returns LYXP_SET_NODE_SET
* with the text content of the nodes in the context.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_text(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node),
struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options))
{
uint32_t i;
if (set->type == LYXP_SET_EMPTY) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INCTX, LY_VLOG_NONE, NULL, print_set_type(set), "text()");
return -1;
}
for (i = 0; i < set->used;) {
switch (set->val.nodes[i].type) {
case LYXP_NODE_ELEM:
if (set->val.nodes[i].node->validity & LYD_VAL_INUSE) {
LOGVAL(LYE_XPATH_DUMMY, LY_VLOG_LYD, set->val.nodes[i].node, set->val.nodes[i].node->schema->name);
return -1;
}
if ((set->val.nodes[i].node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST))
&& ((struct lyd_node_leaf_list *)set->val.nodes[i].node)->value_str) {
set->val.nodes[i].type = LYXP_NODE_TEXT;
++i;
break;
}
/* fall through */
case LYXP_NODE_ROOT:
case LYXP_NODE_ROOT_CONFIG:
case LYXP_NODE_TEXT:
case LYXP_NODE_ATTR:
set_remove_node(set, i);
break;
}
}
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath translate(string, string, string) function.
* Returns LYXP_SET_STRING with the first argument with the characters
* from the second argument replaced by those on the corresponding
* positions in the third argument.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_translate(struct lyxp_set **args, uint16_t UNUSED(arg_count), struct lyd_node *cur_node,
struct lys_module *local_mod, struct lyxp_set *set, int options)
{
uint16_t i, j, new_used;
char *new;
int found, have_removed;
if (lyxp_set_cast(args[0], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(args[1], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(args[2], LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
new = malloc((strlen(args[0]->val.str) + 1) * sizeof(char));
if (!new) {
LOGMEM;
return -1;
}
new_used = 0;
have_removed = 0;
for (i = 0; args[0]->val.str[i]; ++i) {
found = 0;
for (j = 0; args[1]->val.str[j]; ++j) {
if (args[0]->val.str[i] == args[1]->val.str[j]) {
/* removing this char */
if (j >= strlen(args[2]->val.str)) {
have_removed = 1;
found = 1;
break;
}
/* replacing this char */
new[new_used] = args[2]->val.str[j];
++new_used;
found = 1;
break;
}
}
/* copying this char */
if (!found) {
new[new_used] = args[0]->val.str[i];
++new_used;
}
}
if (have_removed) {
new = ly_realloc(new, (new_used + 1) * sizeof(char));
if (!new) {
LOGMEM;
return -1;
}
}
new[new_used] = '\0';
lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options);
set->type = LYXP_SET_STRING;
set->val.str = new;
return EXIT_SUCCESS;
}
/**
* @brief Execute the XPath true() function. Returns LYXP_SET_BOOLEAN
* with true value.
*
* @param[in] args Array of arguments.
* @param[in] arg_count Count of elements in \p args.
* @param[in] cur_node Original context node.
* @param[in,out] set Context and result set at the same time.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
xpath_true(struct lyxp_set **UNUSED(args), uint16_t UNUSED(arg_count), struct lyd_node *UNUSED(cur_node),
struct lys_module *UNUSED(local_mod), struct lyxp_set *set, int UNUSED(options))
{
set_fill_boolean(set, 1);
return EXIT_SUCCESS;
}
/*
* moveto functions
*
* They and only they actually change the context (set).
*/
/**
* @brief Resolve and find a specific model. Does not log.
*
* \p cur_snode is required in 2 quite specific cases concerning
* XPath on schema. Problem is when we are parsing a submodule
* and referencing something in the main module or parsing
* a module importing another module that references back
* the original module. Then the target module is still being
* parsed and it not yet in the context - it fails to resolve.
* In these cases we can find the module using \p cur_snode.
*
* @param[in] mod_name_ns Either module name or namespace.
* @param[in] mon_nam_ns_len Length of \p mod_name_ns.
* @param[in] ctx libyang context.
* @param[in] cur_snode Current schema node, on data XPath leave NULL.
* @param[in] is_name Whether \p mod_name_ns is module name (1) or namespace (0).
*
* @return Corresponding module or NULL on error.
*/
static struct lys_module *
moveto_resolve_model(const char *mod_name_ns, uint16_t mod_nam_ns_len, struct ly_ctx *ctx, struct lys_node *cur_snode,
int is_name)
{
uint16_t i;
const char *str;
struct lys_module *mod, *mainmod;
if (cur_snode) {
/* detect if the XPath is used in augment - in such a case the module of the context node (cur_snode)
* differs from the currently processed module. Then, we have to use the currently processed module
* for searching for the module/namespace instead of the module of the context node */
if (ctx->models.parsing_sub_modules_count &&
cur_snode->module != ctx->models.parsing_sub_modules[ctx->models.parsing_sub_modules_count - 1]) {
mod = ctx->models.parsing_sub_modules[ctx->models.parsing_sub_modules_count - 1];
} else {
mod = cur_snode->module;
}
mainmod = lys_main_module(mod);
str = (is_name ? mainmod->name : mainmod->ns);
if (!strncmp(str, mod_name_ns, mod_nam_ns_len) && !str[mod_nam_ns_len]) {
return mainmod;
}
for (i = 0; i < mod->imp_size; ++i) {
str = (is_name ? mod->imp[i].module->name : mod->imp[i].module->ns);
if (!strncmp(str, mod_name_ns, mod_nam_ns_len) && !str[mod_nam_ns_len]) {
return mod->imp[i].module;
}
}
}
for (i = 0; i < ctx->models.used; ++i) {
if (!ctx->models.list[i]->implemented || ctx->models.list[i]->disabled) {
/* skip not implemented or disabled modules */
continue;
}
str = (is_name ? ctx->models.list[i]->name : ctx->models.list[i]->ns);
if (!strncmp(str, mod_name_ns, mod_nam_ns_len) && !str[mod_nam_ns_len]) {
return ctx->models.list[i];
}
}
return NULL;
}
/**
* @brief Get the context root.
*
* @param[in] cur_node Original context node.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
* @param[out] root_type Root type, differs only in when, must evaluation.
*
* @return Context root.
*/
static const struct lyd_node *
moveto_get_root(const struct lyd_node *cur_node, int options, enum lyxp_node_type *root_type)
{
const struct lyd_node *root;
if (!cur_node) {
return NULL;
}
if (!options) {
/* special kind of root that can access everything */
for (root = cur_node; root->parent; root = root->parent);
for (; root->prev->next; root = root->prev);
*root_type = LYXP_NODE_ROOT;
return root;
}
if (cur_node->schema->flags & LYS_CONFIG_W) {
*root_type = LYXP_NODE_ROOT_CONFIG;
} else {
*root_type = LYXP_NODE_ROOT;
}
for (root = cur_node; root->parent; root = root->parent);
for (; root->prev->next; root = root->prev);
return root;
}
static const struct lys_node *
moveto_snode_get_root(const struct lys_node *cur_node, int options, enum lyxp_node_type *root_type)
{
const struct lys_node *root;
assert(cur_node && root_type);
if (options & LYXP_SNODE) {
/* general root that can access everything */
for (root = cur_node; lys_parent(root); root = lys_parent(root));
root = lys_getnext(NULL, NULL, root->module, 0);
*root_type = LYXP_NODE_ROOT;
return root;
}
if (cur_node->flags & LYS_CONFIG_W) {
*root_type = LYXP_NODE_ROOT_CONFIG;
} else {
*root_type = LYXP_NODE_ROOT;
}
for (root = cur_node; lys_parent(root); root = lys_parent(root));
root = lys_getnext(NULL, NULL, lys_node_module(root), 0);
return root;
}
/**
* @brief Move context \p set to the root. Handles absolute path.
* Result is LYXP_SET_NODE_SET.
*
* @param[in,out] set Set to use.
* @param[in] cur_node Original context node.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*/
static void
moveto_root(struct lyxp_set *set, struct lyd_node *cur_node, int options)
{
const struct lyd_node *root;
enum lyxp_node_type root_type;
if (!set) {
return;
}
root = moveto_get_root(cur_node, options, &root_type);
lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, NULL, options);
if (root) {
set_insert_node(set, root, 0, root_type, 0);
}
}
static void
moveto_snode_root(struct lyxp_set *set, struct lys_node *cur_node, int options)
{
const struct lys_node *root;
enum lyxp_node_type root_type;
if (!set) {
return;
}
if (!cur_node) {
LOGINT;
return;
}
root = moveto_snode_get_root(cur_node, options, &root_type);
set_snode_clear_ctx(set);
set_snode_insert_node(set, root, root_type);
}
/**
* @brief Check \p node as a part of NameTest processing.
*
* @param[in] node Node to check.
* @param[in] node_name Node name to move to. Must be in the dictionary!
* @param[in] moveto_mod Expected module of the node.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
moveto_node_check(struct lyd_node *node, enum lyxp_node_type root_type, const char *node_name,
struct lys_module *moveto_mod, int options)
{
/* module check */
if (moveto_mod && (lys_node_module(node->schema) != moveto_mod)) {
return -1;
}
/* context check */
if ((root_type == LYXP_NODE_ROOT_CONFIG) && (node->schema->flags & LYS_CONFIG_R)) {
return -1;
}
/* name check */
if (!ly_strequal(node->schema->name, node_name, 1) && strcmp(node_name, "*")) {
return -1;
}
/* when check */
if ((options & LYXP_WHEN) && !LYD_WHEN_DONE(node->when_status)) {
return EXIT_FAILURE;
}
/* match */
return EXIT_SUCCESS;
}
static int
moveto_snode_check(const struct lys_node *node, enum lyxp_node_type root_type, const char *node_name,
struct lys_module *moveto_mod, int options)
{
struct lys_node *parent;
/* RPC input/output check */
for (parent = lys_parent(node); parent && (parent->nodetype == LYS_USES); parent = lys_parent(parent));
if (options & LYXP_SNODE_OUTPUT) {
if (parent && (parent->nodetype == LYS_INPUT)) {
return -1;
}
} else {
if (parent && (parent->nodetype == LYS_OUTPUT)) {
return -1;
}
}
/* module check */
if (moveto_mod && (lys_node_module(node) != moveto_mod)) {
return -1;
}
/* context check */
if ((root_type == LYXP_NODE_ROOT_CONFIG) && (node->flags & LYS_CONFIG_R)) {
return -1;
}
/* name check */
if (!ly_strequal(node->name, node_name, 1) && strcmp(node_name, "*")) {
return -1;
}
/* match */
return EXIT_SUCCESS;
}
/**
* @brief Add \p node into \p set as a part of NameTest processing.
*
* @param[in] node Node to add.
* @param[in] pos Node sort position.
* @param[in,out] set Set to use.
* @param[in] i Desired index of \p node in \p set.
* @param[in,out] replaced Whether the node in \p set has already been replaced.
*/
static void
moveto_node_add(struct lyxp_set *set, struct lyd_node *node, uint32_t pos, uint32_t i, int *replaced)
{
if (!(*replaced)) {
set->val.nodes[i].node = node;
set->val.nodes[i].type = LYXP_NODE_ELEM;
set->val.nodes[i].pos = pos;
*replaced = 1;
} else {
set_insert_node(set, node, pos, LYXP_NODE_ELEM, i);
}
}
/**
* @brief Move context \p set to a node. Handles '/' and '*', 'NAME', 'PREFIX:*', or 'PREFIX:NAME'.
* Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY). Context position aware.
*
* @param[in,out] set Set to use.
* @param[in] cur_node Original context node.
* @param[in] qname Qualified node name to move to.
* @param[in] qname_len Length of \p qname.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
moveto_node(struct lyxp_set *set, struct lyd_node *cur_node, const char *qname, uint16_t qname_len, int options)
{
uint32_t i;
int replaced, pref_len, ret;
const char *ptr, *name_dict = NULL; /* optimalization - so we can do (==) instead (!strncmp(...)) in moveto_node_check() */
struct lys_module *moveto_mod;
struct lyd_node *sub;
struct ly_ctx *ctx;
enum lyxp_node_type root_type;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
assert(cur_node);
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
ctx = cur_node->schema->module->ctx;
moveto_get_root(cur_node, options, &root_type);
/* prefix */
if ((ptr = strnchr(qname, ':', qname_len))) {
pref_len = ptr - qname;
moveto_mod = moveto_resolve_model(qname, pref_len, ctx, NULL, 1);
if (!moveto_mod) {
LOGINT;
return -1;
}
qname += pref_len + 1;
qname_len -= pref_len + 1;
} else {
moveto_mod = NULL;
}
/* name */
name_dict = lydict_insert(ctx, qname, qname_len);
for (i = 0; i < set->used; ) {
replaced = 0;
if ((set->val.nodes[i].type == LYXP_NODE_ROOT_CONFIG) || (set->val.nodes[i].type == LYXP_NODE_ROOT)) {
LY_TREE_FOR(set->val.nodes[i].node, sub) {
ret = moveto_node_check(sub, root_type, name_dict, moveto_mod, options);
if (!ret) {
/* pos filled later */
moveto_node_add(set, sub, 0, i, &replaced);
++i;
} else if (ret == EXIT_FAILURE) {
lydict_remove(ctx, name_dict);
return EXIT_FAILURE;
}
}
/* skip nodes without children - leaves, leaflists, anyxmls, and dummy nodes (ouput root will eval to true) */
} else if (!(set->val.nodes[i].node->validity & LYD_VAL_INUSE)
&& !(set->val.nodes[i].node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA))) {
LY_TREE_FOR(set->val.nodes[i].node->child, sub) {
ret = moveto_node_check(sub, root_type, name_dict, moveto_mod, options);
if (!ret) {
moveto_node_add(set, sub, 0, i, &replaced);
++i;
} else if (ret == EXIT_FAILURE) {
lydict_remove(ctx, name_dict);
return EXIT_FAILURE;
}
}
}
if (!replaced) {
/* no match */
set_remove_node(set, i);
}
}
lydict_remove(ctx, name_dict);
return EXIT_SUCCESS;
}
static int
moveto_snode(struct lyxp_set *set, struct lys_node *cur_node, const char *qname, uint16_t qname_len, int options)
{
int i, orig_used, pref_len, idx, temp_ctx = 0;
const char *ptr, *name_dict = NULL; /* optimalization - so we can do (==) instead (!strncmp(...)) in moveto_node_check() */
struct lys_module *moveto_mod;
const struct lys_node *sub;
struct ly_ctx *ctx;
enum lyxp_node_type root_type;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_SNODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
ctx = cur_node->module->ctx;
moveto_snode_get_root(cur_node, options, &root_type);
/* prefix */
if ((ptr = strnchr(qname, ':', qname_len))) {
pref_len = ptr - qname;
moveto_mod = moveto_resolve_model(qname, pref_len, ctx, cur_node, 1);
if (!moveto_mod) {
LOGVAL(LYE_XPATH_INMOD, LY_VLOG_NONE, NULL, pref_len, qname);
return -1;
}
qname += pref_len + 1;
qname_len -= pref_len + 1;
} else {
moveto_mod = NULL;
}
/* name */
name_dict = lydict_insert(ctx, qname, qname_len);
orig_used = set->used;
for (i = 0; i < orig_used; ++i) {
if (set->val.snodes[i].in_ctx != 1) {
continue;
}
set->val.snodes[i].in_ctx = 0;
if ((set->val.snodes[i].type == LYXP_NODE_ROOT_CONFIG) || (set->val.snodes[i].type == LYXP_NODE_ROOT)) {
/* it can actually be in any module, it's all <running>, but we know it's moveto_mod (if set),
* so use it directly (root node itself is useless in this case) */
sub = NULL;
while ((sub = lys_getnext(sub, NULL, (moveto_mod ? moveto_mod : lys_node_module(set->val.snodes[i].snode)), 0))) {
if (!moveto_snode_check(sub, root_type, name_dict, moveto_mod, options)) {
idx = set_snode_insert_node(set, sub, LYXP_NODE_ELEM);
/* we need to prevent these nodes to be considered in this moveto */
if ((idx < orig_used) && (idx > i)) {
set->val.snodes[idx].in_ctx = 2;
temp_ctx = 1;
}
}
}
/* skip nodes without children - leaves, leaflists, and anyxmls (ouput root will eval to true) */
} else if (!(set->val.snodes[i].snode->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA))) {
sub = NULL;
while ((sub = lys_getnext(sub, set->val.snodes[i].snode, NULL, 0))) {
if (!moveto_snode_check(sub, root_type, name_dict, moveto_mod, options)) {
idx = set_snode_insert_node(set, sub, LYXP_NODE_ELEM);
if ((idx < orig_used) && (idx > i)) {
set->val.snodes[idx].in_ctx = 2;
temp_ctx = 1;
}
}
}
}
}
lydict_remove(ctx, name_dict);
/* correct temporary in_ctx values */
if (temp_ctx) {
for (i = 0; i < orig_used; ++i) {
if (set->val.snodes[i].in_ctx == 2) {
set->val.snodes[i].in_ctx = 1;
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Move context \p set to a node and all its descendants. Handles '//' and '*', 'NAME',
* 'PREFIX:*', or 'PREFIX:NAME'. Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY).
* Context position aware.
*
* @param[in] set Set to use.
* @param[in] cur_node Original context node.
* @param[in] qname Qualified node name to move to.
* @param[in] qname_len Length of \p qname.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, ECIT_FAILURE on unresolved when, -1 on error.
*/
static int
moveto_node_alldesc(struct lyxp_set *set, struct lyd_node *cur_node, const char *qname, uint16_t qname_len,
int options)
{
uint32_t i;
int pref_len, all = 0, replace, match, ret;
struct lyd_node *next, *elem, *start;
struct lys_module *moveto_mod;
enum lyxp_node_type root_type;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
moveto_get_root(cur_node, options, &root_type);
/* prefix */
if (strnchr(qname, ':', qname_len) && cur_node) {
pref_len = strnchr(qname, ':', qname_len) - qname;
moveto_mod = moveto_resolve_model(qname, pref_len, cur_node->schema->module->ctx, NULL, 1);
if (!moveto_mod) {
LOGINT;
return -1;
}
qname += pref_len + 1;
qname_len -= pref_len + 1;
} else {
moveto_mod = NULL;
}
/* replace the original nodes (and throws away all text and attr nodes, root is replaced by a child) */
ret = moveto_node(set, cur_node, "*", 1, options);
if (ret) {
return ret;
}
if ((qname_len == 1) && (qname[0] == '*')) {
all = 1;
}
/* this loop traverses all the nodes in the set and addds/keeps only
* those that match qname */
for (i = 0; i < set->used; ) {
/* TREE DFS */
start = set->val.nodes[i].node;
replace = 0;
for (elem = next = start; elem; elem = next) {
/* dummy and context check */
if ((elem->validity & LYD_VAL_INUSE) || ((root_type == LYXP_NODE_ROOT_CONFIG) && (elem->schema->flags & LYS_CONFIG_R))) {
goto skip_children;
}
match = 1;
/* module check */
if (moveto_mod && (lys_node_module(elem->schema) != moveto_mod)) {
match = 0;
}
/* name check */
if (!all && (strncmp(elem->schema->name, qname, qname_len) || elem->schema->name[qname_len])) {
match = 0;
}
/* when check */
if ((options & LYXP_WHEN) && !LYD_WHEN_DONE(elem->when_status)) {
return EXIT_FAILURE;
}
if (match && (elem != start)) {
if (set_dup_node_check(set, elem, LYXP_NODE_ELEM, i) > -1) {
/* we'll process it later */
goto skip_children;
} else if (replace) {
set->val.nodes[i].node = elem;
assert(set->val.nodes[i].type == LYXP_NODE_ELEM);
set->val.nodes[i].pos = 0;
replace = 0;
} else {
set_insert_node(set, elem, 0, LYXP_NODE_ELEM, i + 1);
++i;
}
} else if (!match && (elem == start)) {
/* we need to replace a node that is already in the set */
replace = 1;
}
/* TREE DFS NEXT ELEM */
/* select element for the next run - children first */
next = elem->child;
if (elem->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) {
next = NULL;
}
if (!next) {
skip_children:
/* no children, so try siblings, but only if it's not the start,
* that is considered to be the root and it's siblings are not traversed */
if (elem != start) {
next = elem->next;
} else {
break;
}
}
while (!next) {
/* no siblings, go back through the parents */
if (elem->parent == start) {
/* we are done, no next element to process */
break;
}
/* parent is already processed, go to its sibling */
elem = elem->parent;
next = elem->next;
}
}
if (replace) {
set_remove_node(set, i);
} else {
++i;
}
}
return EXIT_SUCCESS;
}
static int
moveto_snode_alldesc(struct lyxp_set *set, struct lys_node *cur_node, const char *qname, uint16_t qname_len,
int options)
{
int i, orig_used, pref_len, all = 0, match, idx;
struct lys_node *next, *elem, *start;
struct lys_module *moveto_mod;
struct ly_ctx *ctx;
enum lyxp_node_type root_type;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_SNODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
ctx = cur_node->module->ctx;
moveto_snode_get_root(cur_node, options, &root_type);
/* add all matching direct descendant nodes */
idx = moveto_snode(set, cur_node, qname, qname_len, options);
if (idx) {
return idx;
}
/* prefix */
if (strnchr(qname, ':', qname_len)) {
pref_len = strnchr(qname, ':', qname_len) - qname;
moveto_mod = moveto_resolve_model(qname, pref_len, ctx, cur_node, 1);
if (!moveto_mod) {
LOGVAL(LYE_XPATH_INMOD, LY_VLOG_NONE, NULL, pref_len, qname);
return -1;
}
qname += pref_len + 1;
qname_len -= pref_len + 1;
} else {
moveto_mod = NULL;
}
if ((qname_len == 1) && (qname[0] == '*')) {
all = 1;
}
orig_used = set->used;
for (i = 0; i < orig_used; ++i) {
if (set->val.snodes[i].in_ctx != 1) {
continue;
}
/* TREE DFS */
start = set->val.snodes[i].snode;
for (elem = next = start; elem; elem = next) {
/* context/nodetype check */
if ((root_type == LYXP_NODE_ROOT_CONFIG) && (elem->flags & LYS_CONFIG_R)) {
/* valid node, but it is hidden in this context */
goto skip_children;
}
switch (elem->nodetype) {
case LYS_USES:
case LYS_CHOICE:
case LYS_CASE:
/* schema-only nodes */
goto next_iter;
case LYS_INPUT:
if (options & LYXP_SNODE_OUTPUT) {
goto skip_children;
}
goto next_iter;
case LYS_OUTPUT:
if (!(options & LYXP_SNODE_OUTPUT)) {
goto skip_children;
}
goto next_iter;
case LYS_GROUPING:
goto skip_children;
default:
break;
}
match = 1;
/* module check */
if (moveto_mod && (lys_node_module(elem) != moveto_mod)) {
match = 0;
}
/* name check */
if (!all && (strncmp(elem->name, qname, qname_len) || elem->name[qname_len])) {
match = 0;
}
if (match && (elem != start)) {
if ((idx = set_snode_dup_node_check(set, elem, LYXP_NODE_ELEM, i)) > -1) {
set->val.snodes[idx].in_ctx = 1;
if (idx > i) {
/* we will process it later in the set */
goto skip_children;
}
} else {
set_snode_insert_node(set, elem, LYXP_NODE_ELEM);
}
} else if (!match && (elem == start)) {
/* start node must match! */
LOGINT;
}
next_iter:
/* TREE DFS NEXT ELEM */
/* select element for the next run - children first */
next = elem->child;
if (elem->nodetype & (LYS_LEAF | LYS_LEAFLIST | LYS_ANYDATA)) {
next = NULL;
}
if (!next) {
skip_children:
/* no children, so try siblings, but only if it's not the start,
* that is considered to be the root and it's siblings are not traversed */
if (elem != start) {
next = elem->next;
} else {
break;
}
}
while (!next) {
/* no siblings, go back through the parents */
if (lys_parent(elem) == start) {
/* we are done, no next element to process */
break;
}
/* parent is already processed, go to its sibling */
elem = lys_parent(elem);
next = elem->next;
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Move context \p set to an attribute. Handles '/' and '@*', '@NAME', '@PREFIX:*',
* or '@PREFIX:NAME'. Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY).
* Indirectly context position aware.
*
* @param[in,out] set Set to use.
* @param[in] qname Qualified node name to move to.
* @param[in] qname_len Length of \p qname.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
moveto_attr(struct lyxp_set *set, struct lyd_node *cur_node, const char *qname, uint16_t qname_len, int UNUSED(options))
{
uint32_t i;
int replaced, all = 0, pref_len;
struct lys_module *moveto_mod;
struct lyd_attr *sub;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
/* prefix */
if (strnchr(qname, ':', qname_len) && cur_node) {
pref_len = strnchr(qname, ':', qname_len) - qname;
moveto_mod = moveto_resolve_model(qname, pref_len, cur_node->schema->module->ctx, NULL, 1);
if (!moveto_mod) {
LOGINT;
return -1;
}
qname += pref_len + 1;
qname_len -= pref_len + 1;
} else {
moveto_mod = NULL;
}
if ((qname_len == 1) && (qname[0] == '*')) {
all = 1;
}
for (i = 0; i < set->used; ) {
replaced = 0;
/* only attributes of an elem (not dummy) can be in the result, skip all the rest;
* our attributes are always qualified */
if ((set->val.nodes[i].type == LYXP_NODE_ELEM) && !(set->val.nodes[i].node->validity & LYD_VAL_INUSE)) {
LY_TREE_FOR(set->val.nodes[i].node->attr, sub) {
/* check "namespace" */
if (moveto_mod && (sub->annotation->module != moveto_mod)) {
/* no match */
continue;
}
if (all || (!strncmp(sub->name, qname, qname_len) && !sub->name[qname_len])) {
/* match */
if (!replaced) {
set->val.attrs[i].attr = sub;
set->val.attrs[i].type = LYXP_NODE_ATTR;
/* pos does not change */
replaced = 1;
} else {
set_insert_node(set, (struct lyd_node *)sub, set->val.nodes[i].pos, LYXP_NODE_ATTR, i + 1);
}
++i;
}
}
}
if (!replaced) {
/* no match */
set_remove_node(set, i);
}
}
return EXIT_SUCCESS;
}
/**
* @brief Move context \p set1 to union with \p set2. \p set2 is emptied afterwards.
* Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY). Context position aware.
*
* @param[in,out] set1 Set to use for the result.
* @param[in] set2 Set that is copied to \p set1.
* @param[in] cur_node Original context node.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
moveto_union(struct lyxp_set *set1, struct lyxp_set *set2, struct lyd_node *cur_node, int options)
{
if (((set1->type != LYXP_SET_NODE_SET) && (set1->type != LYXP_SET_EMPTY))
|| ((set2->type != LYXP_SET_NODE_SET) && (set2->type != LYXP_SET_EMPTY))) {
LOGVAL(LYE_XPATH_INOP_2, LY_VLOG_NONE, NULL, "union", print_set_type(set1), print_set_type(set2));
return -1;
}
/* set2 is empty or both set1 and set2 */
if (set2->type == LYXP_SET_EMPTY) {
return EXIT_SUCCESS;
}
if (set1->type == LYXP_SET_EMPTY) {
memcpy(set1, set2, sizeof *set1);
/* dynamic memory belongs to set1 now, do not free */
set2->type = LYXP_SET_EMPTY;
return EXIT_SUCCESS;
}
#ifndef NDEBUG
/* we assume sets are sorted */
if ((set_sort(set1, cur_node, options) > 1) || (set_sort(set2, cur_node, options) > 1)) {
LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__);
}
#endif
/* sort, remove duplicates */
if (set_sorted_merge(set1, set2, cur_node, options)) {
return -1;
}
return EXIT_SUCCESS;
}
/**
* @brief Move context \p set to an attribute in any of the descendants. Handles '//' and '@*',
* '@NAME', '@PREFIX:*', or '@PREFIX:NAME'. Result is LYXP_SET_NODE_SET (or LYXP_SET_EMPTY).
* Context position aware.
*
* @param[in,out] set Set to use.
* @param[in] cur_node Original context node.
* @param[in] qname Qualified node name to move to.
* @param[in] qname_len Length of \p qname.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
moveto_attr_alldesc(struct lyxp_set *set, struct lyd_node *cur_node, const char *qname, uint16_t qname_len,
int options)
{
uint32_t i;
int pref_len, replaced, all = 0, ret;
struct lyd_attr *sub;
struct lys_module *moveto_mod;
struct lyxp_set *set_all_desc = NULL;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
/* prefix */
if (strnchr(qname, ':', qname_len)) {
pref_len = strnchr(qname, ':', qname_len) - qname;
moveto_mod = moveto_resolve_model(qname, pref_len, cur_node->schema->module->ctx, NULL, 1);
if (!moveto_mod) {
LOGINT;
return -1;
}
qname += pref_len + 1;
qname_len -= pref_len + 1;
} else {
moveto_mod = NULL;
}
/* can be optimized similarly to moveto_node_alldesc() and save considerable amount of memory,
* but it likely won't be used much, so it's a waste of time */
/* copy the context */
set_all_desc = set_copy(set);
/* get all descendant nodes (the original context nodes are removed) */
ret = moveto_node_alldesc(set_all_desc, cur_node, "*", 1, options);
if (ret) {
lyxp_set_free(set_all_desc);
return ret;
}
/* prepend the original context nodes */
if (moveto_union(set, set_all_desc, cur_node, options)) {
lyxp_set_free(set_all_desc);
return -1;
}
lyxp_set_free(set_all_desc);
if ((qname_len == 1) && (qname[0] == '*')) {
all = 1;
}
for (i = 0; i < set->used; ) {
replaced = 0;
/* only attributes of an elem can be in the result, skip all the rest,
* we have all attributes qualified in lyd tree */
if (set->val.nodes[i].type == LYXP_NODE_ELEM) {
LY_TREE_FOR(set->val.nodes[i].node->attr, sub) {
/* check "namespace" */
if (moveto_mod && (sub->annotation->module != moveto_mod)) {
/* no match */
continue;
}
if (all || (!strncmp(sub->name, qname, qname_len) && !sub->name[qname_len])) {
/* match */
if (!replaced) {
set->val.attrs[i].attr = sub;
set->val.attrs[i].type = LYXP_NODE_ATTR;
/* pos does not change */
replaced = 1;
} else {
set_insert_node(set, (struct lyd_node *)sub, set->val.attrs[i].pos, LYXP_NODE_ATTR, i + 1);
}
++i;
}
}
}
if (!replaced) {
/* no match */
set_remove_node(set, i);
}
}
return EXIT_SUCCESS;
}
/**
* @brief Move context \p set to self. Handles '/' or '//' and '.'. Result is LYXP_SET_NODE_SET
* (or LYXP_SET_EMPTY). Context position aware.
*
* @param[in,out] set Set to use.
* @param[in] cur_node Original context node.
* @param[in] all_desc Whether to go to all descendants ('//') or not ('/').
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
moveto_self(struct lyxp_set *set, struct lyd_node *cur_node, int all_desc, int options)
{
struct lyd_node *sub;
uint32_t i, cont_i;
enum lyxp_node_type root_type;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
/* nothing to do */
if (!all_desc) {
return EXIT_SUCCESS;
}
moveto_get_root(cur_node, options, &root_type);
/* add all the children, they get added recursively */
for (i = 0; i < set->used; ++i) {
cont_i = 0;
/* do not touch attributes and text nodes */
if ((set->val.nodes[i].type == LYXP_NODE_TEXT) || (set->val.nodes[i].type == LYXP_NODE_ATTR)) {
continue;
}
/* skip anydata/anyxml and dummy nodes */
if ((set->val.nodes[i].node->schema->nodetype & LYS_ANYDATA) || (set->val.nodes[i].node->validity & LYD_VAL_INUSE)) {
continue;
}
/* add all the children ... */
if (!(set->val.nodes[i].node->schema->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LY_TREE_FOR(set->val.nodes[i].node->child, sub) {
/* context check */
if ((root_type == LYXP_NODE_ROOT_CONFIG) && (sub->schema->flags & LYS_CONFIG_R)) {
continue;
}
/* when check */
if ((options & LYXP_WHEN) && !LYD_WHEN_DONE(sub->when_status)) {
return EXIT_FAILURE;
}
if (set_dup_node_check(set, sub, LYXP_NODE_ELEM, -1) == -1) {
set_insert_node(set, sub, 0, LYXP_NODE_ELEM, i + cont_i + 1);
++cont_i;
}
}
/* ... or add their text node, ... */
} else {
/* ... but only non-empty */
sub = set->val.nodes[i].node;
if (((struct lyd_node_leaf_list *)sub)->value_str) {
if (set_dup_node_check(set, sub, LYXP_NODE_TEXT, -1) == -1) {
set_insert_node(set, sub, set->val.nodes[i].pos, LYXP_NODE_TEXT, i + 1);
}
}
}
}
return EXIT_SUCCESS;
}
static int
moveto_snode_self(struct lyxp_set *set, struct lys_node *cur_node, int all_desc, int options)
{
const struct lys_node *sub;
uint32_t i;
enum lyxp_node_type root_type;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_SNODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
/* nothing to do */
if (!all_desc) {
return EXIT_SUCCESS;
}
moveto_snode_get_root(cur_node, options, &root_type);
/* add all the children, they get added recursively */
for (i = 0; i < set->used; ++i) {
if (set->val.snodes[i].in_ctx != 1) {
continue;
}
/* add all the children */
if (set->val.snodes[i].snode->nodetype & (LYS_LIST | LYS_CONTAINER)) {
sub = NULL;
while ((sub = lys_getnext(sub, set->val.snodes[i].snode, NULL, 0))) {
/* RPC input/output check */
if (options & LYXP_SNODE_OUTPUT) {
if (lys_parent(sub)->nodetype == LYS_INPUT) {
continue;
}
} else {
if (lys_parent(sub)->nodetype == LYS_OUTPUT) {
continue;
}
}
/* context check */
if ((root_type == LYXP_NODE_ROOT_CONFIG) && (sub->flags & LYS_CONFIG_R)) {
continue;
}
set_snode_insert_node(set, sub, LYXP_NODE_ELEM);
/* throw away the insert index, we want to consider that node again, recursively */
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Move context \p set to parent. Handles '/' or '//' and '..'. Result is LYXP_SET_NODE_SET
* (or LYXP_SET_EMPTY). Context position aware.
*
* @param[in] set Set to use.
* @param[in] cur_node Original context node.
* @param[in] all_desc Whether to go to all descendants ('//') or not ('/').
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
moveto_parent(struct lyxp_set *set, struct lyd_node *cur_node, int all_desc, int options)
{
int ret;
uint32_t i;
struct lyd_node *node, *new_node;
const struct lyd_node *root;
enum lyxp_node_type root_type, new_type;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_NODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
if (all_desc) {
/* <path>//.. == <path>//./.. */
ret = moveto_self(set, cur_node, 1, options);
if (ret) {
return ret;
}
}
root = moveto_get_root(cur_node, options, &root_type);
for (i = 0; i < set->used; ) {
node = set->val.nodes[i].node;
if (set->val.nodes[i].type == LYXP_NODE_ELEM) {
new_node = node->parent;
} else if (set->val.nodes[i].type == LYXP_NODE_TEXT) {
new_node = node;
} else if (set->val.nodes[i].type == LYXP_NODE_ATTR) {
new_node = (struct lyd_node *)lyd_attr_parent(root, set->val.attrs[i].attr);
if (!new_node) {
LOGINT;
return -1;
}
} else {
/* root does not have a parent */
set_remove_node(set, i);
continue;
}
/* when check */
if ((options & LYXP_WHEN) && new_node && !LYD_WHEN_DONE(new_node->when_status)) {
return EXIT_FAILURE;
}
/* node already there can also be the root */
if (root == node) {
if (options && (cur_node->schema->flags & LYS_CONFIG_W)) {
new_type = LYXP_NODE_ROOT_CONFIG;
} else {
new_type = LYXP_NODE_ROOT;
}
new_node = node;
/* node has no parent */
} else if (!new_node) {
if (options && (cur_node->schema->flags & LYS_CONFIG_W)) {
new_type = LYXP_NODE_ROOT_CONFIG;
} else {
new_type = LYXP_NODE_ROOT;
}
#ifndef NDEBUG
for (; node->prev->next; node = node->prev);
if (node != root) {
LOGINT;
}
#endif
new_node = (struct lyd_node *)root;
/* node has a standard parent (it can equal the root, it's not the root yet since they are fake) */
} else {
new_type = LYXP_NODE_ELEM;
}
assert((new_type == LYXP_NODE_ELEM) || ((new_type == root_type) && (new_node == root)));
if (set_dup_node_check(set, new_node, new_type, -1) > -1) {
set_remove_node(set, i);
} else {
set->val.nodes[i].node = new_node;
set->val.nodes[i].type = new_type;
set->val.nodes[i].pos = 0;
++i;
}
}
#ifndef NDEBUG
if (set_sort(set, cur_node, options) > 1) {
LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__);
}
if (set_sorted_dup_node_clean(set)) {
LOGERR(LY_EINT, "XPath set includes duplicates (%s).", __func__);
}
#endif
return EXIT_SUCCESS;
}
static int
moveto_snode_parent(struct lyxp_set *set, struct lys_node *cur_node, int all_desc, int options)
{
int idx, i, orig_used, temp_ctx = 0;
struct lys_node *node, *new_node;
const struct lys_node *root;
enum lyxp_node_type root_type, new_type;
if (!set || (set->type == LYXP_SET_EMPTY)) {
return EXIT_SUCCESS;
}
if (set->type != LYXP_SET_SNODE_SET) {
LOGVAL(LYE_XPATH_INOP_1, LY_VLOG_NONE, NULL, "path operator", print_set_type(set));
return -1;
}
if (all_desc) {
/* <path>//.. == <path>//./.. */
idx = moveto_snode_self(set, cur_node, 1, options);
if (idx) {
return idx;
}
}
root = moveto_snode_get_root(cur_node, options, &root_type);
orig_used = set->used;
for (i = 0; i < orig_used; ++i) {
if (set->val.snodes[i].in_ctx != 1) {
continue;
}
set->val.snodes[i].in_ctx = 0;
node = set->val.snodes[i].snode;
if (set->val.snodes[i].type == LYXP_NODE_ELEM) {
for (new_node = lys_parent(node);
new_node && (new_node->nodetype & (LYS_USES | LYS_CHOICE | LYS_CASE | LYS_INPUT | LYS_OUTPUT));
new_node = lys_parent(new_node));
} else {
/* root does not have a parent */
continue;
}
/* node already there can also be the root */
if (root == node) {
if ((options & (LYXP_SNODE_MUST | LYXP_SNODE_WHEN)) && (cur_node->flags & LYS_CONFIG_W)) {
new_type = LYXP_NODE_ROOT_CONFIG;
} else {
new_type = LYXP_NODE_ROOT;
}
new_node = node;
/* node has no parent */
} else if (!new_node) {
if ((options & (LYXP_SNODE_MUST | LYXP_SNODE_WHEN)) && (cur_node->flags & LYS_CONFIG_W)) {
new_type = LYXP_NODE_ROOT_CONFIG;
} else {
new_type = LYXP_NODE_ROOT;
}
#ifndef NDEBUG
node = (struct lys_node *)lys_getnext(NULL, NULL, lys_node_module(node), 0);
if (node != root) {
LOGINT;
}
#endif
new_node = (struct lys_node *)root;
/* node has a standard parent (it can equal the root, it's not the root yet since they are fake) */
} else {
new_type = LYXP_NODE_ELEM;
}
assert((new_type == LYXP_NODE_ELEM) || ((new_type == root_type) && (new_node == root)));
idx = set_snode_insert_node(set, new_node, new_type);
if ((idx < orig_used) && (idx > i)) {
set->val.snodes[idx].in_ctx = 2;
temp_ctx = 1;
}
}
if (temp_ctx) {
for (i = 0; i < orig_used; ++i) {
if (set->val.snodes[i].in_ctx == 2) {
set->val.snodes[i].in_ctx = 1;
}
}
}
return EXIT_SUCCESS;
}
/**
* @brief Move context \p set to the result of a comparison. Handles '=', '!=', '<=', '<', '>=', or '>'.
* Result is LYXP_SET_BOOLEAN. Indirectly context position aware.
*
* @param[in,out] set1 Set to use for the result.
* @param[in] set2 Set acting as the second operand for \p op.
* @param[in] op Comparison operator to process.
* @param[in] cur_node Original context node.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
moveto_op_comp(struct lyxp_set *set1, struct lyxp_set *set2, const char *op, struct lyd_node *cur_node,
struct lys_module *local_mod, int options)
{
/*
* NODE SET + NODE SET = STRING + STRING /1 STRING, 2 STRING
* NODE SET + STRING = STRING + STRING /1 STRING (2 STRING)
* NODE SET + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER)
* NODE SET + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN)
* STRING + NODE SET = STRING + STRING /(1 STRING) 2 STRING
* NUMBER + NODE SET = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
* BOOLEAN + NODE SET = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN
*
* '=' or '!='
* BOOLEAN + BOOLEAN
* BOOLEAN + STRING = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN
* BOOLEAN + NUMBER = BOOLEAN + BOOLEAN /(1 BOOLEAN) 2 BOOLEAN
* STRING + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN)
* NUMBER + BOOLEAN = BOOLEAN + BOOLEAN /1 BOOLEAN (2 BOOLEAN)
* NUMBER + NUMBER
* NUMBER + STRING = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
* STRING + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER)
* STRING + STRING
*
* '<=', '<', '>=', '>'
* NUMBER + NUMBER
* BOOLEAN + BOOLEAN = NUMBER + NUMBER /1 NUMBER, 2 NUMBER
* BOOLEAN + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER)
* BOOLEAN + STRING = NUMBER + NUMBER /1 NUMBER, 2 NUMBER
* NUMBER + STRING = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
* STRING + STRING = NUMBER + NUMBER /1 NUMBER, 2 NUMBER
* STRING + NUMBER = NUMBER + NUMBER /1 NUMBER (2 NUMBER)
* NUMBER + BOOLEAN = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
* STRING + BOOLEAN = NUMBER + NUMBER /(1 NUMBER) 2 NUMBER
*/
int result;
/* we can evaluate it immediately */
if ((set1->type == set2->type) && (set1->type != LYXP_SET_EMPTY) && (set1->type != LYXP_SET_NODE_SET)
&& (((op[0] == '=') || (op[0] == '!')) || ((set1->type != LYXP_SET_BOOLEAN) && (set1->type != LYXP_SET_STRING)))) {
/* compute result */
if (op[0] == '=') {
if (set1->type == LYXP_SET_BOOLEAN) {
result = (set1->val.bool == set2->val.bool);
} else if (set1->type == LYXP_SET_NUMBER) {
result = (set1->val.num == set2->val.num);
} else {
result = (ly_strequal(set1->val.str, set2->val.str, 0));
}
} else if (op[0] == '!') {
if (set1->type == LYXP_SET_BOOLEAN) {
result = (set1->val.bool != set2->val.bool);
} else if (set1->type == LYXP_SET_NUMBER) {
result = (set1->val.num != set2->val.num);
} else {
result = (!ly_strequal(set1->val.str, set2->val.str, 0));
}
} else {
if (set1->type != LYXP_SET_NUMBER) {
LOGINT;
return -1;
}
if (op[0] == '<') {
if (op[1] == '=') {
result = (set1->val.num <= set2->val.num);
} else {
result = (set1->val.num < set2->val.num);
}
} else {
if (op[1] == '=') {
result = (set1->val.num >= set2->val.num);
} else {
result = (set1->val.num > set2->val.num);
}
}
}
/* assign result */
if (result) {
set_fill_boolean(set1, 1);
} else {
set_fill_boolean(set1, 0);
}
lyxp_set_cast(set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return EXIT_SUCCESS;
}
/* convert first */
if (((set1->type == LYXP_SET_NODE_SET) || (set1->type == LYXP_SET_EMPTY) || (set1->type == LYXP_SET_STRING))
&& ((set2->type == LYXP_SET_NODE_SET) || (set2->type == LYXP_SET_EMPTY) || (set2->type == LYXP_SET_STRING))
&& ((set1->type != LYXP_SET_STRING) || (set2->type != LYXP_SET_STRING))) {
if (lyxp_set_cast(set1, LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(set2, LYXP_SET_STRING, cur_node, local_mod, options)) {
return -1;
}
} else if ((((set1->type == LYXP_SET_NODE_SET) || (set1->type == LYXP_SET_EMPTY) || (set1->type == LYXP_SET_BOOLEAN))
&& ((set2->type == LYXP_SET_NODE_SET) || (set2->type == LYXP_SET_EMPTY) || (set2->type == LYXP_SET_BOOLEAN)))
|| (((op[0] == '=') || (op[0] == '!')) && ((set1->type == LYXP_SET_BOOLEAN) || (set2->type == LYXP_SET_BOOLEAN)))) {
lyxp_set_cast(set1, LYXP_SET_BOOLEAN, cur_node, local_mod, options);
lyxp_set_cast(set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options);
} else {
if (lyxp_set_cast(set1, LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(set2, LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
}
/* now we can evaluate */
return moveto_op_comp(set1, set2, op, cur_node, local_mod, options);
}
/**
* @brief Move context \p set to the result of a basic operation. Handles '+', '-', unary '-', '*', 'div',
* or 'mod'. Result is LYXP_SET_NUMBER. Indirectly context position aware.
*
* @param[in,out] set1 Set to use for the result.
* @param[in] set2 Set acting as the second operand for \p op.
* @param[in] op Operator to process.
* @param[in] cur_node Original context node.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
moveto_op_math(struct lyxp_set *set1, struct lyxp_set *set2, const char *op, struct lyd_node *cur_node,
struct lys_module *local_mod, int options)
{
/* unary '-' */
if (!set2 && (op[0] == '-')) {
if (lyxp_set_cast(set1, LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
set1->val.num *= -1;
lyxp_set_free(set2);
return EXIT_SUCCESS;
}
assert(set1 && set2);
if (lyxp_set_cast(set1, LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
if (lyxp_set_cast(set2, LYXP_SET_NUMBER, cur_node, local_mod, options)) {
return -1;
}
switch (op[0]) {
/* '+' */
case '+':
set1->val.num += set2->val.num;
break;
/* '-' */
case '-':
set1->val.num -= set2->val.num;
break;
/* '*' */
case '*':
set1->val.num *= set2->val.num;
break;
/* 'div' */
case 'd':
set1->val.num /= set2->val.num;
break;
/* 'mod' */
case 'm':
set1->val.num = ((long long)set1->val.num) % ((long long)set2->val.num);
break;
default:
LOGINT;
return -1;
}
return EXIT_SUCCESS;
}
/*
* eval functions
*
* They execute a parsed XPath expression on some data subtree.
*/
/**
* @brief Evaluate Literal. Logs directly on error.
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static void
eval_literal(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyxp_set *set)
{
if (set) {
if (exp->tok_len[*exp_idx] == 2) {
set_fill_string(set, "", 0);
} else {
set_fill_string(set, &exp->expr[exp->expr_pos[*exp_idx] + 1], exp->tok_len[*exp_idx] - 2);
}
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
}
/**
* @brief Evaluate NodeTest. Logs directly on error.
*
* [5] NodeTest ::= NameTest | NodeType '(' ')'
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in] attr_axis Whether to search attributes or standard nodes.
* @param[in] all_desc Whether to search all the descendants or children only.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_node_test(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
int attr_axis, int all_desc, struct lyxp_set *set, int options)
{
int i, rc = 0;
switch (exp->tokens[*exp_idx]) {
case LYXP_TOKEN_NAMETEST:
if (attr_axis) {
if (set && (options & LYXP_SNODE_ALL)) {
set_snode_clear_ctx(set);
} else {
if (all_desc) {
rc = moveto_attr_alldesc(set, cur_node, &exp->expr[exp->expr_pos[*exp_idx]],
exp->tok_len[*exp_idx], options);
} else {
rc = moveto_attr(set, cur_node, &exp->expr[exp->expr_pos[*exp_idx]], exp->tok_len[*exp_idx],
options);
}
}
} else {
if (all_desc) {
if (set && (options & LYXP_SNODE_ALL)) {
rc = moveto_snode_alldesc(set, (struct lys_node *)cur_node, &exp->expr[exp->expr_pos[*exp_idx]],
exp->tok_len[*exp_idx], options);
} else {
rc = moveto_node_alldesc(set, cur_node, &exp->expr[exp->expr_pos[*exp_idx]],
exp->tok_len[*exp_idx], options);
}
} else {
if (set && (set->type == LYXP_SET_SNODE_SET)) {
rc = moveto_snode(set, (struct lys_node *)cur_node, &exp->expr[exp->expr_pos[*exp_idx]],
exp->tok_len[*exp_idx], options);
} else {
rc = moveto_node(set, cur_node, &exp->expr[exp->expr_pos[*exp_idx]], exp->tok_len[*exp_idx],
options);
}
}
if (!rc && set && (options & LYXP_SNODE_ALL)) {
for (i = set->used - 1; i > -1; --i) {
if (set->val.snodes[i].in_ctx) {
break;
}
}
if (i == -1) {
LOGVAL(LYE_XPATH_INSNODE, LY_VLOG_NONE, NULL,
exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]],
exp->expr_pos[*exp_idx] + exp->tok_len[*exp_idx], exp->expr);
return -1;
}
}
}
if (rc) {
return rc;
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
break;
case LYXP_TOKEN_NODETYPE:
if (set) {
assert(exp->tok_len[*exp_idx] == 4);
if (set->type == LYXP_SET_SNODE_SET) {
set_snode_clear_ctx(set);
/* just for the debug message underneath */
set = NULL;
} else {
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "node", 4)) {
if (xpath_node(NULL, 0, cur_node, local_mod, set, options)) {
return -1;
}
} else {
assert(!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "text", 4));
if (xpath_text(NULL, 0, cur_node, local_mod, set, options)) {
return -1;
}
}
}
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
/* '(' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
/* ')' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
break;
default:
LOGINT;
return -1;
}
return EXIT_SUCCESS;
}
/**
* @brief Evaluate Predicate. Logs directly on error.
*
* [6] Predicate ::= '[' Expr ']'
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_predicate(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int ret;
uint16_t i, j, orig_exp, brack2_exp;
uint32_t orig_pos, orig_size, pred_in_ctx;
uint8_t **pred_repeat, rep_size;
struct lyxp_set set2;
/* '[' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
if (!set) {
ret = eval_expr(exp, exp_idx, cur_node, local_mod, NULL, options);
if (ret) {
return ret;
}
} else if (set->type == LYXP_SET_NODE_SET) {
#ifndef NDEBUG
/* we (possibly) need the set sorted, it can affect the result (if the predicate result is a number) */
if (set_sort(set, cur_node, options) > 1) {
LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__);
}
#endif
orig_exp = *exp_idx;
/* find the predicate end */
for (brack2_exp = orig_exp; exp->tokens[brack2_exp] != LYXP_TOKEN_BRACK2; ++brack2_exp);
/* copy predicate repeats, since they get deleted each time (probably not an ideal solution) */
pred_repeat = calloc(brack2_exp - orig_exp, sizeof *pred_repeat);
if (!pred_repeat) {
LOGMEM;
return -1;
}
for (j = 0; j < brack2_exp - orig_exp; ++j) {
if (exp->repeat[orig_exp + j]) {
for (rep_size = 0; exp->repeat[orig_exp + j][rep_size]; ++rep_size);
++rep_size;
pred_repeat[j] = malloc(rep_size * sizeof **pred_repeat);
if (!pred_repeat[j]) {
LOGMEM;
for (i = 0; i < j; ++i) {
free(pred_repeat[j]);
}
free(pred_repeat);
return -1;
}
memcpy(pred_repeat[j], exp->repeat[orig_exp + j], rep_size * sizeof **pred_repeat);
}
}
orig_size = set->used;
for (i = 0, orig_pos = 1; i < set->used; ++orig_pos) {
set2.type = LYXP_SET_EMPTY;
set_insert_node(&set2, set->val.nodes[i].node, set->val.nodes[i].pos, set->val.nodes[i].type, 0);
/* remember the node context position for position() and context size for last() */
set2.ctx_pos = orig_pos;
set2.ctx_size = orig_size;
*exp_idx = orig_exp;
/* replace repeats */
for (j = 0; j < brack2_exp - orig_exp; ++j) {
if (pred_repeat[j]) {
for (rep_size = 0; pred_repeat[j][rep_size]; ++rep_size);
++rep_size;
memcpy(exp->repeat[orig_exp + j], pred_repeat[j], rep_size * sizeof **pred_repeat);
}
}
ret = eval_expr(exp, exp_idx, cur_node, local_mod, &set2, options);
if (ret) {
for (j = 0; j < brack2_exp - orig_exp; ++j) {
free(pred_repeat[j]);
}
free(pred_repeat);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* number is a position */
if (set2.type == LYXP_SET_NUMBER) {
if ((long long)set2.val.num == orig_pos) {
set2.val.num = 1;
} else {
set2.val.num = 0;
}
}
lyxp_set_cast(&set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options);
/* predicate satisfied or not? */
if (set2.val.bool) {
++i;
} else {
set_remove_node(set, i);
}
}
/* free predicate repeats */
for (j = 0; j < brack2_exp - orig_exp; ++j) {
free(pred_repeat[j]);
}
free(pred_repeat);
} else if (set->type == LYXP_SET_SNODE_SET) {
orig_exp = *exp_idx;
/* find the predicate end */
for (brack2_exp = orig_exp; exp->tokens[brack2_exp] != LYXP_TOKEN_BRACK2; ++brack2_exp);
/* copy predicate repeats, since they get deleted each time (probably not an ideal solution) */
pred_repeat = calloc(brack2_exp - orig_exp, sizeof *pred_repeat);
if (!pred_repeat) {
LOGMEM;
return -1;
}
for (j = 0; j < brack2_exp - orig_exp; ++j) {
if (exp->repeat[orig_exp + j]) {
for (rep_size = 0; exp->repeat[orig_exp + j][rep_size]; ++rep_size);
++rep_size;
pred_repeat[j] = malloc(rep_size * sizeof **pred_repeat);
if (!pred_repeat[j]) {
LOGMEM;
for (i = 0; i < j; ++i) {
free(pred_repeat[j]);
}
free(pred_repeat);
return -1;
}
memcpy(pred_repeat[j], exp->repeat[orig_exp + j], rep_size * sizeof **pred_repeat);
}
}
/* set special in_ctx to all the valid snodes */
pred_in_ctx = set_snode_new_in_ctx(set);
/* use the valid snodes one-by-one */
for (i = 0; i < set->used; ++i) {
if (set->val.snodes[i].in_ctx != pred_in_ctx) {
continue;
}
set->val.snodes[i].in_ctx = 1;
*exp_idx = orig_exp;
/* replace repeats */
for (j = 0; j < brack2_exp - orig_exp; ++j) {
if (pred_repeat[j]) {
for (rep_size = 0; pred_repeat[j][rep_size]; ++rep_size);
++rep_size;
memcpy(exp->repeat[orig_exp + j], pred_repeat[j], rep_size * sizeof **pred_repeat);
}
}
ret = eval_expr(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
for (j = 0; j < brack2_exp - orig_exp; ++j) {
free(pred_repeat[j]);
}
free(pred_repeat);
return ret;
}
set->val.snodes[i].in_ctx = pred_in_ctx;
}
/* restore the state as it was before the predicate */
for (i = 0; i < set->used; ++i) {
if (set->val.snodes[i].in_ctx == 1) {
set->val.snodes[i].in_ctx = 0;
} else if (set->val.snodes[i].in_ctx == pred_in_ctx) {
set->val.snodes[i].in_ctx = 1;
}
}
/* free predicate repeats */
for (j = 0; j < brack2_exp - orig_exp; ++j) {
free(pred_repeat[j]);
}
free(pred_repeat);
} else {
set2.type = LYXP_SET_EMPTY;
set_fill_set(&set2, set);
ret = eval_expr(exp, exp_idx, cur_node, local_mod, &set2, options);
if (ret) {
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
lyxp_set_cast(&set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options);
if (!set2.val.bool) {
lyxp_set_cast(set, LYXP_SET_EMPTY, cur_node, local_mod, options);
}
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
}
/* ']' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
return EXIT_SUCCESS;
}
/**
* @brief Evaluate RelativeLocationPath. Logs directly on error.
*
* [3] RelativeLocationPath ::= Step | RelativeLocationPath '/' Step | RelativeLocationPath '//' Step
* [4] Step ::= '@'? NodeTest Predicate* | '.' | '..'
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in] all_desc Whether to search all the descendants or children only.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_relative_location_path(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
int all_desc, struct lyxp_set *set, int options)
{
int attr_axis, ret;
goto step;
do {
/* evaluate '/' or '//' */
if (exp->tok_len[*exp_idx] == 1) {
all_desc = 0;
} else {
assert(exp->tok_len[*exp_idx] == 2);
all_desc = 1;
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
step:
/* Step */
attr_axis = 0;
switch (exp->tokens[*exp_idx]) {
case LYXP_TOKEN_DOT:
/* evaluate '.' */
if (set && (options & LYXP_SNODE_ALL)) {
ret = moveto_snode_self(set, (struct lys_node *)cur_node, all_desc, options);
} else {
ret = moveto_self(set, cur_node, all_desc, options);
}
if (ret) {
return ret;
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
break;
case LYXP_TOKEN_DDOT:
/* evaluate '..' */
if (set && (options & LYXP_SNODE_ALL)) {
ret = moveto_snode_parent(set, (struct lys_node *)cur_node, all_desc, options);
} else {
ret = moveto_parent(set, cur_node, all_desc, options);
}
if (ret) {
return ret;
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
break;
case LYXP_TOKEN_AT:
/* evaluate '@' */
attr_axis = 1;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
/* fall through */
case LYXP_TOKEN_NAMETEST:
case LYXP_TOKEN_NODETYPE:
ret = eval_node_test(exp, exp_idx, cur_node, local_mod, attr_axis, all_desc, set, options);
if (ret) {
return ret;
}
while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_BRACK1)) {
ret = eval_predicate(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
return ret;
}
}
break;
default:
LOGINT;
return -1;
}
} while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_OPERATOR_PATH));
return EXIT_SUCCESS;
}
/**
* @brief Evaluate AbsoluteLocationPath. Logs directly on error.
*
* [2] AbsoluteLocationPath ::= '/' RelativeLocationPath? | '//' RelativeLocationPath
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_absolute_location_path(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int all_desc, ret;
if (set) {
/* no matter what tokens follow, we need to be at the root */
if (options & LYXP_SNODE_ALL) {
moveto_snode_root(set, (struct lys_node *)cur_node, options);
} else {
moveto_root(set, cur_node, options);
}
}
/* '/' RelativeLocationPath? */
if (exp->tok_len[*exp_idx] == 1) {
/* evaluate '/' - deferred */
all_desc = 0;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
if (exp_check_token(exp, *exp_idx, LYXP_TOKEN_NONE, 0)) {
return EXIT_SUCCESS;
}
switch (exp->tokens[*exp_idx]) {
case LYXP_TOKEN_DOT:
case LYXP_TOKEN_DDOT:
case LYXP_TOKEN_AT:
case LYXP_TOKEN_NAMETEST:
case LYXP_TOKEN_NODETYPE:
ret = eval_relative_location_path(exp, exp_idx, cur_node, local_mod, all_desc, set, options);
if (ret) {
return ret;
}
break;
default:
break;
}
/* '//' RelativeLocationPath */
} else {
/* evaluate '//' - deferred so as not to waste memory by remembering all the nodes */
all_desc = 1;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
ret = eval_relative_location_path(exp, exp_idx, cur_node, local_mod, all_desc, set, options);
if (ret) {
return ret;
}
}
return EXIT_SUCCESS;
}
/**
* @brief Evaluate FunctionCall. Logs directly on error.
*
* [8] FunctionCall ::= FunctionName '(' ( Expr ( ',' Expr )* )? ')'
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_function_call(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int rc = EXIT_FAILURE;
int (*xpath_func)(struct lyxp_set **, uint16_t, struct lyd_node *, struct lys_module *, struct lyxp_set *, int) = NULL;
uint16_t arg_count = 0, i;
struct lyxp_set **args = NULL, **args_aux;
if (set) {
/* FunctionName */
switch (exp->tok_len[*exp_idx]) {
case 3:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "not", 3)) {
xpath_func = &xpath_not;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "sum", 3)) {
xpath_func = &xpath_sum;
}
break;
case 4:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "lang", 4)) {
xpath_func = &xpath_lang;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "last", 4)) {
xpath_func = &xpath_last;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "name", 4)) {
xpath_func = &xpath_name;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "true", 4)) {
xpath_func = &xpath_true;
}
break;
case 5:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "count", 5)) {
xpath_func = &xpath_count;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "false", 5)) {
xpath_func = &xpath_false;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "floor", 5)) {
xpath_func = &xpath_floor;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "round", 5)) {
xpath_func = &xpath_round;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "deref", 5)) {
xpath_func = &xpath_deref;
}
break;
case 6:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "concat", 6)) {
xpath_func = &xpath_concat;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "number", 6)) {
xpath_func = &xpath_number;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "string", 6)) {
xpath_func = &xpath_string;
}
break;
case 7:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "boolean", 7)) {
xpath_func = &xpath_boolean;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "ceiling", 7)) {
xpath_func = &xpath_ceiling;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "current", 7)) {
xpath_func = &xpath_current;
}
break;
case 8:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "contains", 8)) {
xpath_func = &xpath_contains;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "position", 8)) {
xpath_func = &xpath_position;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "re-match", 8)) {
xpath_func = &xpath_re_match;
}
break;
case 9:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring", 9)) {
xpath_func = &xpath_substring;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "translate", 9)) {
xpath_func = &xpath_translate;
}
break;
case 10:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "local-name", 10)) {
xpath_func = &xpath_local_name;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "enum-value", 10)) {
xpath_func = &xpath_enum_value;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "bit-is-set", 10)) {
xpath_func = &xpath_bit_is_set;
}
break;
case 11:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "starts-with", 11)) {
xpath_func = &xpath_starts_with;
}
break;
case 12:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "derived-from", 12)) {
xpath_func = &xpath_derived_from;
}
break;
case 13:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "namespace-uri", 13)) {
xpath_func = &xpath_namespace_uri;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "string-length", 13)) {
xpath_func = &xpath_string_length;
}
break;
case 15:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "normalize-space", 15)) {
xpath_func = &xpath_normalize_space;
} else if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring-after", 15)) {
xpath_func = &xpath_substring_after;
}
break;
case 16:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "substring-before", 16)) {
xpath_func = &xpath_substring_before;
}
break;
case 20:
if (!strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "derived-from-or-self", 20)) {
xpath_func = &xpath_derived_from_or_self;
}
break;
}
if (!xpath_func) {
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[*exp_idx]]);
LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL,
"Unknown XPath function \"%.*s\".", exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]]);
return -1;
}
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
/* '(' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
/* ( Expr ( ',' Expr )* )? */
if (exp->tokens[*exp_idx] != LYXP_TOKEN_PAR2) {
if (set) {
args = malloc(sizeof *args);
if (!args) {
LOGMEM;
goto cleanup;
}
arg_count = 1;
args[0] = set_copy(set);
if (!args[0]) {
goto cleanup;
}
if ((rc = eval_expr(exp, exp_idx, cur_node, local_mod, args[0], options))) {
goto cleanup;
}
} else {
if ((rc = eval_expr(exp, exp_idx, cur_node, local_mod, NULL, options))) {
goto cleanup;
}
}
}
while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_COMMA)) {
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
if (set) {
++arg_count;
args_aux = realloc(args, arg_count * sizeof *args);
if (!args_aux) {
arg_count--;
LOGMEM;
goto cleanup;
}
args = args_aux;
args[arg_count - 1] = set_copy(set);
if (!args[arg_count - 1]) {
goto cleanup;
}
if ((rc = eval_expr(exp, exp_idx, cur_node, local_mod, args[arg_count - 1], options))) {
goto cleanup;
}
} else {
if ((rc = eval_expr(exp, exp_idx, cur_node, local_mod, NULL, options))) {
goto cleanup;
}
}
}
/* ')' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
if (set) {
/* evaluate function */
rc = xpath_func(args, arg_count, cur_node, local_mod, set, options);
} else {
rc = EXIT_SUCCESS;
}
cleanup:
for (i = 0; i < arg_count; ++i) {
lyxp_set_free(args[i]);
}
free(args);
return rc;
}
/**
* @brief Evaluate Number. Logs directly on error.
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
*
* @return EXIT_SUCCESS on success, -1 on error.
*/
static int
eval_number(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyxp_set *set)
{
long double num;
char *endptr;
if (set) {
errno = 0;
num = strtold(&exp->expr[exp->expr_pos[*exp_idx]], &endptr);
if (errno) {
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[*exp_idx]]);
LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL, "Failed to convert \"%.*s\" into a long double (%s).",
exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]], strerror(errno));
return -1;
} else if (endptr - &exp->expr[exp->expr_pos[*exp_idx]] != exp->tok_len[*exp_idx]) {
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[*exp_idx]]);
LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL, "Failed to convert \"%.*s\" into a long double.",
exp->tok_len[*exp_idx], &exp->expr[exp->expr_pos[*exp_idx]]);
return -1;
}
set_fill_number(set, num);
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
return EXIT_SUCCESS;
}
/**
* @brief Evaluate PathExpr. Logs directly on error.
*
* [9] PathExpr ::= LocationPath | PrimaryExpr Predicate*
* | PrimaryExpr Predicate* '/' RelativeLocationPath
* | PrimaryExpr Predicate* '//' RelativeLocationPath
* [1] LocationPath ::= RelativeLocationPath | AbsoluteLocationPath
* [7] PrimaryExpr ::= '(' Expr ')' | Literal | Number | FunctionCall
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_path_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int all_desc, ret;
switch (exp->tokens[*exp_idx]) {
case LYXP_TOKEN_PAR1:
/* '(' Expr ')' */
/* '(' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
/* Expr */
ret = eval_expr(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
return ret;
}
/* ')' */
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
goto predicate;
case LYXP_TOKEN_DOT:
case LYXP_TOKEN_DDOT:
case LYXP_TOKEN_AT:
case LYXP_TOKEN_NAMETEST:
case LYXP_TOKEN_NODETYPE:
/* RelativeLocationPath */
ret = eval_relative_location_path(exp, exp_idx, cur_node, local_mod, 0, set, options);
if (ret) {
return ret;
}
break;
case LYXP_TOKEN_FUNCNAME:
/* FunctionCall */
if (!set || (options & LYXP_SNODE_ALL)) {
if (set) {
/* the only function returning node-set - thus relevant */
if ((exp->tok_len[*exp_idx] == 7) && !strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "current", 7)) {
xpath_current(NULL, 0, cur_node, local_mod, set, options);
} else if ((exp->tok_len[*exp_idx] == 5) && !strncmp(&exp->expr[exp->expr_pos[*exp_idx]], "deref", 5)) {
ret = eval_function_call(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
return ret;
}
goto predicate;
} else {
set_snode_clear_ctx(set);
}
}
ret = eval_function_call(exp, exp_idx, cur_node, local_mod, NULL, options);
} else {
ret = eval_function_call(exp, exp_idx, cur_node, local_mod, set, options);
}
if (ret) {
return ret;
}
goto predicate;
case LYXP_TOKEN_OPERATOR_PATH:
/* AbsoluteLocationPath */
ret = eval_absolute_location_path(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
return ret;
}
break;
case LYXP_TOKEN_LITERAL:
/* Literal */
if (!set || (options & LYXP_SNODE_ALL)) {
if (set) {
set_snode_clear_ctx(set);
}
eval_literal(exp, exp_idx, NULL);
} else {
eval_literal(exp, exp_idx, set);
}
goto predicate;
case LYXP_TOKEN_NUMBER:
/* Number */
if (!set || (options & LYXP_SNODE_ALL)) {
if (set) {
set_snode_clear_ctx(set);
}
ret = eval_number(exp, exp_idx, NULL);
} else {
ret = eval_number(exp, exp_idx, set);
}
if (ret) {
return ret;
}
goto predicate;
default:
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL,
print_token(exp->tokens[*exp_idx]), &exp->expr[exp->expr_pos[*exp_idx]]);
return -1;
}
return EXIT_SUCCESS;
predicate:
/* Predicate* */
while ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_BRACK1)) {
ret = eval_predicate(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
return ret;
}
}
/* ('/' or '//') RelativeLocationPath */
if ((exp->used > *exp_idx) && (exp->tokens[*exp_idx] == LYXP_TOKEN_OPERATOR_PATH)) {
/* evaluate '/' or '//' */
if (exp->tok_len[*exp_idx] == 1) {
all_desc = 0;
} else {
assert(exp->tok_len[*exp_idx] == 2);
all_desc = 1;
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
ret = eval_relative_location_path(exp, exp_idx, cur_node, local_mod, all_desc, set, options);
if (ret) {
return ret;
}
}
return EXIT_SUCCESS;
}
/**
* @brief Evaluate UnaryExpr. Logs directly on error.
*
* [16] UnaryExpr ::= UnionExpr | '-' UnaryExpr
* [17] UnionExpr ::= PathExpr | UnionExpr '|' PathExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_unary_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int unary_minus, ret;
uint16_t op_exp;
struct lyxp_set orig_set, set2;
/* ('-')* */
unary_minus = -1;
while (!exp_check_token(exp, *exp_idx, LYXP_TOKEN_OPERATOR_MATH, 0)
&& (exp->expr[exp->expr_pos[*exp_idx]] == '-')) {
if (unary_minus == -1) {
unary_minus = *exp_idx;
} else {
/* double '-' makes '+', ignore */
unary_minus = -1;
}
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
}
memset(&orig_set, 0, sizeof orig_set);
memset(&set2, 0, sizeof set2);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_UNI)) {
/* there is an operator */
exp_repeat_pop(exp, *exp_idx);
set_fill_set(&orig_set, set);
} else {
op_exp = 0;
}
/* PathExpr */
ret = eval_path_expr(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* ('|' PathExpr)* */
while (op_exp) {
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_UNI)) {
/* there is another operator */
exp_repeat_pop(exp, *exp_idx);
} else {
op_exp = 0;
}
if (!set) {
ret = eval_path_expr(exp, exp_idx, cur_node, local_mod, NULL, options);
if (ret) {
return ret;
}
continue;
}
set_fill_set(&set2, &orig_set);
ret = eval_path_expr(exp, exp_idx, cur_node, local_mod, &set2, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* eval */
if (options & LYXP_SNODE_ALL) {
set_snode_merge(set, &set2);
} else if (moveto_union(set, &set2, cur_node, options)) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return -1;
}
}
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
/* now we have all the unions in set and no other memory allocated */
if (set && (unary_minus > -1) && !(options & LYXP_SNODE_ALL)) {
if (moveto_op_math(set, NULL, &exp->expr[exp->expr_pos[unary_minus]], cur_node, local_mod, options)) {
return -1;
}
}
return EXIT_SUCCESS;
}
/**
* @brief Evaluate MultiplicativeExpr. Logs directly on error.
*
* [15] MultiplicativeExpr ::= UnaryExpr
* | MultiplicativeExpr '*' UnaryExpr
* | MultiplicativeExpr 'div' UnaryExpr
* | MultiplicativeExpr 'mod' UnaryExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_multiplicative_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int ret;
uint16_t this_op, op_exp;
struct lyxp_set orig_set, set2;
memset(&orig_set, 0, sizeof orig_set);
memset(&set2, 0, sizeof set2);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_MATH)
&& ((exp->expr[exp->expr_pos[op_exp]] == '*') || (exp->tok_len[op_exp] == 3))) {
/* there is an operator */
exp_repeat_pop(exp, *exp_idx);
set_fill_set(&orig_set, set);
} else {
op_exp = 0;
}
/* UnaryExpr */
ret = eval_unary_expr(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* ('*' / 'div' / 'mod' UnaryExpr)* */
while (op_exp) {
this_op = *exp_idx;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_MATH)
&& ((exp->expr[exp->expr_pos[op_exp]] == '*') || (exp->tok_len[op_exp] == 3))) {
/* there is another operator */
exp_repeat_pop(exp, *exp_idx);
} else {
op_exp = 0;
}
if (!set) {
ret = eval_unary_expr(exp, exp_idx, cur_node, local_mod, NULL, options);
if (ret) {
return ret;
}
continue;
}
set_fill_set(&set2, &orig_set);
ret = eval_unary_expr(exp, exp_idx, cur_node, local_mod, &set2, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* eval */
if (options & LYXP_SNODE_ALL) {
set_snode_merge(set, &set2);
set_snode_clear_ctx(set);
} else {
if (moveto_op_math(set, &set2, &exp->expr[exp->expr_pos[this_op]], cur_node, local_mod, options)) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return -1;
}
}
}
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return EXIT_SUCCESS;
}
/**
* @brief Evaluate AdditiveExpr. Logs directly on error.
*
* [14] AdditiveExpr ::= MultiplicativeExpr
* | AdditiveExpr '+' MultiplicativeExpr
* | AdditiveExpr '-' MultiplicativeExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_additive_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int ret;
uint16_t this_op, op_exp;
struct lyxp_set orig_set, set2;
memset(&orig_set, 0, sizeof orig_set);
memset(&set2, 0, sizeof set2);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_MATH)
&& ((exp->expr[exp->expr_pos[op_exp]] == '+') || (exp->expr[exp->expr_pos[op_exp]] == '-'))) {
/* there is an operator */
exp_repeat_pop(exp, *exp_idx);
set_fill_set(&orig_set, set);
} else {
op_exp = 0;
}
/* MultiplicativeExpr */
ret = eval_multiplicative_expr(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* ('+' / '-' MultiplicativeExpr)* */
while (op_exp) {
this_op = *exp_idx;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_MATH)
&& ((exp->expr[exp->expr_pos[op_exp]] == '+') || (exp->expr[exp->expr_pos[op_exp]] == '-'))) {
/* there is another operator */
exp_repeat_pop(exp, *exp_idx);
} else {
op_exp = 0;
}
if (!set) {
ret = eval_multiplicative_expr(exp, exp_idx, cur_node, local_mod, NULL, options);
if (ret) {
return ret;
}
continue;
}
set_fill_set(&set2, &orig_set);
ret = eval_multiplicative_expr(exp, exp_idx, cur_node, local_mod, &set2, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* eval */
if (options & LYXP_SNODE_ALL) {
set_snode_merge(set, &set2);
set_snode_clear_ctx(set);
} else {
if (moveto_op_math(set, &set2, &exp->expr[exp->expr_pos[this_op]], cur_node, local_mod, options)) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return -1;
}
}
}
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return EXIT_SUCCESS;
}
/**
* @brief Evaluate RelationalExpr. Logs directly on error.
*
* [13] RelationalExpr ::= AdditiveExpr
* | RelationalExpr '<' AdditiveExpr
* | RelationalExpr '>' AdditiveExpr
* | RelationalExpr '<=' AdditiveExpr
* | RelationalExpr '>=' AdditiveExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_relational_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int ret;
uint16_t this_op, op_exp;
struct lyxp_set orig_set, set2;
memset(&orig_set, 0, sizeof orig_set);
memset(&set2, 0, sizeof set2);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_COMP)
&& ((exp->expr[exp->expr_pos[op_exp]] == '<') || (exp->expr[exp->expr_pos[op_exp]] == '>'))) {
/* there is an operator */
exp_repeat_pop(exp, *exp_idx);
set_fill_set(&orig_set, set);
} else {
op_exp = 0;
}
/* AdditiveExpr */
ret = eval_additive_expr(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* ('<' / '>' / '<=' / '>=' AdditiveExpr)* */
while (op_exp) {
this_op = *exp_idx;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_COMP)
&& ((exp->expr[exp->expr_pos[op_exp]] == '<') || (exp->expr[exp->expr_pos[op_exp]] == '>'))) {
/* there is another operator */
exp_repeat_pop(exp, *exp_idx);
} else {
op_exp = 0;
}
if (!set) {
ret = eval_additive_expr(exp, exp_idx, cur_node, local_mod, NULL, options);
if (ret) {
return ret;
}
continue;
}
set_fill_set(&set2, &orig_set);
ret = eval_additive_expr(exp, exp_idx, cur_node, local_mod, &set2, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* eval */
if (options & LYXP_SNODE_ALL) {
set_snode_merge(set, &set2);
set_snode_clear_ctx(set);
} else {
if (moveto_op_comp(set, &set2, &exp->expr[exp->expr_pos[this_op]], cur_node, local_mod, options)) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return -1;
}
}
}
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return EXIT_SUCCESS;
}
/**
* @brief Evaluate EqualityExpr. Logs directly on error.
*
* [12] EqualityExpr ::= RelationalExpr | EqualityExpr '=' RelationalExpr
* | EqualityExpr '!=' RelationalExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_equality_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int ret;
uint16_t this_op, op_exp;
struct lyxp_set orig_set, set2;
memset(&orig_set, 0, sizeof orig_set);
memset(&set2, 0, sizeof set2);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_COMP)
&& ((exp->expr[exp->expr_pos[op_exp]] == '=') || (exp->expr[exp->expr_pos[op_exp]] == '!'))) {
/* there is an operator */
exp_repeat_pop(exp, *exp_idx);
set_fill_set(&orig_set, set);
} else {
op_exp = 0;
}
/* RelationalExpr */
ret = eval_relational_expr(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* ('=' / '!=' RelationalExpr)* */
while (op_exp) {
this_op = *exp_idx;
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (set ? "parsed" : "skipped"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_COMP)
&& ((exp->expr[exp->expr_pos[op_exp]] == '=') || (exp->expr[exp->expr_pos[op_exp]] == '!'))) {
/* there is another operator */
exp_repeat_pop(exp, *exp_idx);
} else {
op_exp = 0;
}
if (!set) {
ret = eval_relational_expr(exp, exp_idx, cur_node, local_mod, NULL, options);
if (ret) {
return ret;
}
continue;
}
set_fill_set(&set2, &orig_set);
ret = eval_relational_expr(exp, exp_idx, cur_node, local_mod, &set2, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* eval */
if (options & LYXP_SNODE_ALL) {
set_snode_merge(set, &set2);
set_snode_clear_ctx(set);
} else {
if (moveto_op_comp(set, &set2, &exp->expr[exp->expr_pos[this_op]], cur_node, local_mod, options)) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return -1;
}
}
}
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return EXIT_SUCCESS;
}
/**
* @brief Evaluate AndExpr. Logs directly on error.
*
* [11] AndExpr ::= EqualityExpr | AndExpr 'and' EqualityExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_and_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int ret;
uint16_t op_exp;
struct lyxp_set orig_set, set2;
memset(&orig_set, 0, sizeof orig_set);
memset(&set2, 0, sizeof set2);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_LOG) && (exp->tok_len[op_exp] == 3)) {
/* there is an operator */
exp_repeat_pop(exp, *exp_idx);
set_fill_set(&orig_set, set);
} else {
op_exp = 0;
}
/* EqualityExpr */
ret = eval_equality_expr(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* cast to boolean, we know that will be the final result */
if (op_exp) {
if (set && (options & LYXP_SNODE_ALL)) {
set_snode_clear_ctx(set);
} else {
lyxp_set_cast(set, LYXP_SET_BOOLEAN, cur_node, local_mod, options);
}
}
/* ('and' EqualityExpr)* */
while (op_exp) {
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (!set || !set->val.bool ? "skipped" : "parsed"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_LOG) && (exp->tok_len[op_exp] == 3)) {
/* there is another operator */
exp_repeat_pop(exp, *exp_idx);
} else {
op_exp = 0;
}
/* lazy evaluation */
if (!set || ((set->type == LYXP_SET_BOOLEAN) && !set->val.bool)) {
ret = eval_equality_expr(exp, exp_idx, cur_node, local_mod, NULL, options);
if (ret) {
return ret;
}
continue;
}
set_fill_set(&set2, &orig_set);
ret = eval_equality_expr(exp, exp_idx, cur_node, local_mod, &set2, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* eval - just get boolean value actually */
if (set->type == LYXP_SET_SNODE_SET) {
set_snode_clear_ctx(&set2);
set_snode_merge(set, &set2);
} else {
lyxp_set_cast(&set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options);
set_fill_set(set, &set2);
}
}
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return EXIT_SUCCESS;
}
/**
* @brief Evaluate Expr. Logs directly on error.
*
* [10] Expr ::= AndExpr | Expr 'or' AndExpr
*
* @param[in] exp Parsed XPath expression.
* @param[in] exp_idx Position in the expression \p exp.
* @param[in] cur_node Start node for the expression \p exp.
* @param[in,out] set Context and result set. On NULL the rule is only parsed.
* @param[in] options Whether to apply data node access restrictions defined for 'when' and 'must' evaluation.
*
* @return EXIT_SUCCESS on success, EXIT_FAILURE on unresolved when, -1 on error.
*/
static int
eval_expr(struct lyxp_expr *exp, uint16_t *exp_idx, struct lyd_node *cur_node, struct lys_module *local_mod,
struct lyxp_set *set, int options)
{
int ret;
uint16_t op_exp;
struct lyxp_set orig_set, set2;
memset(&orig_set, 0, sizeof orig_set);
memset(&set2, 0, sizeof set2);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_LOG) && (exp->tok_len[op_exp] == 2)) {
/* there is an operator */
exp_repeat_pop(exp, *exp_idx);
set_fill_set(&orig_set, set);
} else {
op_exp = 0;
}
/* AndExpr */
ret = eval_and_expr(exp, exp_idx, cur_node, local_mod, set, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* cast to boolean, we know that will be the final result */
if (op_exp) {
if (set && (options & LYXP_SNODE_ALL)) {
set_snode_clear_ctx(set);
} else {
lyxp_set_cast(set, LYXP_SET_BOOLEAN, cur_node, local_mod, options);
}
}
/* ('or' AndExpr)* */
while (op_exp) {
LOGDBG(LY_LDGXPATH, "%-27s %s %s[%u]", __func__, (!set || set->val.bool ? "skipped" : "parsed"),
print_token(exp->tokens[*exp_idx]), exp->expr_pos[*exp_idx]);
++(*exp_idx);
op_exp = exp_repeat_peek(exp, *exp_idx);
if (op_exp && (exp->tokens[op_exp] == LYXP_TOKEN_OPERATOR_LOG) && (exp->tok_len[op_exp] == 2)) {
/* there is another operator */
exp_repeat_pop(exp, *exp_idx);
} else {
op_exp = 0;
}
/* lazy evaluation */
if (!set || ((set->type == LYXP_SET_BOOLEAN) && set->val.bool)) {
ret = eval_and_expr(exp, exp_idx, cur_node, local_mod, NULL, options);
if (ret) {
return ret;
}
continue;
}
set_fill_set(&set2, &orig_set);
ret = eval_and_expr(exp, exp_idx, cur_node, local_mod, &set2, options);
if (ret) {
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
lyxp_set_cast(&set2, LYXP_SET_EMPTY, cur_node, local_mod, options);
return ret;
}
/* eval - just get boolean value actually */
if (set->type == LYXP_SET_SNODE_SET) {
set_snode_clear_ctx(&set2);
set_snode_merge(set, &set2);
} else {
lyxp_set_cast(&set2, LYXP_SET_BOOLEAN, cur_node, local_mod, options);
set_fill_set(set, &set2);
}
}
lyxp_set_cast(&orig_set, LYXP_SET_EMPTY, cur_node, local_mod, options);
return EXIT_SUCCESS;
}
int
lyxp_eval(const char *expr, const struct lyd_node *cur_node, enum lyxp_node_type cur_node_type,
const struct lys_module *local_mod, struct lyxp_set *set, int options)
{
struct lyxp_expr *exp;
uint16_t exp_idx = 0;
int rc = -1;
if (!expr || !set) {
ly_errno = LY_EINVAL;
return EXIT_FAILURE;
}
exp = lyxp_parse_expr(expr);
if (!exp) {
rc = -1;
goto finish;
}
rc = reparse_expr(exp, &exp_idx);
if (rc) {
goto finish;
} else if (exp->used > exp_idx) {
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[exp_idx]]);
LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL, "Unparsed characters \"%s\" left at the end of an XPath expression.",
&exp->expr[exp->expr_pos[exp_idx]]);
rc = -1;
goto finish;
}
print_expr_struct_debug(exp);
exp_idx = 0;
memset(set, 0, sizeof *set);
if (cur_node) {
set_insert_node(set, (struct lyd_node *)cur_node, 0, cur_node_type, 0);
}
rc = eval_expr(exp, &exp_idx, (struct lyd_node *)cur_node, (struct lys_module *)local_mod, set, options);
if ((rc == -1) && cur_node) {
LOGPATH(LY_VLOG_LYD, cur_node);
}
finish:
lyxp_expr_free(exp);
return rc;
}
#if 0
/* full xml printing of set elements, not used currently */
void
lyxp_set_print_xml(FILE *f, struct lyxp_set *set)
{
uint32_t i;
char *str_num;
struct lyout out;
out.type = LYOUT_STREAM;
out.method.f = f;
switch (set->type) {
case LYXP_SET_EMPTY:
ly_print(&out, "Empty XPath set\n\n");
break;
case LYXP_SET_BOOLEAN:
ly_print(&out, "Boolean XPath set:\n");
ly_print(&out, "%s\n\n", set->value.bool ? "true" : "false");
break;
case LYXP_SET_STRING:
ly_print(&out, "String XPath set:\n");
ly_print(&out, "\"%s\"\n\n", set->value.str);
break;
case LYXP_SET_NUMBER:
ly_print(&out, "Number XPath set:\n");
if (isnan(set->value.num)) {
str_num = strdup("NaN");
} else if ((set->value.num == 0) || (set->value.num == -0.0f)) {
str_num = strdup("0");
} else if (isinf(set->value.num) && !signbit(set->value.num)) {
str_num = strdup("Infinity");
} else if (isinf(set->value.num) && signbit(set->value.num)) {
str_num = strdup("-Infinity");
} else if ((long long)set->value.num == set->value.num) {
if (asprintf(&str_num, "%lld", (long long)set->value.num) == -1) {
str_num = NULL;
}
} else {
if (asprintf(&str_num, "%03.1Lf", set->value.num) == -1) {
str_num = NULL;
}
}
if (!str_num) {
LOGMEM;
return;
}
ly_print(&out, "%s\n\n", str_num);
free(str_num);
break;
case LYXP_SET_NODE_SET:
ly_print(&out, "Node XPath set:\n");
for (i = 0; i < set->used; ++i) {
ly_print(&out, "%d. ", i + 1);
switch (set->node_type[i]) {
case LYXP_NODE_ROOT_ALL:
ly_print(&out, "ROOT all\n\n");
break;
case LYXP_NODE_ROOT_CONFIG:
ly_print(&out, "ROOT config\n\n");
break;
case LYXP_NODE_ROOT_STATE:
ly_print(&out, "ROOT state\n\n");
break;
case LYXP_NODE_ROOT_NOTIF:
ly_print(&out, "ROOT notification \"%s\"\n\n", set->value.nodes[i]->schema->name);
break;
case LYXP_NODE_ROOT_RPC:
ly_print(&out, "ROOT rpc \"%s\"\n\n", set->value.nodes[i]->schema->name);
break;
case LYXP_NODE_ROOT_OUTPUT:
ly_print(&out, "ROOT output \"%s\"\n\n", set->value.nodes[i]->schema->name);
break;
case LYXP_NODE_ELEM:
ly_print(&out, "ELEM \"%s\"\n", set->value.nodes[i]->schema->name);
xml_print_node(&out, 1, set->value.nodes[i], 1, LYP_FORMAT);
ly_print(&out, "\n");
break;
case LYXP_NODE_TEXT:
ly_print(&out, "TEXT \"%s\"\n\n", ((struct lyd_node_leaf_list *)set->value.nodes[i])->value_str);
break;
case LYXP_NODE_ATTR:
ly_print(&out, "ATTR \"%s\" = \"%s\"\n\n", set->value.attrs[i]->name, set->value.attrs[i]->value);
break;
}
}
break;
}
}
#endif
int
lyxp_set_cast(struct lyxp_set *set, enum lyxp_set_type target, const struct lyd_node *cur_node,
const struct lys_module *local_mod, int options)
{
long double num;
char *str;
if (!set || (set->type == target)) {
return EXIT_SUCCESS;
}
/* it's not possible to convert anything into a node set */
assert((target != LYXP_SET_NODE_SET) && ((set->type != LYXP_SET_SNODE_SET) || (target == LYXP_SET_EMPTY)));
if (set->type == LYXP_SET_SNODE_SET) {
free(set->val.snodes);
return -1;
}
/* to STRING */
if ((target == LYXP_SET_STRING) || ((target == LYXP_SET_NUMBER)
&& ((set->type == LYXP_SET_NODE_SET) || (set->type == LYXP_SET_EMPTY)))) {
switch (set->type) {
case LYXP_SET_NUMBER:
if (isnan(set->val.num)) {
set->val.str = strdup("NaN");
} else if ((set->val.num == 0) || (set->val.num == -0.0f)) {
set->val.str = strdup("0");
} else if (isinf(set->val.num) && !signbit(set->val.num)) {
set->val.str = strdup("Infinity");
} else if (isinf(set->val.num) && signbit(set->val.num)) {
set->val.str = strdup("-Infinity");
} else if ((long long)set->val.num == set->val.num) {
if (asprintf(&str, "%lld", (long long)set->val.num) == -1) {
LOGMEM;
return -1;
}
set->val.str = str;
} else {
if (asprintf(&str, "%03.1Lf", set->val.num) == -1) {
LOGMEM;
return -1;
}
set->val.str = str;
}
break;
case LYXP_SET_BOOLEAN:
if (set->val.bool) {
set->val.str = strdup("true");
} else {
set->val.str = strdup("false");
}
break;
case LYXP_SET_NODE_SET:
assert(set->used);
#ifndef NDEBUG
/* we need the set sorted, it affects the result */
if (set_sort(set, cur_node, options) > 1) {
LOGERR(LY_EINT, "XPath set was expected to be sorted, but is not (%s).", __func__);
}
#endif
str = cast_node_set_to_string(set, (struct lyd_node *)cur_node, (struct lys_module *)local_mod, options);
if (!str) {
return -1;
}
free(set->val.nodes);
set->val.str = str;
break;
case LYXP_SET_EMPTY:
set->val.str = strdup("");
if (!set->val.str) {
LOGMEM;
return -1;
}
break;
default:
LOGINT;
return -1;
}
set->type = LYXP_SET_STRING;
}
/* to NUMBER */
if (target == LYXP_SET_NUMBER) {
switch (set->type) {
case LYXP_SET_STRING:
num = cast_string_to_number(set->val.str);
free(set->val.str);
set->val.num = num;
break;
case LYXP_SET_BOOLEAN:
if (set->val.bool) {
set->val.num = 1;
} else {
set->val.num = 0;
}
break;
default:
LOGINT;
return -1;
}
set->type = LYXP_SET_NUMBER;
}
/* to BOOLEAN */
if (target == LYXP_SET_BOOLEAN) {
switch (set->type) {
case LYXP_SET_NUMBER:
if ((set->val.num == 0) || (set->val.num == -0.0f) || isnan(set->val.num)) {
set->val.bool = 0;
} else {
set->val.bool = 1;
}
break;
case LYXP_SET_STRING:
if (set->val.str[0]) {
free(set->val.str);
set->val.bool = 1;
} else {
free(set->val.str);
set->val.bool = 0;
}
break;
case LYXP_SET_NODE_SET:
free(set->val.nodes);
assert(set->used);
set->val.bool = 1;
break;
case LYXP_SET_EMPTY:
set->val.bool = 0;
break;
default:
LOGINT;
return -1;
}
set->type = LYXP_SET_BOOLEAN;
}
/* to EMPTY */
if (target == LYXP_SET_EMPTY) {
switch (set->type) {
case LYXP_SET_NUMBER:
case LYXP_SET_BOOLEAN:
/* nothing to do */
break;
case LYXP_SET_STRING:
free(set->val.str);
break;
case LYXP_SET_NODE_SET:
free(set->val.nodes);
break;
default:
LOGINT;
return -1;
}
set->type = LYXP_SET_EMPTY;
}
return EXIT_SUCCESS;
}
void
lyxp_set_free(struct lyxp_set *set)
{
if (!set) {
return;
}
if (set->type == LYXP_SET_NODE_SET) {
free(set->val.nodes);
} else if (set->type == LYXP_SET_SNODE_SET) {
free(set->val.snodes);
} else if (set->type == LYXP_SET_STRING) {
free(set->val.str);
}
free(set);
}
int
lyxp_atomize(const char *expr, const struct lys_node *cur_snode, enum lyxp_node_type cur_snode_type,
struct lyxp_set *set, int options)
{
struct lyxp_expr *exp;
uint16_t exp_idx = 0;
int rc = -1;
exp = lyxp_parse_expr(expr);
if (!exp) {
rc = -1;
goto finish;
}
rc = reparse_expr(exp, &exp_idx);
if (rc) {
goto finish;
} else if (exp->used > exp_idx) {
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, "Unknown", &exp->expr[exp->expr_pos[exp_idx]]);
LOGVAL(LYE_SPEC, LY_VLOG_NONE, NULL, "Unparsed characters \"%s\" left at the end of an XPath expression.",
&exp->expr[exp->expr_pos[exp_idx]]);
rc = -1;
goto finish;
}
print_expr_struct_debug(exp);
exp_idx = 0;
memset(set, 0, sizeof *set);
set->type = LYXP_SET_SNODE_SET;
set_snode_insert_node(set, cur_snode, cur_snode_type);
rc = eval_expr(exp, &exp_idx, (struct lyd_node *)cur_snode, lys_node_module(cur_snode), set, options);
finish:
lyxp_expr_free(exp);
return rc;
}
int
lyxp_node_atomize(const struct lys_node *node, struct lyxp_set *set, int warn_on_fwd_ref)
{
struct lys_node *ctx_snode;
enum lyxp_node_type ctx_snode_type;
struct lyxp_set tmp_set;
uint8_t must_size = 0;
uint32_t i;
int opts, ret = EXIT_SUCCESS;
struct lys_when *when = NULL;
struct lys_restr *must = NULL;
char *path;
assert(!warn_on_fwd_ref || !*ly_vlog_hide_location());
memset(&tmp_set, 0, sizeof tmp_set);
memset(set, 0, sizeof *set);
/* check if we will be traversing RPC output */
opts = 0;
for (ctx_snode = (struct lys_node *)node; ctx_snode && (ctx_snode->nodetype != LYS_OUTPUT); ctx_snode = lys_parent(ctx_snode));
if (ctx_snode) {
opts |= LYXP_SNODE_OUTPUT;
}
switch (node->nodetype) {
case LYS_CONTAINER:
when = ((struct lys_node_container *)node)->when;
must = ((struct lys_node_container *)node)->must;
must_size = ((struct lys_node_container *)node)->must_size;
break;
case LYS_CHOICE:
when = ((struct lys_node_choice *)node)->when;
break;
case LYS_LEAF:
when = ((struct lys_node_leaf *)node)->when;
must = ((struct lys_node_leaf *)node)->must;
must_size = ((struct lys_node_leaf *)node)->must_size;
break;
case LYS_LEAFLIST:
when = ((struct lys_node_leaflist *)node)->when;
must = ((struct lys_node_leaflist *)node)->must;
must_size = ((struct lys_node_leaflist *)node)->must_size;
break;
case LYS_LIST:
when = ((struct lys_node_list *)node)->when;
must = ((struct lys_node_list *)node)->must;
must_size = ((struct lys_node_list *)node)->must_size;
break;
case LYS_ANYXML:
case LYS_ANYDATA:
when = ((struct lys_node_anydata *)node)->when;
must = ((struct lys_node_anydata *)node)->must;
must_size = ((struct lys_node_anydata *)node)->must_size;
break;
case LYS_CASE:
when = ((struct lys_node_case *)node)->when;
break;
case LYS_NOTIF:
must = ((struct lys_node_notif *)node)->must;
must_size = ((struct lys_node_notif *)node)->must_size;
break;
case LYS_INPUT:
case LYS_OUTPUT:
must = ((struct lys_node_inout *)node)->must;
must_size = ((struct lys_node_inout *)node)->must_size;
break;
case LYS_USES:
when = ((struct lys_node_uses *)node)->when;
break;
case LYS_AUGMENT:
when = ((struct lys_node_augment *)node)->when;
break;
default:
/* nothing to check */
break;
}
if (warn_on_fwd_ref) {
/* hide errors, we can print only warnings */
ly_vlog_hide(1);
}
/* check "when" */
if (when) {
resolve_when_ctx_snode(node, &ctx_snode, &ctx_snode_type);
if (lyxp_atomize(when->cond, ctx_snode, ctx_snode_type, &tmp_set, LYXP_SNODE_WHEN | opts)) {
free(tmp_set.val.snodes);
if ((ly_errno != LY_EVALID) || ((ly_vecode != LYVE_XPATH_INSNODE) && (ly_vecode != LYVE_XPATH_INMOD))) {
LOGVAL(LYE_SPEC, LY_VLOG_LYS, node, "Invalid when condition \"%s\".", when->cond);
ret = -1;
goto finish;
} else if (!warn_on_fwd_ref) {
LOGVAL(LYE_SPEC, LY_VLOG_LYS, node, "Invalid when condition \"%s\".", when->cond);
ret = EXIT_FAILURE;
goto finish;
}
ly_vlog_hide(0);
LOGWRN(ly_errmsg());
path = lys_path(node);
LOGWRN("Invalid when condition \"%s\". (%s)", when->cond, path);
free(path);
ly_vlog_hide(1);
ret = EXIT_FAILURE;
memset(&tmp_set, 0, sizeof tmp_set);
} else {
set_snode_merge(set, &tmp_set);
memset(&tmp_set, 0, sizeof tmp_set);
}
}
/* check "must" */
for (i = 0; i < must_size; ++i) {
if (lyxp_atomize(must[i].expr, node, LYXP_NODE_ELEM, &tmp_set, LYXP_SNODE_MUST | opts)) {
free(tmp_set.val.snodes);
if ((ly_errno != LY_EVALID) || (ly_vecode != LYVE_XPATH_INSNODE)) {
LOGVAL(LYE_SPEC, LY_VLOG_LYS, node, "Invalid must restriction \"%s\".", must[i].expr);
ret = -1;
goto finish;
} else if (!warn_on_fwd_ref) {
LOGVAL(LYE_SPEC, LY_VLOG_LYS, node, "Invalid must restriction \"%s\".", must[i].expr);
ret = EXIT_FAILURE;
goto finish;
}
ly_vlog_hide(0);
LOGWRN(ly_errmsg());
path = lys_path(node);
LOGWRN("Invalid must restriction \"%s\". (%s)", must[i].expr, path);
free(path);
ly_vlog_hide(1);
ret = EXIT_FAILURE;
memset(&tmp_set, 0, sizeof tmp_set);
} else {
set_snode_merge(set, &tmp_set);
memset(&tmp_set, 0, sizeof tmp_set);
}
}
finish:
if (warn_on_fwd_ref) {
ly_vlog_hide(0);
}
if (ret) {
free(set->val.snodes);
memset(set, 0, sizeof *set);
}
return ret;
}
int
lyxp_node_check_syntax(const struct lys_node *node)
{
uint8_t must_size = 0;
uint16_t exp_idx;
uint32_t i;
struct lys_when *when = NULL;
struct lys_restr *must = NULL;
struct lyxp_expr *expr;
switch (node->nodetype) {
case LYS_CONTAINER:
when = ((struct lys_node_container *)node)->when;
must = ((struct lys_node_container *)node)->must;
must_size = ((struct lys_node_container *)node)->must_size;
break;
case LYS_CHOICE:
when = ((struct lys_node_choice *)node)->when;
break;
case LYS_LEAF:
when = ((struct lys_node_leaf *)node)->when;
must = ((struct lys_node_leaf *)node)->must;
must_size = ((struct lys_node_leaf *)node)->must_size;
break;
case LYS_LEAFLIST:
when = ((struct lys_node_leaflist *)node)->when;
must = ((struct lys_node_leaflist *)node)->must;
must_size = ((struct lys_node_leaflist *)node)->must_size;
break;
case LYS_LIST:
when = ((struct lys_node_list *)node)->when;
must = ((struct lys_node_list *)node)->must;
must_size = ((struct lys_node_list *)node)->must_size;
break;
case LYS_ANYXML:
case LYS_ANYDATA:
when = ((struct lys_node_anydata *)node)->when;
must = ((struct lys_node_anydata *)node)->must;
must_size = ((struct lys_node_anydata *)node)->must_size;
break;
case LYS_CASE:
when = ((struct lys_node_case *)node)->when;
break;
case LYS_NOTIF:
must = ((struct lys_node_notif *)node)->must;
must_size = ((struct lys_node_notif *)node)->must_size;
break;
case LYS_INPUT:
case LYS_OUTPUT:
must = ((struct lys_node_inout *)node)->must;
must_size = ((struct lys_node_inout *)node)->must_size;
break;
case LYS_USES:
when = ((struct lys_node_uses *)node)->when;
break;
case LYS_AUGMENT:
when = ((struct lys_node_augment *)node)->when;
break;
default:
/* nothing to check */
break;
}
/* check "when" */
if (when) {
expr = lyxp_parse_expr(when->cond);
if (!expr) {
return -1;
}
exp_idx = 0;
if (reparse_expr(expr, &exp_idx)) {
lyxp_expr_free(expr);
return -1;
} else if (exp_idx != expr->used) {
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, print_token(expr->tokens[exp_idx]), &expr->expr[expr->expr_pos[exp_idx]]);
lyxp_expr_free(expr);
return -1;
}
lyxp_expr_free(expr);
}
/* check "must" */
for (i = 0; i < must_size; ++i) {
expr = lyxp_parse_expr(must[i].expr);
if (!expr) {
return -1;
}
exp_idx = 0;
if (reparse_expr(expr, &exp_idx)) {
lyxp_expr_free(expr);
return -1;
} else if (exp_idx != expr->used) {
LOGVAL(LYE_XPATH_INTOK, LY_VLOG_NONE, NULL, print_token(expr->tokens[exp_idx]), &expr->expr[expr->expr_pos[exp_idx]]);
lyxp_expr_free(expr);
return -1;
}
lyxp_expr_free(expr);
}
return 0;
}