blob: e89c1b735673fd9c2007579513cc8186bcdf9fd7 [file] [log] [blame]
/**
* @file tree_schema.c
* @author Radek Krejci <rkrejci@cesnet.cz>
* @brief Schema tree implementation
*
* Copyright (c) 2015 - 2018 CESNET, z.s.p.o.
*
* This source code is licensed under BSD 3-Clause License (the "License").
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://opensource.org/licenses/BSD-3-Clause
*/
#define _GNU_SOURCE
#include <assert.h>
#include <ctype.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common.h"
#include "compat.h"
#include "context.h"
#include "dict.h"
#include "log.h"
#include "path.h"
#include "parser.h"
#include "parser_schema.h"
#include "plugins_exts.h"
#include "plugins_types.h"
#include "plugins_exts_internal.h"
#include "set.h"
#include "tree.h"
#include "tree_data.h"
#include "tree_data_internal.h"
#include "tree_schema.h"
#include "tree_schema_internal.h"
#include "xpath.h"
static LY_ERR lys_compile_ext(struct lysc_ctx *ctx, struct lysp_ext_instance *ext_p, struct lysc_ext_instance *ext,
void *parent, LYEXT_PARENT parent_type, const struct lys_module *ext_mod);
static LY_ERR lysp_qname_dup(const struct ly_ctx *ctx, struct lysp_qname *qname, const struct lysp_qname *orig_qname);
/**
* @brief Duplicate string into dictionary
* @param[in] CTX libyang context of the dictionary.
* @param[in] ORIG String to duplicate.
* @param[out] DUP Where to store the result.
*/
#define DUP_STRING(CTX, ORIG, DUP, RET) if (ORIG) {RET = lydict_insert(CTX, ORIG, 0, &DUP);}
#define DUP_STRING_GOTO(CTX, ORIG, DUP, RET, GOTO) if (ORIG) {LY_CHECK_GOTO(RET = lydict_insert(CTX, ORIG, 0, &DUP), GOTO);}
#define DUP_ARRAY(CTX, ORIG_ARRAY, NEW_ARRAY, DUP_FUNC) \
if (ORIG_ARRAY) { \
LY_ARRAY_COUNT_TYPE u; \
LY_ARRAY_CREATE_RET(CTX, NEW_ARRAY, LY_ARRAY_COUNT(ORIG_ARRAY), LY_EMEM); \
LY_ARRAY_FOR(ORIG_ARRAY, u) { \
LY_ARRAY_INCREMENT(NEW_ARRAY); \
LY_CHECK_RET(DUP_FUNC(CTX, &(NEW_ARRAY)[u], &(ORIG_ARRAY)[u])); \
} \
}
#define COMPILE_ARRAY_GOTO(CTX, ARRAY_P, ARRAY_C, ITER, FUNC, RET, GOTO) \
if (ARRAY_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, LY_ARRAY_COUNT(ARRAY_P), RET, GOTO); \
LY_ARRAY_COUNT_TYPE __array_offset = LY_ARRAY_COUNT(ARRAY_C); \
for (ITER = 0; ITER < LY_ARRAY_COUNT(ARRAY_P); ++ITER) { \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, &(ARRAY_P)[ITER], &(ARRAY_C)[ITER + __array_offset]); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
} \
}
#define COMPILE_OP_ARRAY_GOTO(CTX, ARRAY_P, ARRAY_C, PARENT, ITER, FUNC, USES_STATUS, RET, GOTO) \
if (ARRAY_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, LY_ARRAY_COUNT(ARRAY_P), RET, GOTO); \
LY_ARRAY_COUNT_TYPE __array_offset = LY_ARRAY_COUNT(ARRAY_C); \
for (ITER = 0; ITER < LY_ARRAY_COUNT(ARRAY_P); ++ITER) { \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, &(ARRAY_P)[ITER], PARENT, &(ARRAY_C)[ITER + __array_offset], USES_STATUS); \
if (RET == LY_EDENIED) { \
LY_ARRAY_DECREMENT(ARRAY_C); \
} else if (RET != LY_SUCCESS) { \
goto GOTO; \
} \
} \
}
#define COMPILE_EXTS_GOTO(CTX, EXTS_P, EXT_C, PARENT, PARENT_TYPE, RET, GOTO) \
if (EXTS_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, EXT_C, LY_ARRAY_COUNT(EXTS_P), RET, GOTO); \
for (LY_ARRAY_COUNT_TYPE __exts_iter = 0, __array_offset = LY_ARRAY_COUNT(EXT_C); __exts_iter < LY_ARRAY_COUNT(EXTS_P); ++__exts_iter) { \
LY_ARRAY_INCREMENT(EXT_C); \
RET = lys_compile_ext(CTX, &(EXTS_P)[__exts_iter], &(EXT_C)[__exts_iter + __array_offset], PARENT, PARENT_TYPE, NULL); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
} \
}
#define COMPILE_ARRAY_UNIQUE_GOTO(CTX, ARRAY_P, ARRAY_C, ITER, FUNC, RET, GOTO) \
if (ARRAY_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, LY_ARRAY_COUNT(ARRAY_P), RET, GOTO); \
LY_ARRAY_COUNT_TYPE __array_offset = LY_ARRAY_COUNT(ARRAY_C); \
for (ITER = 0; ITER < LY_ARRAY_COUNT(ARRAY_P); ++ITER) { \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, &(ARRAY_P)[ITER], ARRAY_C, &(ARRAY_C)[ITER + __array_offset]); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
} \
}
#define COMPILE_MEMBER_GOTO(CTX, MEMBER_P, MEMBER_C, FUNC, RET, GOTO) \
if (MEMBER_P) { \
MEMBER_C = calloc(1, sizeof *(MEMBER_C)); \
LY_CHECK_ERR_GOTO(!(MEMBER_C), LOGMEM((CTX)->ctx); RET = LY_EMEM, GOTO); \
RET = FUNC(CTX, MEMBER_P, MEMBER_C); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
}
#define COMPILE_MEMBER_ARRAY_GOTO(CTX, MEMBER_P, ARRAY_C, FUNC, RET, GOTO) \
if (MEMBER_P) { \
LY_ARRAY_CREATE_GOTO((CTX)->ctx, ARRAY_C, 1, RET, GOTO); \
LY_ARRAY_COUNT_TYPE __array_offset = LY_ARRAY_COUNT(ARRAY_C); \
LY_ARRAY_INCREMENT(ARRAY_C); \
RET = FUNC(CTX, MEMBER_P, &(ARRAY_C)[__array_offset]); \
LY_CHECK_GOTO(RET != LY_SUCCESS, GOTO); \
}
#define COMPILE_CHECK_UNIQUENESS_ARRAY(CTX, ARRAY, MEMBER, EXCL, STMT, IDENT) \
if (ARRAY) { \
for (LY_ARRAY_COUNT_TYPE u__ = 0; u__ < LY_ARRAY_COUNT(ARRAY); ++u__) { \
if (&(ARRAY)[u__] != EXCL && (void*)((ARRAY)[u__].MEMBER) == (void*)(IDENT)) { \
LOGVAL((CTX)->ctx, LY_VLOG_STR, (CTX)->path, LY_VCODE_DUPIDENT, IDENT, STMT); \
return LY_EVALID; \
} \
} \
}
#define COMPILE_CHECK_UNIQUENESS_PARRAY(CTX, ARRAY, MEMBER, EXCL, STMT, IDENT) \
if (ARRAY) { \
for (LY_ARRAY_COUNT_TYPE u__ = 0; u__ < LY_ARRAY_COUNT(ARRAY); ++u__) { \
if (&(ARRAY)[u__] != EXCL && (void*)((ARRAY)[u__]->MEMBER) == (void*)(IDENT)) { \
LOGVAL((CTX)->ctx, LY_VLOG_STR, (CTX)->path, LY_VCODE_DUPIDENT, IDENT, STMT); \
return LY_EVALID; \
} \
} \
}
struct lysc_ext *
lysc_ext_dup(struct lysc_ext *orig)
{
++orig->refcount;
return orig;
}
static struct lysc_ext_instance *
lysc_ext_instance_dup(struct ly_ctx *ctx, struct lysc_ext_instance *orig)
{
/* TODO - extensions, increase refcount */
(void) ctx;
(void) orig;
return NULL;
}
/**
* @brief Add/replace a leaf default value in unres.
* Can also be used for a single leaf-list default value.
*
* @param[in] ctx Compile context.
* @param[in] leaf Leaf with the default value.
* @param[in] dflt Default value to use.
* @return LY_ERR value.
*/
static LY_ERR
lysc_unres_leaf_dflt_add(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, struct lysp_qname *dflt)
{
struct lysc_unres_dflt *r = NULL;
uint32_t i;
for (i = 0; i < ctx->dflts.count; ++i) {
if (((struct lysc_unres_dflt *)ctx->dflts.objs[i])->leaf == leaf) {
/* just replace the default */
r = ctx->dflts.objs[i];
lysp_qname_free(ctx->ctx, r->dflt);
free(r->dflt);
break;
}
}
if (!r) {
/* add new unres item */
r = calloc(1, sizeof *r);
LY_CHECK_ERR_RET(!r, LOGMEM(ctx->ctx), LY_EMEM);
r->leaf = leaf;
LY_CHECK_RET(ly_set_add(&ctx->dflts, r, LY_SET_OPT_USEASLIST, NULL));
}
r->dflt = malloc(sizeof *r->dflt);
LY_CHECK_GOTO(!r->dflt, error);
LY_CHECK_GOTO(lysp_qname_dup(ctx->ctx, r->dflt, dflt), error);
return LY_SUCCESS;
error:
free(r->dflt);
LOGMEM(ctx->ctx);
return LY_EMEM;
}
/**
* @brief Add/replace a leaf-list default value(s) in unres.
*
* @param[in] ctx Compile context.
* @param[in] llist Leaf-list with the default value.
* @param[in] dflts Sized array of the default values.
* @return LY_ERR value.
*/
static LY_ERR
lysc_unres_llist_dflts_add(struct lysc_ctx *ctx, struct lysc_node_leaflist *llist, struct lysp_qname *dflts)
{
struct lysc_unres_dflt *r = NULL;
uint32_t i;
for (i = 0; i < ctx->dflts.count; ++i) {
if (((struct lysc_unres_dflt *)ctx->dflts.objs[i])->llist == llist) {
/* just replace the defaults */
r = ctx->dflts.objs[i];
lysp_qname_free(ctx->ctx, r->dflt);
free(r->dflt);
r->dflt = NULL;
FREE_ARRAY(ctx->ctx, r->dflts, lysp_qname_free);
r->dflts = NULL;
break;
}
}
if (!r) {
r = calloc(1, sizeof *r);
LY_CHECK_ERR_RET(!r, LOGMEM(ctx->ctx), LY_EMEM);
r->llist = llist;
LY_CHECK_RET(ly_set_add(&ctx->dflts, r, LY_SET_OPT_USEASLIST, NULL));
}
DUP_ARRAY(ctx->ctx, dflts, r->dflts, lysp_qname_dup);
return LY_SUCCESS;
}
static void
lysc_unres_dflt_free(const struct ly_ctx *ctx, struct lysc_unres_dflt *r)
{
assert(!r->dflt || !r->dflts);
if (r->dflt) {
lysp_qname_free((struct ly_ctx *)ctx, r->dflt);
free(r->dflt);
} else {
FREE_ARRAY((struct ly_ctx *)ctx, r->dflts, lysp_qname_free);
}
free(r);
}
void
lysc_update_path(struct lysc_ctx *ctx, struct lysc_node *parent, const char *name)
{
int len;
uint8_t nextlevel = 0; /* 0 - no starttag, 1 - '/' starttag, 2 - '=' starttag + '}' endtag */
if (!name) {
/* removing last path segment */
if (ctx->path[ctx->path_len - 1] == '}') {
for ( ; ctx->path[ctx->path_len] != '=' && ctx->path[ctx->path_len] != '{'; --ctx->path_len) {}
if (ctx->path[ctx->path_len] == '=') {
ctx->path[ctx->path_len++] = '}';
} else {
/* not a top-level special tag, remove also preceiding '/' */
goto remove_nodelevel;
}
} else {
remove_nodelevel:
for ( ; ctx->path[ctx->path_len] != '/'; --ctx->path_len) {}
if (ctx->path_len == 0) {
/* top-level (last segment) */
ctx->path_len = 1;
}
}
/* set new terminating NULL-byte */
ctx->path[ctx->path_len] = '\0';
} else {
if (ctx->path_len > 1) {
if (!parent && ctx->path[ctx->path_len - 1] == '}' && ctx->path[ctx->path_len - 2] != '\'') {
/* extension of the special tag */
nextlevel = 2;
--ctx->path_len;
} else {
/* there is already some path, so add next level */
nextlevel = 1;
}
} /* else the path is just initiated with '/', so do not add additional slash in case of top-level nodes */
if (nextlevel != 2) {
if ((parent && parent->module == ctx->mod) || (!parent && ctx->path_len > 1 && name[0] == '{')) {
/* module not changed, print the name unprefixed */
len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s", nextlevel ? "/" : "", name);
} else {
len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "%s%s:%s", nextlevel ? "/" : "", ctx->mod->name, name);
}
} else {
len = snprintf(&ctx->path[ctx->path_len], LYSC_CTX_BUFSIZE - ctx->path_len, "='%s'}", name);
}
if (len >= LYSC_CTX_BUFSIZE - (int)ctx->path_len) {
/* output truncated */
ctx->path_len = LYSC_CTX_BUFSIZE - 1;
} else {
ctx->path_len += len;
}
}
}
/**
* @brief Duplicate the compiled pattern structure.
*
* Instead of duplicating memory, the reference counter in the @p orig is increased.
*
* @param[in] orig The pattern structure to duplicate.
* @return The duplicated structure to use.
*/
static struct lysc_pattern *
lysc_pattern_dup(struct lysc_pattern *orig)
{
++orig->refcount;
return orig;
}
/**
* @brief Duplicate the array of compiled patterns.
*
* The sized array itself is duplicated, but the pattern structures are just shadowed by increasing their reference counter.
*
* @param[in] ctx Libyang context for logging.
* @param[in] orig The patterns sized array to duplicate.
* @return New sized array as a copy of @p orig.
* @return NULL in case of memory allocation error.
*/
static struct lysc_pattern **
lysc_patterns_dup(struct ly_ctx *ctx, struct lysc_pattern **orig)
{
struct lysc_pattern **dup = NULL;
LY_ARRAY_COUNT_TYPE u;
assert(orig);
LY_ARRAY_CREATE_RET(ctx, dup, LY_ARRAY_COUNT(orig), NULL);
LY_ARRAY_FOR(orig, u) {
dup[u] = lysc_pattern_dup(orig[u]);
LY_ARRAY_INCREMENT(dup);
}
return dup;
}
/**
* @brief Duplicate compiled range structure.
*
* @param[in] ctx Libyang context for logging.
* @param[in] orig The range structure to be duplicated.
* @return New compiled range structure as a copy of @p orig.
* @return NULL in case of memory allocation error.
*/
struct lysc_range *
lysc_range_dup(struct ly_ctx *ctx, const struct lysc_range *orig)
{
struct lysc_range *dup;
LY_ERR ret;
assert(orig);
dup = calloc(1, sizeof *dup);
LY_CHECK_ERR_RET(!dup, LOGMEM(ctx), NULL);
if (orig->parts) {
LY_ARRAY_CREATE_GOTO(ctx, dup->parts, LY_ARRAY_COUNT(orig->parts), ret, cleanup);
LY_ARRAY_COUNT(dup->parts) = LY_ARRAY_COUNT(orig->parts);
memcpy(dup->parts, orig->parts, LY_ARRAY_COUNT(dup->parts) * sizeof *dup->parts);
}
DUP_STRING_GOTO(ctx, orig->eapptag, dup->eapptag, ret, cleanup);
DUP_STRING_GOTO(ctx, orig->emsg, dup->emsg, ret, cleanup);
dup->exts = lysc_ext_instance_dup(ctx, orig->exts);
return dup;
cleanup:
free(dup);
(void) ret; /* set but not used due to the return type */
return NULL;
}
/**
* @brief Stack for processing if-feature expressions.
*/
struct iff_stack {
size_t size; /**< number of items in the stack */
size_t index; /**< first empty item */
uint8_t *stack; /**< stack - array of @ref ifftokens to create the if-feature expression in prefix format */
};
/**
* @brief Add @ref ifftokens into the stack.
* @param[in] stack The if-feature stack to use.
* @param[in] value One of the @ref ifftokens to store in the stack.
* @return LY_EMEM in case of memory allocation error
* @return LY_ESUCCESS if the value successfully stored.
*/
static LY_ERR
iff_stack_push(struct iff_stack *stack, uint8_t value)
{
if (stack->index == stack->size) {
stack->size += 4;
stack->stack = ly_realloc(stack->stack, stack->size * sizeof *stack->stack);
LY_CHECK_ERR_RET(!stack->stack, LOGMEM(NULL); stack->size = 0, LY_EMEM);
}
stack->stack[stack->index++] = value;
return LY_SUCCESS;
}
/**
* @brief Get (and remove) the last item form the stack.
* @param[in] stack The if-feature stack to use.
* @return The value from the top of the stack.
*/
static uint8_t
iff_stack_pop(struct iff_stack *stack)
{
assert(stack && stack->index);
stack->index--;
return stack->stack[stack->index];
}
/**
* @brief Clean up the stack.
* @param[in] stack The if-feature stack to use.
*/
static void
iff_stack_clean(struct iff_stack *stack)
{
stack->size = 0;
free(stack->stack);
}
/**
* @brief Store the @ref ifftokens (@p op) on the given position in the 2bits array
* (libyang format of the if-feature expression).
* @param[in,out] list The 2bits array to modify.
* @param[in] op The operand (@ref ifftokens) to store.
* @param[in] pos Position (0-based) where to store the given @p op.
*/
static void
iff_setop(uint8_t *list, uint8_t op, size_t pos)
{
uint8_t *item;
uint8_t mask = 3;
assert(op <= 3); /* max 2 bits */
item = &list[pos / 4];
mask = mask << 2 * (pos % 4);
*item = (*item) & ~mask;
*item = (*item) | (op << 2 * (pos % 4));
}
#define LYS_IFF_LP 0x04 /**< Additional, temporary, value of @ref ifftokens: ( */
#define LYS_IFF_RP 0x08 /**< Additional, temporary, value of @ref ifftokens: ) */
/**
* @brief Find a feature of the given name and referenced in the given module.
*
* If the compiled schema is available (the schema is implemented), the feature from the compiled schema is
* returned. Otherwise, the special array of pre-compiled features is used to search for the feature. Such
* features are always disabled (feature from not implemented schema cannot be enabled), but in case the schema
* will be made implemented in future (no matter if implicitly via augmenting/deviating it or explicitly via
* ly_ctx_module_implement()), the compilation of these feature structure is finished, but the pointers
* assigned till that time will be still valid.
*
* @param[in] mod Module where the feature was referenced (used to resolve prefix of the feature).
* @param[in] name Name of the feature including possible prefix.
* @param[in] len Length of the string representing the feature identifier in the name variable (mandatory!).
* @return Pointer to the feature structure if found, NULL otherwise.
*/
static struct lysc_feature *
lys_feature_find(const struct lys_module *mod, const char *name, size_t len)
{
size_t i;
LY_ARRAY_COUNT_TYPE u;
struct lysc_feature *f;
assert(mod);
for (i = 0; i < len; ++i) {
if (name[i] == ':') {
/* we have a prefixed feature */
mod = lys_module_find_prefix(mod, name, i);
LY_CHECK_RET(!mod, NULL);
name = &name[i + 1];
len = len - i - 1;
}
}
/* we have the correct module, get the feature */
LY_ARRAY_FOR(mod->features, u) {
f = &mod->features[u];
if (!ly_strncmp(f->name, name, len)) {
return f;
}
}
return NULL;
}
/**
* @brief Fill in the prepared compiled extensions definition structure according to the parsed extension definition.
*/
static LY_ERR
lys_compile_extension(struct lysc_ctx *ctx, const struct lys_module *ext_mod, struct lysp_ext *ext_p, struct lysc_ext **ext)
{
LY_ERR ret = LY_SUCCESS;
if (!ext_p->compiled) {
lysc_update_path(ctx, NULL, "{extension}");
lysc_update_path(ctx, NULL, ext_p->name);
/* compile the extension definition */
ext_p->compiled = calloc(1, sizeof **ext);
ext_p->compiled->refcount = 1;
DUP_STRING_GOTO(ctx->ctx, ext_p->name, ext_p->compiled->name, ret, done);
DUP_STRING_GOTO(ctx->ctx, ext_p->argument, ext_p->compiled->argument, ret, done);
ext_p->compiled->module = (struct lys_module *)ext_mod;
COMPILE_EXTS_GOTO(ctx, ext_p->exts, ext_p->compiled->exts, *ext, LYEXT_PAR_EXT, ret, done);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
/* find extension definition plugin */
ext_p->compiled->plugin = lyext_get_plugin(ext_p->compiled);
}
*ext = lysc_ext_dup(ext_p->compiled);
done:
return ret;
}
/**
* @brief Fill in the prepared compiled extension instance structure according to the parsed extension instance.
*
* @param[in] ctx Compilation context.
* @param[in] ext_p Parsed extension instance.
* @param[in,out] ext Prepared compiled extension instance.
* @param[in] parent Extension instance parent.
* @param[in] parent_type Extension instance parent type.
* @param[in] ext_mod Optional module with the extension instance extension definition, set only for internal annotations.
*/
static LY_ERR
lys_compile_ext(struct lysc_ctx *ctx, struct lysp_ext_instance *ext_p, struct lysc_ext_instance *ext, void *parent,
LYEXT_PARENT parent_type, const struct lys_module *ext_mod)
{
LY_ERR ret = LY_SUCCESS;
const char *name;
size_t u;
LY_ARRAY_COUNT_TYPE v;
const char *prefixed_name = NULL;
DUP_STRING(ctx->ctx, ext_p->argument, ext->argument, ret);
LY_CHECK_RET(ret);
ext->insubstmt = ext_p->insubstmt;
ext->insubstmt_index = ext_p->insubstmt_index;
ext->module = ctx->mod_def;
ext->parent = parent;
ext->parent_type = parent_type;
lysc_update_path(ctx, ext->parent_type == LYEXT_PAR_NODE ? (struct lysc_node *)ext->parent : NULL, "{extension}");
/* get module where the extension definition should be placed */
for (u = strlen(ext_p->name); u && ext_p->name[u - 1] != ':'; --u) {}
if (ext_p->yin) {
/* YIN parser has to replace prefixes by the namespace - XML namespace/prefix pairs may differs form the YANG schema's
* namespace/prefix pair. YIN parser does not have the imports available, so mapping from XML namespace to the
* YANG (import) prefix must be done here. */
if (!ly_strncmp(ctx->mod_def->ns, ext_p->name, u - 1)) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, &ext_p->name[u], 0, &prefixed_name), cleanup);
u = 0;
} else {
assert(ctx->mod_def->parsed);
LY_ARRAY_FOR(ctx->mod_def->parsed->imports, v) {
if (!ly_strncmp(ctx->mod_def->parsed->imports[v].module->ns, ext_p->name, u - 1)) {
char *s;
LY_CHECK_ERR_GOTO(asprintf(&s, "%s:%s", ctx->mod_def->parsed->imports[v].prefix, &ext_p->name[u]) == -1,
ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lydict_insert_zc(ctx->ctx, s, &prefixed_name), cleanup);
u = strlen(ctx->mod_def->parsed->imports[v].prefix) + 1; /* add semicolon */
break;
}
}
}
if (!prefixed_name) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid XML prefix of \"%.*s\" namespace used for extension instance identifier.", u, ext_p->name);
ret = LY_EVALID;
goto cleanup;
}
} else {
prefixed_name = ext_p->name;
}
lysc_update_path(ctx, NULL, prefixed_name);
if (!ext_mod) {
ext_mod = u ? lys_module_find_prefix(ctx->mod_def, prefixed_name, u - 1) : ctx->mod_def;
if (!ext_mod) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid prefix \"%.*s\" used for extension instance identifier.", u, prefixed_name);
ret = LY_EVALID;
goto cleanup;
} else if (!ext_mod->parsed->extensions) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Extension instance \"%s\" refers \"%s\" module that does not contain extension definitions.",
prefixed_name, ext_mod->name);
ret = LY_EVALID;
goto cleanup;
}
}
name = &prefixed_name[u];
/* find the parsed extension definition there */
LY_ARRAY_FOR(ext_mod->parsed->extensions, v) {
if (!strcmp(name, ext_mod->parsed->extensions[v].name)) {
/* compile extension definition and assign it */
LY_CHECK_GOTO(ret = lys_compile_extension(ctx, ext_mod, &ext_mod->parsed->extensions[v], &ext->def), cleanup);
break;
}
}
if (!ext->def) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Extension definition of extension instance \"%s\" not found.", prefixed_name);
ret = LY_EVALID;
goto cleanup;
}
/* unify the parsed extension from YIN and YANG sources. Without extension definition, it is not possible
* to get extension's argument from YIN source, so it is stored as one of the substatements. Here we have
* to find it, mark it with LYS_YIN_ARGUMENT and store it in the compiled structure. */
if (ext_p->yin && ext->def->argument && !ext->argument) {
/* Schema was parsed from YIN and an argument is expected, ... */
struct lysp_stmt *stmt = NULL;
if (ext->def->flags & LYS_YINELEM_TRUE) {
/* ... argument was the first XML child element */
if (ext_p->child && !(ext_p->child->flags & LYS_YIN_ATTR)) {
/* TODO check namespace of the statement */
if (!strcmp(ext_p->child->stmt, ext->def->argument)) {
stmt = ext_p->child;
}
}
} else {
/* ... argument was one of the XML attributes which are represented as child stmt
* with LYS_YIN_ATTR flag */
for (stmt = ext_p->child; stmt && (stmt->flags & LYS_YIN_ATTR); stmt = stmt->next) {
if (!strcmp(stmt->stmt, ext->def->argument)) {
/* this is the extension's argument */
break;
}
}
}
if (!stmt) {
/* missing extension's argument */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Extension instance \"%s\" misses argument \"%s\".", prefixed_name, ext->def->argument);
ret = LY_EVALID;
goto cleanup;
}
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, stmt->arg, 0, &ext->argument), cleanup);
stmt->flags |= LYS_YIN_ARGUMENT;
}
if (prefixed_name != ext_p->name) {
lydict_remove(ctx->ctx, ext_p->name);
ext_p->name = prefixed_name;
if (!ext_p->argument && ext->argument) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, ext->argument, 0, &ext_p->argument), cleanup);
}
}
if (ext->def->plugin && ext->def->plugin->compile) {
if (ext->argument) {
lysc_update_path(ctx, (struct lysc_node *)ext, ext->argument);
}
LY_CHECK_GOTO(ret = ext->def->plugin->compile(ctx, ext_p, ext), cleanup);
if (ext->argument) {
lysc_update_path(ctx, NULL, NULL);
}
}
ext_p->compiled = ext;
cleanup:
if (prefixed_name && prefixed_name != ext_p->name) {
lydict_remove(ctx->ctx, prefixed_name);
}
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
return ret;
}
/**
* @brief Compile information from the if-feature statement
* @param[in] ctx Compile context.
* @param[in] qname The if-feature argument to process. It is pointer-to-qname just to unify the compile functions.
* @param[in,out] iff Prepared (empty) compiled if-feature structure to fill.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_iffeature(struct lysc_ctx *ctx, struct lysp_qname *qname, struct lysc_iffeature *iff)
{
LY_ERR rc = LY_SUCCESS;
const char *c = qname->str;
int64_t i, j;
int8_t op_len, last_not = 0, checkversion = 0;
LY_ARRAY_COUNT_TYPE f_size = 0, expr_size = 0, f_exp = 1;
uint8_t op;
struct iff_stack stack = {0, 0, NULL};
struct lysc_feature *f;
assert(c);
/* pre-parse the expression to get sizes for arrays, also do some syntax checks of the expression */
for (i = j = 0; c[i]; i++) {
if (c[i] == '(') {
j++;
checkversion = 1;
continue;
} else if (c[i] == ')') {
j--;
continue;
} else if (isspace(c[i])) {
checkversion = 1;
continue;
}
if (!strncmp(&c[i], "not", op_len = 3) || !strncmp(&c[i], "and", op_len = 3) || !strncmp(&c[i], "or", op_len = 2)) {
uint64_t spaces;
for (spaces = 0; c[i + op_len + spaces] && isspace(c[i + op_len + spaces]); spaces++);
if (c[i + op_len + spaces] == '\0') {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - unexpected end of expression.", qname->str);
return LY_EVALID;
} else if (!isspace(c[i + op_len])) {
/* feature name starting with the not/and/or */
last_not = 0;
f_size++;
} else if (c[i] == 'n') { /* not operation */
if (last_not) {
/* double not */
expr_size = expr_size - 2;
last_not = 0;
} else {
last_not = 1;
}
} else { /* and, or */
if (f_exp != f_size) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - missing feature/expression before \"%.*s\" operation.",
qname->str, op_len, &c[i]);
return LY_EVALID;
}
f_exp++;
/* not a not operation */
last_not = 0;
}
i += op_len;
} else {
f_size++;
last_not = 0;
}
expr_size++;
while (!isspace(c[i])) {
if (!c[i] || c[i] == ')' || c[i] == '(') {
i--;
break;
}
i++;
}
}
if (j) {
/* not matching count of ( and ) */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - non-matching opening and closing parentheses.", qname->str);
return LY_EVALID;
}
if (f_exp != f_size) {
/* features do not match the needed arguments for the logical operations */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - number of features in expression does not match "
"the required number of operands for the operations.", qname->str);
return LY_EVALID;
}
if (checkversion || expr_size > 1) {
/* check that we have 1.1 module */
if (qname->mod->version != LYS_VERSION_1_1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - YANG 1.1 expression in YANG 1.0 module.", qname->str);
return LY_EVALID;
}
}
/* allocate the memory */
LY_ARRAY_CREATE_RET(ctx->ctx, iff->features, f_size, LY_EMEM);
iff->expr = calloc((j = (expr_size / 4) + ((expr_size % 4) ? 1 : 0)), sizeof *iff->expr);
stack.stack = malloc(expr_size * sizeof *stack.stack);
LY_CHECK_ERR_GOTO(!stack.stack || !iff->expr, LOGMEM(ctx->ctx); rc = LY_EMEM, error);
stack.size = expr_size;
f_size--; expr_size--; /* used as indexes from now */
for (i--; i >= 0; i--) {
if (c[i] == ')') {
/* push it on stack */
iff_stack_push(&stack, LYS_IFF_RP);
continue;
} else if (c[i] == '(') {
/* pop from the stack into result all operators until ) */
while ((op = iff_stack_pop(&stack)) != LYS_IFF_RP) {
iff_setop(iff->expr, op, expr_size--);
}
continue;
} else if (isspace(c[i])) {
continue;
}
/* end of operator or operand -> find beginning and get what is it */
j = i + 1;
while (i >= 0 && !isspace(c[i]) && c[i] != '(') {
i--;
}
i++; /* go back by one step */
if (!strncmp(&c[i], "not", 3) && isspace(c[i + 3])) {
if (stack.index && stack.stack[stack.index - 1] == LYS_IFF_NOT) {
/* double not */
iff_stack_pop(&stack);
} else {
/* not has the highest priority, so do not pop from the stack
* as in case of AND and OR */
iff_stack_push(&stack, LYS_IFF_NOT);
}
} else if (!strncmp(&c[i], "and", 3) && isspace(c[i + 3])) {
/* as for OR - pop from the stack all operators with the same or higher
* priority and store them to the result, then push the AND to the stack */
while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_AND) {
op = iff_stack_pop(&stack);
iff_setop(iff->expr, op, expr_size--);
}
iff_stack_push(&stack, LYS_IFF_AND);
} else if (!strncmp(&c[i], "or", 2) && isspace(c[i + 2])) {
while (stack.index && stack.stack[stack.index - 1] <= LYS_IFF_OR) {
op = iff_stack_pop(&stack);
iff_setop(iff->expr, op, expr_size--);
}
iff_stack_push(&stack, LYS_IFF_OR);
} else {
/* feature name, length is j - i */
/* add it to the expression */
iff_setop(iff->expr, LYS_IFF_F, expr_size--);
/* now get the link to the feature definition */
f = lys_feature_find(qname->mod, &c[i], j - i);
LY_CHECK_ERR_GOTO(!f, LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - unable to find feature \"%.*s\".", qname->str, j - i, &c[i]);
rc = LY_EVALID, error)
iff->features[f_size] = f;
LY_ARRAY_INCREMENT(iff->features);
f_size--;
}
}
while (stack.index) {
op = iff_stack_pop(&stack);
iff_setop(iff->expr, op, expr_size--);
}
if (++expr_size || ++f_size) {
/* not all expected operators and operands found */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid value \"%s\" of if-feature - processing error.", qname->str);
rc = LY_EINT;
} else {
rc = LY_SUCCESS;
}
error:
/* cleanup */
iff_stack_clean(&stack);
return rc;
}
/**
* @brief Get the XPath context node for the given schema node.
* @param[in] start The schema node where the XPath expression appears.
* @return The context node to evaluate XPath expression in given schema node.
* @return NULL in case the context node is the root node.
*/
static struct lysc_node *
lysc_xpath_context(struct lysc_node *start)
{
for (; start && !(start->nodetype & (LYS_CONTAINER | LYS_LEAF | LYS_LEAFLIST | LYS_LIST | LYS_ANYDATA | LYS_RPC | LYS_ACTION | LYS_NOTIF));
start = start->parent) {}
return start;
}
/**
* @brief Compile information from the when statement
* @param[in] ctx Compile context.
* @param[in] when_p The parsed when statement structure.
* @param[in] flags Flags of the node with the "when" defiition.
* @param[in] node Node that inherited the "when" definition, must be connected to parents.
* @param[out] when Pointer where to store pointer to the created compiled when structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_when(struct lysc_ctx *ctx, struct lysp_when *when_p, uint16_t flags, struct lysc_node *node, struct lysc_when **when)
{
LY_ERR ret = LY_SUCCESS;
*when = calloc(1, sizeof **when);
LY_CHECK_ERR_RET(!(*when), LOGMEM(ctx->ctx), LY_EMEM);
(*when)->refcount = 1;
LY_CHECK_RET(lyxp_expr_parse(ctx->ctx, when_p->cond, 0, 1, &(*when)->cond));
(*when)->module = ctx->mod_def;
(*when)->context = lysc_xpath_context(node);
DUP_STRING_GOTO(ctx->ctx, when_p->dsc, (*when)->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, when_p->ref, (*when)->ref, ret, done);
COMPILE_EXTS_GOTO(ctx, when_p->exts, (*when)->exts, (*when), LYEXT_PAR_WHEN, ret, done);
(*when)->flags = flags & LYS_STATUS_MASK;
done:
return ret;
}
/**
* @brief Compile information from the must statement
* @param[in] ctx Compile context.
* @param[in] must_p The parsed must statement structure.
* @param[in,out] must Prepared (empty) compiled must structure to fill.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_must(struct lysc_ctx *ctx, struct lysp_restr *must_p, struct lysc_must *must)
{
LY_ERR ret = LY_SUCCESS;
LY_CHECK_RET(lyxp_expr_parse(ctx->ctx, must_p->arg.str, 0, 1, &must->cond));
must->module = (struct lys_module *)must_p->arg.mod;
DUP_STRING_GOTO(ctx->ctx, must_p->eapptag, must->eapptag, ret, done);
DUP_STRING_GOTO(ctx->ctx, must_p->emsg, must->emsg, ret, done);
DUP_STRING_GOTO(ctx->ctx, must_p->dsc, must->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, must_p->ref, must->ref, ret, done);
COMPILE_EXTS_GOTO(ctx, must_p->exts, must->exts, must, LYEXT_PAR_MUST, ret, done);
done:
return ret;
}
/**
* @brief Compile information in the import statement - make sure there is the target module
* @param[in] ctx Compile context.
* @param[in] imp_p The parsed import statement structure to fill the module to.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_import(struct lysc_ctx *ctx, struct lysp_import *imp_p)
{
const struct lys_module *mod = NULL;
LY_ERR ret = LY_SUCCESS;
/* make sure that we have the parsed version (lysp_) of the imported module to import groupings or typedefs.
* The compiled version is needed only for augments, deviates and leafrefs, so they are checked (and added,
* if needed) when these nodes are finally being instantiated and validated at the end of schema compilation. */
if (!imp_p->module->parsed) {
/* try to use filepath if present */
if (imp_p->module->filepath) {
struct ly_in *in;
if (ly_in_new_filepath(imp_p->module->filepath, 0, &in)) {
LOGINT(ctx->ctx);
} else {
LY_CHECK_RET(lys_parse(ctx->ctx, in, !strcmp(&imp_p->module->filepath[strlen(imp_p->module->filepath - 4)],
".yin") ? LYS_IN_YIN : LYS_IN_YANG, &mod));
if (mod != imp_p->module) {
LOGERR(ctx->ctx, LY_EINT, "Filepath \"%s\" of the module \"%s\" does not match.",
imp_p->module->filepath, imp_p->module->name);
mod = NULL;
}
}
ly_in_free(in, 1);
}
if (!mod) {
if (lysp_load_module(ctx->ctx, imp_p->module->name, imp_p->module->revision, 0, 1, (struct lys_module **)&mod)) {
LOGERR(ctx->ctx, LY_ENOTFOUND, "Unable to reload \"%s\" module to import it into \"%s\", source data not found.",
imp_p->module->name, ctx->mod->name);
return LY_ENOTFOUND;
}
}
}
return ret;
}
LY_ERR
lys_identity_precompile(struct lysc_ctx *ctx_sc, struct ly_ctx *ctx, struct lys_module *module,
struct lysp_ident *identities_p, struct lysc_ident **identities)
{
LY_ARRAY_COUNT_TYPE offset = 0, u, v;
struct lysc_ctx context = {0};
LY_ERR ret = LY_SUCCESS;
assert(ctx_sc || ctx);
if (!ctx_sc) {
context.ctx = ctx;
context.mod = module;
context.mod_def = module;
context.path_len = 1;
context.path[0] = '/';
ctx_sc = &context;
}
if (!identities_p) {
return LY_SUCCESS;
}
if (*identities) {
offset = LY_ARRAY_COUNT(*identities);
}
lysc_update_path(ctx_sc, NULL, "{identity}");
LY_ARRAY_CREATE_RET(ctx_sc->ctx, *identities, LY_ARRAY_COUNT(identities_p), LY_EMEM);
LY_ARRAY_FOR(identities_p, u) {
lysc_update_path(ctx_sc, NULL, identities_p[u].name);
LY_ARRAY_INCREMENT(*identities);
COMPILE_CHECK_UNIQUENESS_ARRAY(ctx_sc, *identities, name, &(*identities)[offset + u], "identity", identities_p[u].name);
DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].name, (*identities)[offset + u].name, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].dsc, (*identities)[offset + u].dsc, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, identities_p[u].ref, (*identities)[offset + u].ref, ret, done);
(*identities)[offset + u].module = ctx_sc->mod;
COMPILE_ARRAY_GOTO(ctx_sc, identities_p[u].iffeatures, (*identities)[offset + u].iffeatures, v,
lys_compile_iffeature, ret, done);
/* backlinks (derived) can be added no sooner than when all the identities in the current module are present */
COMPILE_EXTS_GOTO(ctx_sc, identities_p[u].exts, (*identities)[offset + u].exts, &(*identities)[offset + u],
LYEXT_PAR_IDENT, ret, done);
(*identities)[offset + u].flags = identities_p[u].flags;
lysc_update_path(ctx_sc, NULL, NULL);
}
lysc_update_path(ctx_sc, NULL, NULL);
done:
return ret;
}
/**
* @brief Check circular dependency of identities - identity MUST NOT reference itself (via their base statement).
*
* The function works in the same way as lys_compile_feature_circular_check() with different structures and error messages.
*
* @param[in] ctx Compile context for logging.
* @param[in] ident The base identity (its derived list is being extended by the identity being currently processed).
* @param[in] derived The list of derived identities of the identity being currently processed (not the one provided as @p ident)
* @return LY_SUCCESS if everything is ok.
* @return LY_EVALID if the identity is derived from itself.
*/
static LY_ERR
lys_compile_identity_circular_check(struct lysc_ctx *ctx, struct lysc_ident *ident, struct lysc_ident **derived)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v;
struct ly_set recursion = {0};
struct lysc_ident *drv;
if (!derived) {
return LY_SUCCESS;
}
for (u = 0; u < LY_ARRAY_COUNT(derived); ++u) {
if (ident == derived[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Identity \"%s\" is indirectly derived from itself.", ident->name);
ret = LY_EVALID;
goto cleanup;
}
ret = ly_set_add(&recursion, derived[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
for (v = 0; v < recursion.count; ++v) {
drv = recursion.objs[v];
if (!drv->derived) {
continue;
}
for (u = 0; u < LY_ARRAY_COUNT(drv->derived); ++u) {
if (ident == drv->derived[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Identity \"%s\" is indirectly derived from itself.", ident->name);
ret = LY_EVALID;
goto cleanup;
}
ret = ly_set_add(&recursion, drv->derived[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
ly_set_erase(&recursion, NULL);
return ret;
}
/**
* @brief Find and process the referenced base identities from another identity or identityref
*
* For bases in identity set backlinks to them from the base identities. For identityref, store
* the array of pointers to the base identities. So one of the ident or bases parameter must be set
* to distinguish these two use cases.
*
* @param[in] ctx Compile context, not only for logging but also to get the current module to resolve prefixes.
* @param[in] bases_p Array of names (including prefix if necessary) of base identities.
* @param[in] ident Referencing identity to work with, NULL for identityref.
* @param[in] bases Array of bases of identityref to fill in.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_identity_bases(struct lysc_ctx *ctx, struct lys_module *context_module, const char **bases_p,
struct lysc_ident *ident, struct lysc_ident ***bases)
{
LY_ARRAY_COUNT_TYPE u, v;
const char *s, *name;
struct lys_module *mod;
struct lysc_ident **idref;
assert(ident || bases);
if (LY_ARRAY_COUNT(bases_p) > 1 && ctx->mod_def->version < 2) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Multiple bases in %s are allowed only in YANG 1.1 modules.", ident ? "identity" : "identityref type");
return LY_EVALID;
}
LY_ARRAY_FOR(bases_p, u) {
s = strchr(bases_p[u], ':');
if (s) {
/* prefixed identity */
name = &s[1];
mod = lys_module_find_prefix(context_module, bases_p[u], s - bases_p[u]);
} else {
name = bases_p[u];
mod = context_module;
}
if (!mod) {
if (ident) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid prefix used for base (%s) of identity \"%s\".", bases_p[u], ident->name);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid prefix used for base (%s) of identityref.", bases_p[u]);
}
return LY_EVALID;
}
idref = NULL;
LY_ARRAY_FOR(mod->identities, v) {
if (!strcmp(name, mod->identities[v].name)) {
if (ident) {
if (ident == &mod->identities[v]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Identity \"%s\" is derived from itself.", ident->name);
return LY_EVALID;
}
LY_CHECK_RET(lys_compile_identity_circular_check(ctx, &mod->identities[v], ident->derived));
/* we have match! store the backlink */
LY_ARRAY_NEW_RET(ctx->ctx, mod->identities[v].derived, idref, LY_EMEM);
*idref = ident;
} else {
/* we have match! store the found identity */
LY_ARRAY_NEW_RET(ctx->ctx, *bases, idref, LY_EMEM);
*idref = &mod->identities[v];
}
break;
}
}
if (!idref || !(*idref)) {
if (ident) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Unable to find base (%s) of identity \"%s\".", bases_p[u], ident->name);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Unable to find base (%s) of identityref.", bases_p[u]);
}
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief For the given array of identities, set the backlinks from all their base identities.
* @param[in] ctx Compile context, not only for logging but also to get the current module to resolve prefixes.
* @param[in] idents_p Array of identities definitions from the parsed schema structure.
* @param[in] idents Array of referencing identities to which the backlinks are supposed to be set.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_identities_derived(struct lysc_ctx *ctx, struct lysp_ident *idents_p, struct lysc_ident *idents)
{
LY_ARRAY_COUNT_TYPE u;
lysc_update_path(ctx, NULL, "{identity}");
for (u = 0; u < LY_ARRAY_COUNT(idents_p); ++u) {
if (!idents_p[u].bases) {
continue;
}
lysc_update_path(ctx, NULL, idents[u].name);
LY_CHECK_RET(lys_compile_identity_bases(ctx, idents[u].module, idents_p[u].bases, &idents[u], NULL));
lysc_update_path(ctx, NULL, NULL);
}
lysc_update_path(ctx, NULL, NULL);
return LY_SUCCESS;
}
LY_ERR
lys_feature_precompile(struct lysc_ctx *ctx_sc, struct ly_ctx *ctx, struct lys_module *module,
struct lysp_feature *features_p, struct lysc_feature **features)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE offset = 0, u;
struct lysc_ctx context = {0};
assert(ctx_sc || ctx);
if (!ctx_sc) {
context.ctx = ctx;
context.mod = module;
context.path_len = 1;
context.path[0] = '/';
ctx_sc = &context;
}
if (!features_p) {
return LY_SUCCESS;
}
if (*features) {
offset = LY_ARRAY_COUNT(*features);
}
lysc_update_path(ctx_sc, NULL, "{feature}");
LY_ARRAY_CREATE_RET(ctx_sc->ctx, *features, LY_ARRAY_COUNT(features_p), LY_EMEM);
LY_ARRAY_FOR(features_p, u) {
lysc_update_path(ctx_sc, NULL, features_p[u].name);
LY_ARRAY_INCREMENT(*features);
COMPILE_CHECK_UNIQUENESS_ARRAY(ctx_sc, *features, name, &(*features)[offset + u], "feature", features_p[u].name);
DUP_STRING_GOTO(ctx_sc->ctx, features_p[u].name, (*features)[offset + u].name, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, features_p[u].dsc, (*features)[offset + u].dsc, ret, done);
DUP_STRING_GOTO(ctx_sc->ctx, features_p[u].ref, (*features)[offset + u].ref, ret, done);
(*features)[offset + u].flags = features_p[u].flags;
(*features)[offset + u].module = ctx_sc->mod;
lysc_update_path(ctx_sc, NULL, NULL);
}
lysc_update_path(ctx_sc, NULL, NULL);
done:
return ret;
}
/**
* @brief Check circular dependency of features - feature MUST NOT reference itself (via their if-feature statement).
*
* The function works in the same way as lys_compile_identity_circular_check() with different structures and error messages.
*
* @param[in] ctx Compile context for logging.
* @param[in] feature The feature referenced in if-feature statement (its depfeatures list is being extended by the feature
* being currently processed).
* @param[in] depfeatures The list of depending features of the feature being currently processed (not the one provided as @p feature)
* @return LY_SUCCESS if everything is ok.
* @return LY_EVALID if the feature references indirectly itself.
*/
static LY_ERR
lys_compile_feature_circular_check(struct lysc_ctx *ctx, struct lysc_feature *feature, struct lysc_feature **depfeatures)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v;
struct ly_set recursion = {0};
struct lysc_feature *drv;
if (!depfeatures) {
return LY_SUCCESS;
}
for (u = 0; u < LY_ARRAY_COUNT(depfeatures); ++u) {
if (feature == depfeatures[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Feature \"%s\" is indirectly referenced from itself.", feature->name);
ret = LY_EVALID;
goto cleanup;
}
ret = ly_set_add(&recursion, depfeatures[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
for (v = 0; v < recursion.count; ++v) {
drv = recursion.objs[v];
if (!drv->depfeatures) {
continue;
}
for (u = 0; u < LY_ARRAY_COUNT(drv->depfeatures); ++u) {
if (feature == drv->depfeatures[u]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Feature \"%s\" is indirectly referenced from itself.", feature->name);
ret = LY_EVALID;
goto cleanup;
}
ly_set_add(&recursion, drv->depfeatures[u], 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
cleanup:
ly_set_erase(&recursion, NULL);
return ret;
}
/**
* @brief Create pre-compiled features array.
*
* See lys_feature_precompile() for more details.
*
* @param[in] ctx Compile context.
* @param[in] feature_p Parsed feature definition to compile.
* @param[in,out] features List of already (pre)compiled features to find the corresponding precompiled feature structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_feature_precompile_finish(struct lysc_ctx *ctx, struct lysp_feature *feature_p, struct lysc_feature *features)
{
LY_ARRAY_COUNT_TYPE u, v, x;
struct lysc_feature *feature, **df;
LY_ERR ret = LY_SUCCESS;
/* find the preprecompiled feature */
LY_ARRAY_FOR(features, x) {
if (strcmp(features[x].name, feature_p->name)) {
continue;
}
feature = &features[x];
lysc_update_path(ctx, NULL, "{feature}");
lysc_update_path(ctx, NULL, feature_p->name);
/* finish compilation started in lys_feature_precompile() */
COMPILE_EXTS_GOTO(ctx, feature_p->exts, feature->exts, feature, LYEXT_PAR_FEATURE, ret, done);
COMPILE_ARRAY_GOTO(ctx, feature_p->iffeatures, feature->iffeatures, u, lys_compile_iffeature, ret, done);
if (feature->iffeatures) {
for (u = 0; u < LY_ARRAY_COUNT(feature->iffeatures); ++u) {
if (feature->iffeatures[u].features) {
for (v = 0; v < LY_ARRAY_COUNT(feature->iffeatures[u].features); ++v) {
/* check for circular dependency - direct reference first,... */
if (feature == feature->iffeatures[u].features[v]) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Feature \"%s\" is referenced from itself.", feature->name);
return LY_EVALID;
}
/* ... and indirect circular reference */
LY_CHECK_RET(lys_compile_feature_circular_check(ctx, feature->iffeatures[u].features[v], feature->depfeatures));
/* add itself into the dependants list */
LY_ARRAY_NEW_RET(ctx->ctx, feature->iffeatures[u].features[v]->depfeatures, df, LY_EMEM);
*df = feature;
}
}
}
}
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
done:
return ret;
}
LOGINT(ctx->ctx);
return LY_EINT;
}
/**
* @brief Revert compiled list of features back to the precompiled state.
*
* Function is needed in case the compilation failed and the schema is expected to revert back to the non-compiled status.
*
* @param[in] ctx Compilation context.
* @param[in] mod The module structure with the features to decompile.
*/
static void
lys_feature_precompile_revert(struct lysc_ctx *ctx, struct lys_module *mod)
{
LY_ARRAY_COUNT_TYPE u, v;
/* in the dis_features list, remove all the parts (from finished compiling process)
* which may points into the data being freed here */
LY_ARRAY_FOR(mod->features, u) {
LY_ARRAY_FOR(mod->features[u].iffeatures, v) {
lysc_iffeature_free(ctx->ctx, &mod->features[u].iffeatures[v]);
}
LY_ARRAY_FREE(mod->features[u].iffeatures);
mod->features[u].iffeatures = NULL;
LY_ARRAY_FOR(mod->features[u].exts, v) {
lysc_ext_instance_free(ctx->ctx, &(mod->features[u].exts)[v]);
}
LY_ARRAY_FREE(mod->features[u].exts);
mod->features[u].exts = NULL;
}
}
/**
* @brief Validate and normalize numeric value from a range definition.
* @param[in] ctx Compile context.
* @param[in] basetype Base YANG built-in type of the node connected with the range restriction. Actually only LY_TYPE_DEC64 is important to
* allow processing of the fractions. The fraction point is extracted from the value which is then normalize according to given frdigits into
* valcopy to allow easy parsing and storing of the value. libyang stores decimal number without the decimal point which is always recovered from
* the known fraction-digits value. So, with fraction-digits 2, number 3.14 is stored as 314 and number 1 is stored as 100.
* @param[in] frdigits The fraction-digits of the type in case of LY_TYPE_DEC64.
* @param[in] value String value of the range boundary.
* @param[out] len Number of the processed bytes from the value. Processing stops on the first character which is not part of the number boundary.
* @param[out] valcopy NULL-terminated string with the numeric value to parse and store.
* @return LY_ERR value - LY_SUCCESS, LY_EMEM, LY_EVALID (no number) or LY_EINVAL (decimal64 not matching fraction-digits value).
*/
LY_ERR
range_part_check_value_syntax(struct lysc_ctx *ctx, LY_DATA_TYPE basetype, uint8_t frdigits, const char *value, size_t *len, char **valcopy)
{
size_t fraction = 0, size;
*len = 0;
assert(value);
/* parse value */
if (!isdigit(value[*len]) && (value[*len] != '-') && (value[*len] != '+')) {
return LY_EVALID;
}
if ((value[*len] == '-') || (value[*len] == '+')) {
++(*len);
}
while (isdigit(value[*len])) {
++(*len);
}
if ((basetype != LY_TYPE_DEC64) || (value[*len] != '.') || !isdigit(value[*len + 1])) {
if (basetype == LY_TYPE_DEC64) {
goto decimal;
} else {
*valcopy = strndup(value, *len);
return LY_SUCCESS;
}
}
fraction = *len;
++(*len);
while (isdigit(value[*len])) {
++(*len);
}
if (basetype == LY_TYPE_DEC64) {
decimal:
assert(frdigits);
if (fraction && (*len - 1 - fraction > frdigits)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Range boundary \"%.*s\" of decimal64 type exceeds defined number (%u) of fraction digits.",
*len, value, frdigits);
return LY_EINVAL;
}
if (fraction) {
size = (*len) + (frdigits - ((*len) - 1 - fraction));
} else {
size = (*len) + frdigits + 1;
}
*valcopy = malloc(size * sizeof **valcopy);
LY_CHECK_ERR_RET(!(*valcopy), LOGMEM(ctx->ctx), LY_EMEM);
(*valcopy)[size - 1] = '\0';
if (fraction) {
memcpy(&(*valcopy)[0], &value[0], fraction);
memcpy(&(*valcopy)[fraction], &value[fraction + 1], (*len) - 1 - (fraction));
memset(&(*valcopy)[(*len) - 1], '0', frdigits - ((*len) - 1 - fraction));
} else {
memcpy(&(*valcopy)[0], &value[0], *len);
memset(&(*valcopy)[*len], '0', frdigits);
}
}
return LY_SUCCESS;
}
/**
* @brief Check that values in range are in ascendant order.
* @param[in] unsigned_value Flag to note that we are working with unsigned values.
* @param[in] max Flag to distinguish if checking min or max value. min value must be strictly higher than previous,
* max can be also equal.
* @param[in] value Current value to check.
* @param[in] prev_value The last seen value.
* @return LY_SUCCESS or LY_EEXIST for invalid order.
*/
static LY_ERR
range_part_check_ascendancy(ly_bool unsigned_value, ly_bool max, int64_t value, int64_t prev_value)
{
if (unsigned_value) {
if ((max && (uint64_t)prev_value > (uint64_t)value) || (!max && (uint64_t)prev_value >= (uint64_t)value)) {
return LY_EEXIST;
}
} else {
if ((max && prev_value > value) || (!max && prev_value >= value)) {
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/**
* @brief Set min/max value of the range part.
* @param[in] ctx Compile context.
* @param[in] part Range part structure to fill.
* @param[in] max Flag to distinguish if storing min or max value.
* @param[in] prev The last seen value to check that all values in range are specified in ascendant order.
* @param[in] basetype Type of the value to get know implicit min/max values and other checking rules.
* @param[in] first Flag for the first value of the range to avoid ascendancy order.
* @param[in] length_restr Flag to distinguish between range and length restrictions. Only for logging.
* @param[in] frdigits The fraction-digits value in case of LY_TYPE_DEC64 basetype.
* @param[in] base_range Range from the type from which the current type is derived (if not built-in) to get type's min and max values.
* @param[in,out] value Numeric range value to be stored, if not provided the type's min/max value is set.
* @return LY_ERR value - LY_SUCCESS, LY_EDENIED (value brokes type's boundaries), LY_EVALID (not a number),
* LY_EEXIST (value is smaller than the previous one), LY_EINVAL (decimal64 value does not corresponds with the
* frdigits value), LY_EMEM.
*/
static LY_ERR
range_part_minmax(struct lysc_ctx *ctx, struct lysc_range_part *part, ly_bool max, int64_t prev, LY_DATA_TYPE basetype,
ly_bool first, ly_bool length_restr, uint8_t frdigits, struct lysc_range *base_range, const char **value)
{
LY_ERR ret = LY_SUCCESS;
char *valcopy = NULL;
size_t len;
if (value) {
ret = range_part_check_value_syntax(ctx, basetype, frdigits, *value, &len, &valcopy);
LY_CHECK_GOTO(ret, finalize);
}
if (!valcopy && base_range) {
if (max) {
part->max_64 = base_range->parts[LY_ARRAY_COUNT(base_range->parts) - 1].max_64;
} else {
part->min_64 = base_range->parts[0].min_64;
}
if (!first) {
ret = range_part_check_ascendancy(basetype <= LY_TYPE_STRING ? 1 : 0, max, max ? part->max_64 : part->min_64, prev);
}
goto finalize;
}
switch (basetype) {
case LY_TYPE_INT8: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-128), INT64_C(127), 10, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(127);
} else {
part->min_64 = INT64_C(-128);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT16: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-32768), INT64_C(32767), 10, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(32767);
} else {
part->min_64 = INT64_C(-32768);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT32: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-2147483648), INT64_C(2147483647), 10, max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(2147483647);
} else {
part->min_64 = INT64_C(-2147483648);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_INT64: /* range */
case LY_TYPE_DEC64: /* range */
if (valcopy) {
ret = ly_parse_int(valcopy, strlen(valcopy), INT64_C(-9223372036854775807) - INT64_C(1), INT64_C(9223372036854775807), 10,
max ? &part->max_64 : &part->min_64);
} else if (max) {
part->max_64 = INT64_C(9223372036854775807);
} else {
part->min_64 = INT64_C(-9223372036854775807) - INT64_C(1);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(0, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT8: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(255), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(255);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT16: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(65535), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(65535);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT32: /* range */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(4294967295), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(4294967295);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
case LY_TYPE_UINT64: /* range */
case LY_TYPE_STRING: /* length */
case LY_TYPE_BINARY: /* length */
if (valcopy) {
ret = ly_parse_uint(valcopy, strlen(valcopy), UINT64_C(18446744073709551615), 10, max ? &part->max_u64 : &part->min_u64);
} else if (max) {
part->max_u64 = UINT64_C(18446744073709551615);
} else {
part->min_u64 = UINT64_C(0);
}
if (!ret && !first) {
ret = range_part_check_ascendancy(1, max, max ? part->max_64 : part->min_64, prev);
}
break;
default:
LOGINT(ctx->ctx);
ret = LY_EINT;
}
finalize:
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - value \"%s\" does not fit the type limitations.",
length_restr ? "length" : "range", valcopy ? valcopy : *value);
} else if (ret == LY_EVALID) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - invalid value \"%s\".",
length_restr ? "length" : "range", valcopy ? valcopy : *value);
} else if (ret == LY_EEXIST) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - values are not in ascending order (%s).",
length_restr ? "length" : "range",
(valcopy && basetype != LY_TYPE_DEC64) ? valcopy : value ? *value : max ? "max" : "min");
} else if (!ret && value) {
*value = *value + len;
}
free(valcopy);
return ret;
}
/**
* @brief Compile the parsed range restriction.
* @param[in] ctx Compile context.
* @param[in] range_p Parsed range structure to compile.
* @param[in] basetype Base YANG built-in type of the node with the range restriction.
* @param[in] length_restr Flag to distinguish between range and length restrictions. Only for logging.
* @param[in] frdigits The fraction-digits value in case of LY_TYPE_DEC64 basetype.
* @param[in] base_range Range restriction of the type from which the current type is derived. The current
* range restriction must be more restrictive than the base_range.
* @param[in,out] range Pointer to the created current range structure.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type_range(struct lysc_ctx *ctx, struct lysp_restr *range_p, LY_DATA_TYPE basetype, ly_bool length_restr,
uint8_t frdigits, struct lysc_range *base_range, struct lysc_range **range)
{
LY_ERR ret = LY_EVALID;
const char *expr;
struct lysc_range_part *parts = NULL, *part;
ly_bool range_expected = 0, uns;
LY_ARRAY_COUNT_TYPE parts_done = 0, u, v;
assert(range);
assert(range_p);
expr = range_p->arg.str;
while (1) {
if (isspace(*expr)) {
++expr;
} else if (*expr == '\0') {
if (range_expected) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected end of the expression after \"..\" (%s).",
length_restr ? "length" : "range", range_p->arg);
goto cleanup;
} else if (!parts || parts_done == LY_ARRAY_COUNT(parts)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected end of the expression (%s).",
length_restr ? "length" : "range", range_p->arg);
goto cleanup;
}
parts_done++;
break;
} else if (!strncmp(expr, "min", 3)) {
if (parts) {
/* min cannot be used elsewhere than in the first part */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected data before min keyword (%.*s).", length_restr ? "length" : "range",
expr - range_p->arg.str, range_p->arg.str);
goto cleanup;
}
expr += 3;
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(range_part_minmax(ctx, part, 0, 0, basetype, 1, length_restr, frdigits, base_range, NULL), cleanup);
part->max_64 = part->min_64;
} else if (*expr == '|') {
if (!parts || range_expected) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected beginning of the expression (%s).", length_restr ? "length" : "range", expr);
goto cleanup;
}
expr++;
parts_done++;
/* process next part of the expression */
} else if (!strncmp(expr, "..", 2)) {
expr += 2;
while (isspace(*expr)) {
expr++;
}
if (!parts || LY_ARRAY_COUNT(parts) == parts_done) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - unexpected \"..\" without a lower bound.", length_restr ? "length" : "range");
goto cleanup;
}
/* continue expecting the upper boundary */
range_expected = 1;
} else if (isdigit(*expr) || (*expr == '-') || (*expr == '+')) {
/* number */
if (range_expected) {
part = &parts[LY_ARRAY_COUNT(parts) - 1];
LY_CHECK_GOTO(range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, NULL, &expr), cleanup);
range_expected = 0;
} else {
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(range_part_minmax(ctx, part, 0, parts_done ? parts[LY_ARRAY_COUNT(parts) - 2].max_64 : 0,
basetype, parts_done ? 0 : 1, length_restr, frdigits, NULL, &expr), cleanup);
part->max_64 = part->min_64;
}
/* continue with possible another expression part */
} else if (!strncmp(expr, "max", 3)) {
expr += 3;
while (isspace(*expr)) {
expr++;
}
if (*expr != '\0') {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data after max keyword (%s).",
length_restr ? "length" : "range", expr);
goto cleanup;
}
if (range_expected) {
part = &parts[LY_ARRAY_COUNT(parts) - 1];
LY_CHECK_GOTO(range_part_minmax(ctx, part, 1, part->min_64, basetype, 0, length_restr, frdigits, base_range, NULL), cleanup);
range_expected = 0;
} else {
LY_ARRAY_NEW_GOTO(ctx->ctx, parts, part, ret, cleanup);
LY_CHECK_GOTO(range_part_minmax(ctx, part, 1, parts_done ? parts[LY_ARRAY_COUNT(parts) - 2].max_64 : 0,
basetype, parts_done ? 0 : 1, length_restr, frdigits, base_range, NULL), cleanup);
part->min_64 = part->max_64;
}
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid %s restriction - unexpected data (%s).",
length_restr ? "length" : "range", expr);
goto cleanup;
}
}
/* check with the previous range/length restriction */
if (base_range) {
switch (basetype) {
case LY_TYPE_BINARY:
case LY_TYPE_UINT8:
case LY_TYPE_UINT16:
case LY_TYPE_UINT32:
case LY_TYPE_UINT64:
case LY_TYPE_STRING:
uns = 1;
break;
case LY_TYPE_DEC64:
case LY_TYPE_INT8:
case LY_TYPE_INT16:
case LY_TYPE_INT32:
case LY_TYPE_INT64:
uns = 0;
break;
default:
LOGINT(ctx->ctx);
ret = LY_EINT;
goto cleanup;
}
for (u = v = 0; u < parts_done && v < LY_ARRAY_COUNT(base_range->parts); ++u) {
if ((uns && parts[u].min_u64 < base_range->parts[v].min_u64) || (!uns && parts[u].min_64 < base_range->parts[v].min_64)) {
goto baseerror;
}
/* current lower bound is not lower than the base */
if (base_range->parts[v].min_64 == base_range->parts[v].max_64) {
/* base has single value */
if (base_range->parts[v].min_64 == parts[u].min_64) {
/* both lower bounds are the same */
if (parts[u].min_64 != parts[u].max_64) {
/* current continues with a range */
goto baseerror;
} else {
/* equal single values, move both forward */
++v;
continue;
}
} else {
/* base is single value lower than current range, so the
* value from base range is removed in the current,
* move only base and repeat checking */
++v;
--u;
continue;
}
} else {
/* base is the range */
if (parts[u].min_64 == parts[u].max_64) {
/* current is a single value */
if ((uns && parts[u].max_u64 > base_range->parts[v].max_u64) || (!uns && parts[u].max_64 > base_range->parts[v].max_64)) {
/* current is behind the base range, so base range is omitted,
* move the base and keep the current for further check */
++v;
--u;
} /* else it is within the base range, so move the current, but keep the base */
continue;
} else {
/* both are ranges - check the higher bound, the lower was already checked */
if ((uns && parts[u].max_u64 > base_range->parts[v].max_u64) || (!uns && parts[u].max_64 > base_range->parts[v].max_64)) {
/* higher bound is higher than the current higher bound */
if ((uns && parts[u].min_u64 > base_range->parts[v].max_u64) || (!uns && parts[u].min_64 > base_range->parts[v].max_64)) {
/* but the current lower bound is also higher, so the base range is omitted,
* continue with the same current, but move the base */
--u;
++v;
continue;
}
/* current range starts within the base range but end behind it */
goto baseerror;
} else {
/* current range is smaller than the base,
* move current, but stay with the base */
continue;
}
}
}
}
if (u != parts_done) {
baseerror:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s restriction - the derived restriction (%s) is not equally or more limiting.",
length_restr ? "length" : "range", range_p->arg);
goto cleanup;
}
}
if (!(*range)) {
*range = calloc(1, sizeof **range);
LY_CHECK_ERR_RET(!(*range), LOGMEM(ctx->ctx), LY_EMEM);
}
/* we rewrite the following values as the types chain is being processed */
if (range_p->eapptag) {
lydict_remove(ctx->ctx, (*range)->eapptag);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->eapptag, 0, &(*range)->eapptag), cleanup);
}
if (range_p->emsg) {
lydict_remove(ctx->ctx, (*range)->emsg);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->emsg, 0, &(*range)->emsg), cleanup);
}
if (range_p->dsc) {
lydict_remove(ctx->ctx, (*range)->dsc);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->dsc, 0, &(*range)->dsc), cleanup);
}
if (range_p->ref) {
lydict_remove(ctx->ctx, (*range)->ref);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, range_p->ref, 0, &(*range)->ref), cleanup);
}
/* extensions are taken only from the last range by the caller */
(*range)->parts = parts;
parts = NULL;
ret = LY_SUCCESS;
cleanup:
LY_ARRAY_FREE(parts);
return ret;
}
/**
* @brief Checks pattern syntax.
*
* @param[in] ctx Context.
* @param[in] log_path Path for logging errors.
* @param[in] pattern Pattern to check.
* @param[in,out] pcre2_code Compiled PCRE2 pattern. If NULL, the compiled information used to validate pattern are freed.
* @return LY_ERR value - LY_SUCCESS, LY_EMEM, LY_EVALID.
*/
LY_ERR
lys_compile_type_pattern_check(struct ly_ctx *ctx, const char *log_path, const char *pattern, pcre2_code **code)
{
size_t idx, idx2, start, end, size, brack;
char *perl_regex, *ptr;
int err_code;
const char *orig_ptr;
PCRE2_SIZE err_offset;
pcre2_code *code_local;
#define URANGE_LEN 19
char *ublock2urange[][2] = {
{"BasicLatin", "[\\x{0000}-\\x{007F}]"},
{"Latin-1Supplement", "[\\x{0080}-\\x{00FF}]"},
{"LatinExtended-A", "[\\x{0100}-\\x{017F}]"},
{"LatinExtended-B", "[\\x{0180}-\\x{024F}]"},
{"IPAExtensions", "[\\x{0250}-\\x{02AF}]"},
{"SpacingModifierLetters", "[\\x{02B0}-\\x{02FF}]"},
{"CombiningDiacriticalMarks", "[\\x{0300}-\\x{036F}]"},
{"Greek", "[\\x{0370}-\\x{03FF}]"},
{"Cyrillic", "[\\x{0400}-\\x{04FF}]"},
{"Armenian", "[\\x{0530}-\\x{058F}]"},
{"Hebrew", "[\\x{0590}-\\x{05FF}]"},
{"Arabic", "[\\x{0600}-\\x{06FF}]"},
{"Syriac", "[\\x{0700}-\\x{074F}]"},
{"Thaana", "[\\x{0780}-\\x{07BF}]"},
{"Devanagari", "[\\x{0900}-\\x{097F}]"},
{"Bengali", "[\\x{0980}-\\x{09FF}]"},
{"Gurmukhi", "[\\x{0A00}-\\x{0A7F}]"},
{"Gujarati", "[\\x{0A80}-\\x{0AFF}]"},
{"Oriya", "[\\x{0B00}-\\x{0B7F}]"},
{"Tamil", "[\\x{0B80}-\\x{0BFF}]"},
{"Telugu", "[\\x{0C00}-\\x{0C7F}]"},
{"Kannada", "[\\x{0C80}-\\x{0CFF}]"},
{"Malayalam", "[\\x{0D00}-\\x{0D7F}]"},
{"Sinhala", "[\\x{0D80}-\\x{0DFF}]"},
{"Thai", "[\\x{0E00}-\\x{0E7F}]"},
{"Lao", "[\\x{0E80}-\\x{0EFF}]"},
{"Tibetan", "[\\x{0F00}-\\x{0FFF}]"},
{"Myanmar", "[\\x{1000}-\\x{109F}]"},
{"Georgian", "[\\x{10A0}-\\x{10FF}]"},
{"HangulJamo", "[\\x{1100}-\\x{11FF}]"},
{"Ethiopic", "[\\x{1200}-\\x{137F}]"},
{"Cherokee", "[\\x{13A0}-\\x{13FF}]"},
{"UnifiedCanadianAboriginalSyllabics", "[\\x{1400}-\\x{167F}]"},
{"Ogham", "[\\x{1680}-\\x{169F}]"},
{"Runic", "[\\x{16A0}-\\x{16FF}]"},
{"Khmer", "[\\x{1780}-\\x{17FF}]"},
{"Mongolian", "[\\x{1800}-\\x{18AF}]"},
{"LatinExtendedAdditional", "[\\x{1E00}-\\x{1EFF}]"},
{"GreekExtended", "[\\x{1F00}-\\x{1FFF}]"},
{"GeneralPunctuation", "[\\x{2000}-\\x{206F}]"},
{"SuperscriptsandSubscripts", "[\\x{2070}-\\x{209F}]"},
{"CurrencySymbols", "[\\x{20A0}-\\x{20CF}]"},
{"CombiningMarksforSymbols", "[\\x{20D0}-\\x{20FF}]"},
{"LetterlikeSymbols", "[\\x{2100}-\\x{214F}]"},
{"NumberForms", "[\\x{2150}-\\x{218F}]"},
{"Arrows", "[\\x{2190}-\\x{21FF}]"},
{"MathematicalOperators", "[\\x{2200}-\\x{22FF}]"},
{"MiscellaneousTechnical", "[\\x{2300}-\\x{23FF}]"},
{"ControlPictures", "[\\x{2400}-\\x{243F}]"},
{"OpticalCharacterRecognition", "[\\x{2440}-\\x{245F}]"},
{"EnclosedAlphanumerics", "[\\x{2460}-\\x{24FF}]"},
{"BoxDrawing", "[\\x{2500}-\\x{257F}]"},
{"BlockElements", "[\\x{2580}-\\x{259F}]"},
{"GeometricShapes", "[\\x{25A0}-\\x{25FF}]"},
{"MiscellaneousSymbols", "[\\x{2600}-\\x{26FF}]"},
{"Dingbats", "[\\x{2700}-\\x{27BF}]"},
{"BraillePatterns", "[\\x{2800}-\\x{28FF}]"},
{"CJKRadicalsSupplement", "[\\x{2E80}-\\x{2EFF}]"},
{"KangxiRadicals", "[\\x{2F00}-\\x{2FDF}]"},
{"IdeographicDescriptionCharacters", "[\\x{2FF0}-\\x{2FFF}]"},
{"CJKSymbolsandPunctuation", "[\\x{3000}-\\x{303F}]"},
{"Hiragana", "[\\x{3040}-\\x{309F}]"},
{"Katakana", "[\\x{30A0}-\\x{30FF}]"},
{"Bopomofo", "[\\x{3100}-\\x{312F}]"},
{"HangulCompatibilityJamo", "[\\x{3130}-\\x{318F}]"},
{"Kanbun", "[\\x{3190}-\\x{319F}]"},
{"BopomofoExtended", "[\\x{31A0}-\\x{31BF}]"},
{"EnclosedCJKLettersandMonths", "[\\x{3200}-\\x{32FF}]"},
{"CJKCompatibility", "[\\x{3300}-\\x{33FF}]"},
{"CJKUnifiedIdeographsExtensionA", "[\\x{3400}-\\x{4DB5}]"},
{"CJKUnifiedIdeographs", "[\\x{4E00}-\\x{9FFF}]"},
{"YiSyllables", "[\\x{A000}-\\x{A48F}]"},
{"YiRadicals", "[\\x{A490}-\\x{A4CF}]"},
{"HangulSyllables", "[\\x{AC00}-\\x{D7A3}]"},
{"PrivateUse", "[\\x{E000}-\\x{F8FF}]"},
{"CJKCompatibilityIdeographs", "[\\x{F900}-\\x{FAFF}]"},
{"AlphabeticPresentationForms", "[\\x{FB00}-\\x{FB4F}]"},
{"ArabicPresentationForms-A", "[\\x{FB50}-\\x{FDFF}]"},
{"CombiningHalfMarks", "[\\x{FE20}-\\x{FE2F}]"},
{"CJKCompatibilityForms", "[\\x{FE30}-\\x{FE4F}]"},
{"SmallFormVariants", "[\\x{FE50}-\\x{FE6F}]"},
{"ArabicPresentationForms-B", "[\\x{FE70}-\\x{FEFE}]"},
{"HalfwidthandFullwidthForms", "[\\x{FF00}-\\x{FFEF}]"},
{NULL, NULL}
};
/* adjust the expression to a Perl equivalent
* http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#regexs */
/* allocate space for the transformed pattern */
size = strlen(pattern) + 1;
perl_regex = malloc(size);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx), LY_EMEM);
perl_regex[0] = '\0';
/* we need to replace all "$" and "^" (that are not in "[]") with "\$" and "\^" */
brack = 0;
idx = 0;
orig_ptr = pattern;
while (orig_ptr[0]) {
switch (orig_ptr[0]) {
case '$':
case '^':
if (!brack) {
/* make space for the extra character */
++size;
perl_regex = ly_realloc(perl_regex, size);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx), LY_EMEM);
/* print escape slash */
perl_regex[idx] = '\\';
++idx;
}
break;
case '[':
/* must not be escaped */
if ((orig_ptr == pattern) || (orig_ptr[-1] != '\\')) {
++brack;
}
break;
case ']':
if ((orig_ptr == pattern) || (orig_ptr[-1] != '\\')) {
/* pattern was checked and compiled already */
assert(brack);
--brack;
}
break;
default:
break;
}
/* copy char */
perl_regex[idx] = orig_ptr[0];
++idx;
++orig_ptr;
}
perl_regex[idx] = '\0';
/* substitute Unicode Character Blocks with exact Character Ranges */
while ((ptr = strstr(perl_regex, "\\p{Is"))) {
start = ptr - perl_regex;
ptr = strchr(ptr, '}');
if (!ptr) {
LOGVAL(ctx, LY_VLOG_STR, log_path, LY_VCODE_INREGEXP,
pattern, perl_regex + start + 2, "unterminated character property");
free(perl_regex);
return LY_EVALID;
}
end = (ptr - perl_regex) + 1;
/* need more space */
if (end - start < URANGE_LEN) {
perl_regex = ly_realloc(perl_regex, strlen(perl_regex) + (URANGE_LEN - (end - start)) + 1);
LY_CHECK_ERR_RET(!perl_regex, LOGMEM(ctx); free(perl_regex), LY_EMEM);
}
/* find our range */
for (idx = 0; ublock2urange[idx][0]; ++idx) {
if (!strncmp(perl_regex + start + 5, ublock2urange[idx][0], strlen(ublock2urange[idx][0]))) {
break;
}
}
if (!ublock2urange[idx][0]) {
LOGVAL(ctx, LY_VLOG_STR, log_path, LY_VCODE_INREGEXP,
pattern, perl_regex + start + 5, "unknown block name");
free(perl_regex);
return LY_EVALID;
}
/* make the space in the string and replace the block (but we cannot include brackets if it was already enclosed in them) */
for (idx2 = 0, idx = 0; idx2 < start; ++idx2) {
if ((perl_regex[idx2] == '[') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) {
++idx;
}
if ((perl_regex[idx2] == ']') && (!idx2 || (perl_regex[idx2 - 1] != '\\'))) {
--idx;
}
}
if (idx) {
/* skip brackets */
memmove(perl_regex + start + (URANGE_LEN - 2), perl_regex + end, strlen(perl_regex + end) + 1);
memcpy(perl_regex + start, ublock2urange[idx][1] + 1, URANGE_LEN - 2);
} else {
memmove(perl_regex + start + URANGE_LEN, perl_regex + end, strlen(perl_regex + end) + 1);
memcpy(perl_regex + start, ublock2urange[idx][1], URANGE_LEN);
}
}
/* must return 0, already checked during parsing */
code_local = pcre2_compile((PCRE2_SPTR)perl_regex, PCRE2_ZERO_TERMINATED,
PCRE2_UTF | PCRE2_ANCHORED | PCRE2_ENDANCHORED | PCRE2_DOLLAR_ENDONLY | PCRE2_NO_AUTO_CAPTURE,
&err_code, &err_offset, NULL);
if (!code_local) {
PCRE2_UCHAR err_msg[256] = {0};
pcre2_get_error_message(err_code, err_msg, 256);
LOGVAL(ctx, LY_VLOG_STR, log_path, LY_VCODE_INREGEXP, pattern, perl_regex + err_offset, err_msg);
free(perl_regex);
return LY_EVALID;
}
free(perl_regex);
if (code) {
*code = code_local;
} else {
free(code_local);
}
return LY_SUCCESS;
#undef URANGE_LEN
}
/**
* @brief Compile parsed pattern restriction in conjunction with the patterns from base type.
* @param[in] ctx Compile context.
* @param[in] patterns_p Array of parsed patterns from the current type to compile.
* @param[in] base_patterns Compiled patterns from the type from which the current type is derived.
* Patterns from the base type are inherited to have all the patterns that have to match at one place.
* @param[out] patterns Pointer to the storage for the patterns of the current type.
* @return LY_ERR LY_SUCCESS, LY_EMEM, LY_EVALID.
*/
static LY_ERR
lys_compile_type_patterns(struct lysc_ctx *ctx, struct lysp_restr *patterns_p,
struct lysc_pattern **base_patterns, struct lysc_pattern ***patterns)
{
struct lysc_pattern **pattern;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
/* first, copy the patterns from the base type */
if (base_patterns) {
*patterns = lysc_patterns_dup(ctx->ctx, base_patterns);
LY_CHECK_ERR_RET(!(*patterns), LOGMEM(ctx->ctx), LY_EMEM);
}
LY_ARRAY_FOR(patterns_p, u) {
LY_ARRAY_NEW_RET(ctx->ctx, (*patterns), pattern, LY_EMEM);
*pattern = calloc(1, sizeof **pattern);
++(*pattern)->refcount;
ret = lys_compile_type_pattern_check(ctx->ctx, ctx->path, &patterns_p[u].arg.str[1], &(*pattern)->code);
LY_CHECK_RET(ret);
if (patterns_p[u].arg.str[0] == 0x15) {
(*pattern)->inverted = 1;
}
DUP_STRING_GOTO(ctx->ctx, &patterns_p[u].arg.str[1], (*pattern)->expr, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].eapptag, (*pattern)->eapptag, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].emsg, (*pattern)->emsg, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].dsc, (*pattern)->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, patterns_p[u].ref, (*pattern)->ref, ret, done);
COMPILE_EXTS_GOTO(ctx, patterns_p[u].exts, (*pattern)->exts, (*pattern), LYEXT_PAR_PATTERN, ret, done);
}
done:
return ret;
}
/**
* @brief map of the possible restrictions combination for the specific built-in type.
*/
static uint16_t type_substmt_map[LY_DATA_TYPE_COUNT] = {
0 /* LY_TYPE_UNKNOWN */,
LYS_SET_LENGTH /* LY_TYPE_BINARY */,
LYS_SET_RANGE /* LY_TYPE_UINT8 */,
LYS_SET_RANGE /* LY_TYPE_UINT16 */,
LYS_SET_RANGE /* LY_TYPE_UINT32 */,
LYS_SET_RANGE /* LY_TYPE_UINT64 */,
LYS_SET_LENGTH | LYS_SET_PATTERN /* LY_TYPE_STRING */,
LYS_SET_BIT /* LY_TYPE_BITS */,
0 /* LY_TYPE_BOOL */,
LYS_SET_FRDIGITS | LYS_SET_RANGE /* LY_TYPE_DEC64 */,
0 /* LY_TYPE_EMPTY */,
LYS_SET_ENUM /* LY_TYPE_ENUM */,
LYS_SET_BASE /* LY_TYPE_IDENT */,
LYS_SET_REQINST /* LY_TYPE_INST */,
LYS_SET_REQINST | LYS_SET_PATH /* LY_TYPE_LEAFREF */,
LYS_SET_TYPE /* LY_TYPE_UNION */,
LYS_SET_RANGE /* LY_TYPE_INT8 */,
LYS_SET_RANGE /* LY_TYPE_INT16 */,
LYS_SET_RANGE /* LY_TYPE_INT32 */,
LYS_SET_RANGE /* LY_TYPE_INT64 */
};
/**
* @brief stringification of the YANG built-in data types
*/
const char *ly_data_type2str[LY_DATA_TYPE_COUNT] = {"unknown", "binary", "8bit unsigned integer", "16bit unsigned integer",
"32bit unsigned integer", "64bit unsigned integer", "string", "bits", "boolean", "decimal64", "empty", "enumeration",
"identityref", "instance-identifier", "leafref", "union", "8bit integer", "16bit integer", "32bit integer", "64bit integer"};
/**
* @brief Compile parsed type's enum structures (for enumeration and bits types).
* @param[in] ctx Compile context.
* @param[in] enums_p Array of the parsed enum structures to compile.
* @param[in] basetype Base YANG built-in type from which the current type is derived. Only LY_TYPE_ENUM and LY_TYPE_BITS are expected.
* @param[in] base_enums Array of the compiled enums information from the (latest) base type to check if the current enums are compatible.
* @param[out] enums Newly created array of the compiled enums information for the current type.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_type_enums(struct lysc_ctx *ctx, struct lysp_type_enum *enums_p, LY_DATA_TYPE basetype,
struct lysc_type_bitenum_item *base_enums, struct lysc_type_bitenum_item **enums)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v, match = 0;
int32_t value = 0;
uint32_t position = 0;
struct lysc_type_bitenum_item *e, storage;
if (base_enums && ctx->mod_def->version < 2) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "%s type can be subtyped only in YANG 1.1 modules.",
basetype == LY_TYPE_ENUM ? "Enumeration" : "Bits");
return LY_EVALID;
}
LY_ARRAY_FOR(enums_p, u) {
LY_ARRAY_NEW_RET(ctx->ctx, *enums, e, LY_EMEM);
DUP_STRING_GOTO(ctx->ctx, enums_p[u].name, e->name, ret, done);
DUP_STRING_GOTO(ctx->ctx, enums_p[u].ref, e->dsc, ret, done);
DUP_STRING_GOTO(ctx->ctx, enums_p[u].ref, e->ref, ret, done);
e->flags = enums_p[u].flags & LYS_FLAGS_COMPILED_MASK;
if (base_enums) {
/* check the enum/bit presence in the base type - the set of enums/bits in the derived type must be a subset */
LY_ARRAY_FOR(base_enums, v) {
if (!strcmp(e->name, base_enums[v].name)) {
break;
}
}
if (v == LY_ARRAY_COUNT(base_enums)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid %s - derived type adds new item \"%s\".",
basetype == LY_TYPE_ENUM ? "enumeration" : "bits", e->name);
return LY_EVALID;
}
match = v;
}
if (basetype == LY_TYPE_ENUM) {
e->flags |= LYS_ISENUM;
if (enums_p[u].flags & LYS_SET_VALUE) {
e->value = (int32_t)enums_p[u].value;
if (!u || e->value >= value) {
value = e->value + 1;
}
/* check collision with other values */
for (v = 0; v < LY_ARRAY_COUNT(*enums) - 1; ++v) {
if (e->value == (*enums)[v].value) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid enumeration - value %d collide in items \"%s\" and \"%s\".",
e->value, e->name, (*enums)[v].name);
return LY_EVALID;
}
}
} else if (base_enums) {
/* inherit the assigned value */
e->value = base_enums[match].value;
if (!u || e->value >= value) {
value = e->value + 1;
}
} else {
/* assign value automatically */
if (u && value == INT32_MIN) {
/* counter overflow */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid enumeration - it is not possible to auto-assign enum value for "
"\"%s\" since the highest value is already 2147483647.", e->name);
return LY_EVALID;
}
e->value = value++;
}
} else { /* LY_TYPE_BITS */
if (enums_p[u].flags & LYS_SET_VALUE) {
e->value = (int32_t)enums_p[u].value;
if (!u || (uint32_t)e->value >= position) {
position = (uint32_t)e->value + 1;
}
/* check collision with other values */
for (v = 0; v < LY_ARRAY_COUNT(*enums) - 1; ++v) {
if (e->value == (*enums)[v].value) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid bits - position %u collide in items \"%s\" and \"%s\".",
(uint32_t)e->value, e->name, (*enums)[v].name);
return LY_EVALID;
}
}
} else if (base_enums) {
/* inherit the assigned value */
e->value = base_enums[match].value;
if (!u || (uint32_t)e->value >= position) {
position = (uint32_t)e->value + 1;
}
} else {
/* assign value automatically */
if (u && position == 0) {
/* counter overflow */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid bits - it is not possible to auto-assign bit position for "
"\"%s\" since the highest value is already 4294967295.", e->name);
return LY_EVALID;
}
e->value = position++;
}
}
if (base_enums) {
/* the assigned values must not change from the derived type */
if (e->value != base_enums[match].value) {
if (basetype == LY_TYPE_ENUM) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid enumeration - value of the item \"%s\" has changed from %d to %d in the derived type.",
e->name, base_enums[match].value, e->value);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid bits - position of the item \"%s\" has changed from %u to %u in the derived type.",
e->name, (uint32_t)base_enums[match].value, (uint32_t)e->value);
}
return LY_EVALID;
}
}
COMPILE_ARRAY_GOTO(ctx, enums_p[u].iffeatures, e->iffeatures, v, lys_compile_iffeature, ret, done);
COMPILE_EXTS_GOTO(ctx, enums_p[u].exts, e->exts, e, basetype == LY_TYPE_ENUM ? LYEXT_PAR_TYPE_ENUM : LYEXT_PAR_TYPE_BIT, ret, done);
if (basetype == LY_TYPE_BITS) {
/* keep bits ordered by position */
for (v = u; v && (*enums)[v - 1].value > e->value; --v) {}
if (v != u) {
memcpy(&storage, e, sizeof *e);
memmove(&(*enums)[v + 1], &(*enums)[v], (u - v) * sizeof **enums);
memcpy(&(*enums)[v], &storage, sizeof storage);
}
}
}
done:
return ret;
}
/**
* @brief Parse path-arg (leafref). Get tokens of the path by repetitive calls of the function.
*
* path-arg = absolute-path / relative-path
* absolute-path = 1*("/" (node-identifier *path-predicate))
* relative-path = 1*(".." "/") descendant-path
*
* @param[in,out] path Path to parse.
* @param[out] prefix Prefix of the token, NULL if there is not any.
* @param[out] pref_len Length of the prefix, 0 if there is not any.
* @param[out] name Name of the token.
* @param[out] nam_len Length of the name.
* @param[out] parent_times Number of leading ".." in the path. Must be 0 on the first call,
* must not be changed between consecutive calls. -1 if the
* path is absolute.
* @param[out] has_predicate Flag to mark whether there is a predicate specified.
* @return LY_ERR value: LY_SUCCESS or LY_EINVAL in case of invalid character in the path.
*/
LY_ERR
lys_path_token(const char **path, const char **prefix, size_t *prefix_len, const char **name, size_t *name_len,
int32_t *parent_times, ly_bool *has_predicate)
{
int32_t par_times = 0;
assert(path && *path);
assert(parent_times);
assert(prefix);
assert(prefix_len);
assert(name);
assert(name_len);
assert(has_predicate);
*prefix = NULL;
*prefix_len = 0;
*name = NULL;
*name_len = 0;
*has_predicate = 0;
if (!*parent_times) {
if (!strncmp(*path, "..", 2)) {
*path += 2;
++par_times;
while (!strncmp(*path, "/..", 3)) {
*path += 3;
++par_times;
}
}
if (par_times) {
*parent_times = par_times;
} else {
*parent_times = -1;
}
}
if (**path != '/') {
return LY_EINVAL;
}
/* skip '/' */
++(*path);
/* node-identifier ([prefix:]name) */
LY_CHECK_RET(ly_parse_nodeid(path, prefix, prefix_len, name, name_len));
if ((**path == '/' && (*path)[1]) || !**path) {
/* path continues by another token or this is the last token */
return LY_SUCCESS;
} else if ((*path)[0] != '[') {
/* unexpected character */
return LY_EINVAL;
} else {
/* predicate starting with [ */
*has_predicate = 1;
return LY_SUCCESS;
}
}
/**
* @brief Check the features used in if-feature statements applicable to the leafref and its target.
*
* The set of features used for target must be a subset of features used for the leafref.
* This is not a perfect, we should compare the truth tables but it could require too much resources
* and RFC 7950 does not require it explicitely, so we simplify that.
*
* @param[in] refnode The leafref node.
* @param[in] target Tha target node of the leafref.
* @return LY_SUCCESS or LY_EVALID;
*/
static LY_ERR
lys_compile_leafref_features_validate(const struct lysc_node *refnode, const struct lysc_node *target)
{
LY_ERR ret = LY_EVALID;
const struct lysc_node *iter;
LY_ARRAY_COUNT_TYPE u, v;
struct ly_set features = {0};
for (iter = refnode; iter; iter = iter->parent) {
if (iter->iffeatures) {
LY_ARRAY_FOR(iter->iffeatures, u) {
LY_ARRAY_FOR(iter->iffeatures[u].features, v) {
LY_CHECK_GOTO(ly_set_add(&features, iter->iffeatures[u].features[v], 0, NULL), cleanup);
}
}
}
}
/* we should have, in features set, a superset of features applicable to the target node.
* If the feature is not present, we don;t have a subset of features applicable
* to the leafref itself. */
for (iter = target; iter; iter = iter->parent) {
if (iter->iffeatures) {
LY_ARRAY_FOR(iter->iffeatures, u) {
LY_ARRAY_FOR(iter->iffeatures[u].features, v) {
if (!ly_set_contains(&features, iter->iffeatures[u].features[v], NULL)) {
/* feature not present */
goto cleanup;
}
}
}
}
}
ret = LY_SUCCESS;
cleanup:
ly_set_erase(&features, NULL);
return ret;
}
static LY_ERR lys_compile_type(struct lysc_ctx *ctx, struct lysp_node *context_pnode, uint16_t context_flags,
struct lysp_module *context_mod, const char *context_name, struct lysp_type *type_p,
struct lysc_type **type, const char **units, struct lysp_qname **dflt);
/**
* @brief The core of the lys_compile_type() - compile information about the given type (from typedef or leaf/leaf-list).
* @param[in] ctx Compile context.
* @param[in] context_pnode Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] context_flags Flags of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_mod Module of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_name Name of the context node or referencing typedef for logging.
* @param[in] type_p Parsed type to compile.
* @param[in] basetype Base YANG built-in type of the type to compile.
* @param[in] tpdfname Name of the type's typedef, serves as a flag - if it is leaf/leaf-list's type, it is NULL.
* @param[in] base The latest base (compiled) type from which the current type is being derived.
* @param[out] type Newly created type structure with the filled information about the type.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type_(struct lysc_ctx *ctx, struct lysp_node *context_pnode, uint16_t context_flags,
struct lysp_module *context_mod, const char *context_name, struct lysp_type *type_p, LY_DATA_TYPE basetype,
const char *tpdfname, struct lysc_type *base, struct lysc_type **type)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_type_bin *bin;
struct lysc_type_num *num;
struct lysc_type_str *str;
struct lysc_type_bits *bits;
struct lysc_type_enum *enumeration;
struct lysc_type_dec *dec;
struct lysc_type_identityref *idref;
struct lysc_type_leafref *lref;
struct lysc_type_union *un, *un_aux;
switch (basetype) {
case LY_TYPE_BINARY:
bin = (struct lysc_type_bin *)(*type);
/* RFC 7950 9.8.1, 9.4.4 - length, number of octets it contains */
if (type_p->length) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->length, basetype, 1, 0,
base ? ((struct lysc_type_bin *)base)->length : NULL, &bin->length));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->length->exts, bin->length->exts, bin->length, LYEXT_PAR_LENGTH, ret, cleanup);
}
}
break;
case LY_TYPE_BITS:
/* RFC 7950 9.7 - bits */
bits = (struct lysc_type_bits *)(*type);
if (type_p->bits) {
LY_CHECK_RET(lys_compile_type_enums(ctx, type_p->bits, basetype,
base ? (struct lysc_type_bitenum_item *)((struct lysc_type_bits *)base)->bits : NULL,
(struct lysc_type_bitenum_item **)&bits->bits));
}
if (!base && !type_p->flags) {
/* type derived from bits built-in type must contain at least one bit */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "bit", "bits type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "bit", "bits type", "");
}
return LY_EVALID;
}
break;
case LY_TYPE_DEC64:
dec = (struct lysc_type_dec *)(*type);
/* RFC 7950 9.3.4 - fraction-digits */
if (!base) {
if (!type_p->fraction_digits) {
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "fraction-digits", "decimal64 type", "");
}
return LY_EVALID;
}
dec->fraction_digits = type_p->fraction_digits;
} else {
if (type_p->fraction_digits) {
/* fraction digits is prohibited in types not directly derived from built-in decimal64 */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid fraction-digits substatement for type \"%s\" not directly derived from decimal64 built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid fraction-digits substatement for type not directly derived from decimal64 built-in type.");
}
return LY_EVALID;
}
dec->fraction_digits = ((struct lysc_type_dec *)base)->fraction_digits;
}
/* RFC 7950 9.2.4 - range */
if (type_p->range) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->range, basetype, 0, dec->fraction_digits,
base ? ((struct lysc_type_dec *)base)->range : NULL, &dec->range));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->range->exts, dec->range->exts, dec->range, LYEXT_PAR_RANGE, ret, cleanup);
}
}
break;
case LY_TYPE_STRING:
str = (struct lysc_type_str *)(*type);
/* RFC 7950 9.4.4 - length */
if (type_p->length) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->length, basetype, 1, 0,
base ? ((struct lysc_type_str *)base)->length : NULL, &str->length));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->length->exts, str->length->exts, str->length, LYEXT_PAR_LENGTH, ret, cleanup);
}
} else if (base && ((struct lysc_type_str *)base)->length) {
str->length = lysc_range_dup(ctx->ctx, ((struct lysc_type_str *)base)->length);
}
/* RFC 7950 9.4.5 - pattern */
if (type_p->patterns) {
LY_CHECK_RET(lys_compile_type_patterns(ctx, type_p->patterns,
base ? ((struct lysc_type_str *)base)->patterns : NULL, &str->patterns));
} else if (base && ((struct lysc_type_str *)base)->patterns) {
str->patterns = lysc_patterns_dup(ctx->ctx, ((struct lysc_type_str *)base)->patterns);
}
break;
case LY_TYPE_ENUM:
enumeration = (struct lysc_type_enum *)(*type);
/* RFC 7950 9.6 - enum */
if (type_p->enums) {
LY_CHECK_RET(lys_compile_type_enums(ctx, type_p->enums, basetype,
base ? ((struct lysc_type_enum *)base)->enums : NULL, &enumeration->enums));
}
if (!base && !type_p->flags) {
/* type derived from enumerations built-in type must contain at least one enum */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "enum", "enumeration type", "");
}
return LY_EVALID;
}
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
num = (struct lysc_type_num *)(*type);
/* RFC 6020 9.2.4 - range */
if (type_p->range) {
LY_CHECK_RET(lys_compile_type_range(ctx, type_p->range, basetype, 0, 0,
base ? ((struct lysc_type_num *)base)->range : NULL, &num->range));
if (!tpdfname) {
COMPILE_EXTS_GOTO(ctx, type_p->range->exts, num->range->exts, num->range, LYEXT_PAR_RANGE, ret, cleanup);
}
}
break;
case LY_TYPE_IDENT:
idref = (struct lysc_type_identityref *)(*type);
/* RFC 7950 9.10.2 - base */
if (type_p->bases) {
if (base) {
/* only the directly derived identityrefs can contain base specification */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid base substatement for the type \"%s\" not directly derived from identityref built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid base substatement for the type not directly derived from identityref built-in type.");
}
return LY_EVALID;
}
LY_CHECK_RET(lys_compile_identity_bases(ctx, type_p->mod, type_p->bases, NULL, &idref->bases));
}
if (!base && !type_p->flags) {
/* type derived from identityref built-in type must contain at least one base */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "base", "identityref type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "base", "identityref type", "");
}
return LY_EVALID;
}
break;
case LY_TYPE_LEAFREF:
lref = (struct lysc_type_leafref *)*type;
/* RFC 7950 9.9.3 - require-instance */
if (type_p->flags & LYS_SET_REQINST) {
if (context_mod->mod->version < LYS_VERSION_1_1) {
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leafref type \"%s\" can be restricted by require-instance statement only in YANG 1.1 modules.", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leafref type can be restricted by require-instance statement only in YANG 1.1 modules.");
}
return LY_EVALID;
}
lref->require_instance = type_p->require_instance;
} else if (base) {
/* inherit */
lref->require_instance = ((struct lysc_type_leafref *)base)->require_instance;
} else {
/* default is true */
lref->require_instance = 1;
}
if (type_p->path) {
LY_CHECK_RET(lyxp_expr_dup(ctx->ctx, type_p->path, &lref->path));
lref->path_mod = type_p->mod;
} else if (base) {
LY_CHECK_RET(lyxp_expr_dup(ctx->ctx, ((struct lysc_type_leafref *)base)->path, &lref->path));
lref->path_context = ((struct lysc_type_leafref *)base)->path_context;
} else if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "path", "leafref type ", tpdfname);
return LY_EVALID;
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "path", "leafref type", "");
return LY_EVALID;
}
break;
case LY_TYPE_INST:
/* RFC 7950 9.9.3 - require-instance */
if (type_p->flags & LYS_SET_REQINST) {
((struct lysc_type_instanceid *)(*type))->require_instance = type_p->require_instance;
} else {
/* default is true */
((struct lysc_type_instanceid *)(*type))->require_instance = 1;
}
break;
case LY_TYPE_UNION:
un = (struct lysc_type_union *)(*type);
/* RFC 7950 7.4 - type */
if (type_p->types) {
if (base) {
/* only the directly derived union can contain types specification */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid type substatement for the type \"%s\" not directly derived from union built-in type.",
tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG,
"Invalid type substatement for the type not directly derived from union built-in type.");
}
return LY_EVALID;
}
/* compile the type */
LY_ARRAY_CREATE_RET(ctx->ctx, un->types, LY_ARRAY_COUNT(type_p->types), LY_EVALID);
for (LY_ARRAY_COUNT_TYPE u = 0, additional = 0; u < LY_ARRAY_COUNT(type_p->types); ++u) {
LY_CHECK_RET(lys_compile_type(ctx, context_pnode, context_flags, context_mod, context_name,
&type_p->types[u], &un->types[u + additional], NULL, NULL));
if (un->types[u + additional]->basetype == LY_TYPE_UNION) {
/* add space for additional types from the union subtype */
un_aux = (struct lysc_type_union *)un->types[u + additional];
LY_ARRAY_RESIZE_ERR_RET(ctx->ctx, un->types, (*((uint64_t *)(type_p->types) - 1)) + additional + LY_ARRAY_COUNT(un_aux->types) - 1,
lysc_type_free(ctx->ctx, (struct lysc_type *)un_aux), LY_EMEM);
/* copy subtypes of the subtype union */
for (LY_ARRAY_COUNT_TYPE v = 0; v < LY_ARRAY_COUNT(un_aux->types); ++v) {
if (un_aux->types[v]->basetype == LY_TYPE_LEAFREF) {
/* duplicate the whole structure because of the instance-specific path resolving for realtype */
un->types[u + additional] = calloc(1, sizeof(struct lysc_type_leafref));
LY_CHECK_ERR_RET(!un->types[u + additional], LOGMEM(ctx->ctx); lysc_type_free(ctx->ctx, (struct lysc_type *)un_aux), LY_EMEM);
lref = (struct lysc_type_leafref *)un->types[u + additional];
lref->basetype = LY_TYPE_LEAFREF;
LY_CHECK_RET(lyxp_expr_dup(ctx->ctx, ((struct lysc_type_leafref *)un_aux->types[v])->path, &lref->path));
lref->refcount = 1;
lref->require_instance = ((struct lysc_type_leafref *)un_aux->types[v])->require_instance;
lref->path_context = ((struct lysc_type_leafref *)un_aux->types[v])->path_context;
/* TODO extensions */
} else {
un->types[u + additional] = un_aux->types[v];
++un_aux->types[v]->refcount;
}
++additional;
LY_ARRAY_INCREMENT(un->types);
}
/* compensate u increment in main loop */
--additional;
/* free the replaced union subtype */
lysc_type_free(ctx->ctx, (struct lysc_type *)un_aux);
} else {
LY_ARRAY_INCREMENT(un->types);
}
}
}
if (!base && !type_p->flags) {
/* type derived from union built-in type must contain at least one type */
if (tpdfname) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "type", "union type ", tpdfname);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_MISSCHILDSTMT, "type", "union type", "");
}
return LY_EVALID;
}
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
case LY_TYPE_UNKNOWN: /* just to complete switch */
break;
}
if (tpdfname) {
switch (basetype) {
case LY_TYPE_BINARY:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_bin));
break;
case LY_TYPE_BITS:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_bits));
break;
case LY_TYPE_DEC64:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_dec));
break;
case LY_TYPE_STRING:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_str));
break;
case LY_TYPE_ENUM:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_enum));
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_num));
break;
case LY_TYPE_IDENT:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_identityref));
break;
case LY_TYPE_LEAFREF:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_leafref));
break;
case LY_TYPE_INST:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_instanceid));
break;
case LY_TYPE_UNION:
type_p->compiled = *type;
*type = calloc(1, sizeof(struct lysc_type_union));
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
case LY_TYPE_UNKNOWN: /* just to complete switch */
break;
}
}
LY_CHECK_ERR_RET(!(*type), LOGMEM(ctx->ctx), LY_EMEM);
cleanup:
return ret;
}
/**
* @brief Compile information about the leaf/leaf-list's type.
* @param[in] ctx Compile context.
* @param[in] context_pnode Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] context_flags Flags of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_mod Module of the context node or the referencing typedef to correctly check status of referencing and referenced objects.
* @param[in] context_name Name of the context node or referencing typedef for logging.
* @param[in] type_p Parsed type to compile.
* @param[out] type Newly created (or reused with increased refcount) type structure with the filled information about the type.
* @param[out] units Storage for inheriting units value from the typedefs the current type derives from.
* @param[out] dflt Default value for the type.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_type(struct lysc_ctx *ctx, struct lysp_node *context_pnode, uint16_t context_flags,
struct lysp_module *context_mod, const char *context_name, struct lysp_type *type_p,
struct lysc_type **type, const char **units, struct lysp_qname **dflt)
{
LY_ERR ret = LY_SUCCESS;
ly_bool dummyloops = 0;
struct type_context {
const struct lysp_tpdf *tpdf;
struct lysp_node *node;
struct lysp_module *mod;
} *tctx, *tctx_prev = NULL, *tctx_iter;
LY_DATA_TYPE basetype = LY_TYPE_UNKNOWN;
struct lysc_type *base = NULL, *prev_type;
struct ly_set tpdf_chain = {0};
(*type) = NULL;
if (dflt) {
*dflt = NULL;
}
tctx = calloc(1, sizeof *tctx);
LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM);
for (ret = lysp_type_find(type_p->name, context_pnode, ctx->mod_def->parsed,
&basetype, &tctx->tpdf, &tctx->node, &tctx->mod);
ret == LY_SUCCESS;
ret = lysp_type_find(tctx_prev->tpdf->type.name, tctx_prev->node, tctx_prev->mod,
&basetype, &tctx->tpdf, &tctx->node, &tctx->mod)) {
if (basetype) {
break;
}
/* check status */
ret = lysc_check_status(ctx, context_flags, context_mod, context_name,
tctx->tpdf->flags, tctx->mod, tctx->node ? tctx->node->name : tctx->tpdf->name);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
if (units && !*units) {
/* inherit units */
DUP_STRING(ctx->ctx, tctx->tpdf->units, *units, ret);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
}
if (dflt && !*dflt && tctx->tpdf->dflt.str) {
/* inherit default */
*dflt = (struct lysp_qname *)&tctx->tpdf->dflt;
assert((*dflt)->mod);
}
if (dummyloops && (!units || *units) && dflt && *dflt) {
basetype = ((struct type_context *)tpdf_chain.objs[tpdf_chain.count - 1])->tpdf->type.compiled->basetype;
break;
}
if (tctx->tpdf->type.compiled) {
/* it is not necessary to continue, the rest of the chain was already compiled,
* but we still may need to inherit default and units values, so start dummy loops */
basetype = tctx->tpdf->type.compiled->basetype;
ret = ly_set_add(&tpdf_chain, tctx, LY_SET_OPT_USEASLIST, NULL);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
if ((units && !*units) || (dflt && !*dflt)) {
dummyloops = 1;
goto preparenext;
} else {
tctx = NULL;
break;
}
}
/* circular typedef reference detection */
for (uint32_t u = 0; u < tpdf_chain.count; u++) {
/* local part */
tctx_iter = (struct type_context *)tpdf_chain.objs[u];
if (tctx_iter->mod == tctx->mod && tctx_iter->node == tctx->node && tctx_iter->tpdf == tctx->tpdf) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid \"%s\" type reference - circular chain of types detected.", tctx->tpdf->name);
free(tctx);
ret = LY_EVALID;
goto cleanup;
}
}
for (uint32_t u = 0; u < ctx->tpdf_chain.count; u++) {
/* global part for unions corner case */
tctx_iter = (struct type_context *)ctx->tpdf_chain.objs[u];
if (tctx_iter->mod == tctx->mod && tctx_iter->node == tctx->node && tctx_iter->tpdf == tctx->tpdf) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid \"%s\" type reference - circular chain of types detected.", tctx->tpdf->name);
free(tctx);
ret = LY_EVALID;
goto cleanup;
}
}
/* store information for the following processing */
ret = ly_set_add(&tpdf_chain, tctx, LY_SET_OPT_USEASLIST, NULL);
LY_CHECK_ERR_GOTO(ret, free(tctx), cleanup);
preparenext:
/* prepare next loop */
tctx_prev = tctx;
tctx = calloc(1, sizeof *tctx);
LY_CHECK_ERR_RET(!tctx, LOGMEM(ctx->ctx), LY_EMEM);
}
free(tctx);
/* allocate type according to the basetype */
switch (basetype) {
case LY_TYPE_BINARY:
*type = calloc(1, sizeof(struct lysc_type_bin));
break;
case LY_TYPE_BITS:
*type = calloc(1, sizeof(struct lysc_type_bits));
break;
case LY_TYPE_BOOL:
case LY_TYPE_EMPTY:
*type = calloc(1, sizeof(struct lysc_type));
break;
case LY_TYPE_DEC64:
*type = calloc(1, sizeof(struct lysc_type_dec));
break;
case LY_TYPE_ENUM:
*type = calloc(1, sizeof(struct lysc_type_enum));
break;
case LY_TYPE_IDENT:
*type = calloc(1, sizeof(struct lysc_type_identityref));
break;
case LY_TYPE_INST:
*type = calloc(1, sizeof(struct lysc_type_instanceid));
break;
case LY_TYPE_LEAFREF:
*type = calloc(1, sizeof(struct lysc_type_leafref));
break;
case LY_TYPE_STRING:
*type = calloc(1, sizeof(struct lysc_type_str));
break;
case LY_TYPE_UNION:
*type = calloc(1, sizeof(struct lysc_type_union));
break;
case LY_TYPE_INT8:
case LY_TYPE_UINT8:
case LY_TYPE_INT16:
case LY_TYPE_UINT16:
case LY_TYPE_INT32:
case LY_TYPE_UINT32:
case LY_TYPE_INT64:
case LY_TYPE_UINT64:
*type = calloc(1, sizeof(struct lysc_type_num));
break;
case LY_TYPE_UNKNOWN:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Referenced type \"%s\" not found.", tctx_prev ? tctx_prev->tpdf->type.name : type_p->name);
ret = LY_EVALID;
goto cleanup;
}
LY_CHECK_ERR_GOTO(!(*type), LOGMEM(ctx->ctx), cleanup);
if (~type_substmt_map[basetype] & type_p->flags) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid type restrictions for %s type.",
ly_data_type2str[basetype]);
free(*type);
(*type) = NULL;
ret = LY_EVALID;
goto cleanup;
}
/* get restrictions from the referred typedefs */
for (uint32_t u = tpdf_chain.count - 1; u + 1 > 0; --u) {
tctx = (struct type_context *)tpdf_chain.objs[u];
/* remember the typedef context for circular check */
ret = ly_set_add(&ctx->tpdf_chain, tctx, LY_SET_OPT_USEASLIST, NULL);
LY_CHECK_GOTO(ret, cleanup);
if (tctx->tpdf->type.compiled) {
base = tctx->tpdf->type.compiled;
continue;
} else if (basetype != LY_TYPE_LEAFREF && (u != tpdf_chain.count - 1) && !(tctx->tpdf->type.flags)) {
/* no change, just use the type information from the base */
base = ((struct lysp_tpdf *)tctx->tpdf)->type.compiled = ((struct type_context *)tpdf_chain.objs[u + 1])->tpdf->type.compiled;
++base->refcount;
continue;
}
++(*type)->refcount;
if (~type_substmt_map[basetype] & tctx->tpdf->type.flags) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid type \"%s\" restriction(s) for %s type.",
tctx->tpdf->name, ly_data_type2str[basetype]);
ret = LY_EVALID;
goto cleanup;
} else if (basetype == LY_TYPE_EMPTY && tctx->tpdf->dflt.str) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid type \"%s\" - \"empty\" type must not have a default value (%s).",
tctx->tpdf->name, tctx->tpdf->dflt.str);
ret = LY_EVALID;
goto cleanup;
}
(*type)->basetype = basetype;
/* TODO user type plugins */
(*type)->plugin = &ly_builtin_type_plugins[basetype];
prev_type = *type;
ret = lys_compile_type_(ctx, tctx->node, tctx->tpdf->flags, tctx->mod, tctx->tpdf->name,
&((struct lysp_tpdf *)tctx->tpdf)->type, basetype, tctx->tpdf->name, base, type);
LY_CHECK_GOTO(ret, cleanup);
base = prev_type;
}
/* remove the processed typedef contexts from the stack for circular check */
ctx->tpdf_chain.count = ctx->tpdf_chain.count - tpdf_chain.count;
/* process the type definition in leaf */
if (type_p->flags || !base || basetype == LY_TYPE_LEAFREF) {
/* get restrictions from the node itself */
(*type)->basetype = basetype;
/* TODO user type plugins */
(*type)->plugin = &ly_builtin_type_plugins[basetype];
++(*type)->refcount;
ret = lys_compile_type_(ctx, context_pnode, context_flags, context_mod, context_name, type_p, basetype, NULL,
base, type);
LY_CHECK_GOTO(ret, cleanup);
} else if (basetype != LY_TYPE_BOOL && basetype != LY_TYPE_EMPTY) {
/* no specific restriction in leaf's type definition, copy from the base */
free(*type);
(*type) = base;
++(*type)->refcount;
}
COMPILE_EXTS_GOTO(ctx, type_p->exts, (*type)->exts, (*type), LYEXT_PAR_TYPE, ret, cleanup);
cleanup:
ly_set_erase(&tpdf_chain, free);
return ret;
}
/**
* @brief Compile status information of the given node.
*
* To simplify getting status of the node, the flags are set following inheritance rules, so all the nodes
* has the status correctly set during the compilation.
*
* @param[in] ctx Compile context
* @param[in,out] node_flags Flags of the compiled node which status is supposed to be resolved.
* If the status was set explicitly on the node, it is already set in the flags value and we just check
* the compatibility with the parent's status value.
* @param[in] parent_flags Flags of the parent node to check/inherit the status value.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_status(struct lysc_ctx *ctx, uint16_t *node_flags, uint16_t parent_flags)
{
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
if (!((*node_flags) & LYS_STATUS_MASK)) {
if (parent_flags & (LYS_STATUS_DEPRC | LYS_STATUS_OBSLT)) {
if ((parent_flags & 0x3) != 0x3) {
/* do not print the warning when inheriting status from uses - the uses_status value has a special
* combination of bits (0x3) which marks the uses_status value */
LOGWRN(ctx->ctx, "Missing explicit \"%s\" status that was already specified in parent, inheriting.",
(parent_flags & LYS_STATUS_DEPRC) ? "deprecated" : "obsolete");
}
(*node_flags) |= parent_flags & LYS_STATUS_MASK;
} else {
(*node_flags) |= LYS_STATUS_CURR;
}
} else if (parent_flags & LYS_STATUS_MASK) {
/* check status compatibility with the parent */
if ((parent_flags & LYS_STATUS_MASK) > ((*node_flags) & LYS_STATUS_MASK)) {
if ((*node_flags) & LYS_STATUS_CURR) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"A \"current\" status is in conflict with the parent's \"%s\" status.",
(parent_flags & LYS_STATUS_DEPRC) ? "deprecated" : "obsolete");
} else { /* LYS_STATUS_DEPRC */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"A \"deprecated\" status is in conflict with the parent's \"obsolete\" status.");
}
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief Check uniqness of the node/action/notification name.
*
* Data nodes, actions/RPCs and Notifications are stored separately (in distinguish lists) in the schema
* structures, but they share the namespace so we need to check their name collisions.
*
* @param[in] ctx Compile context.
* @param[in] parent Parent of the nodes to check, can be NULL.
* @param[in] name Name of the item to find in the given lists.
* @param[in] exclude Node that was just added that should be excluded from the name checking.
* @return LY_SUCCESS in case of unique name, LY_EEXIST otherwise.
*/
static LY_ERR
lys_compile_node_uniqness(struct lysc_ctx *ctx, const struct lysc_node *parent, const char *name,
const struct lysc_node *exclude)
{
const struct lysc_node *iter, *iter2;
const struct lysc_action *actions;
const struct lysc_notif *notifs;
uint32_t getnext_flags;
LY_ARRAY_COUNT_TYPE u;
#define CHECK_NODE(iter, exclude, name) (iter != (void *)exclude && (iter)->module == exclude->module && !strcmp(name, (iter)->name))
if (exclude->nodetype == LYS_CASE) {
/* check restricted only to all the cases */
assert(parent->nodetype == LYS_CHOICE);
LY_LIST_FOR(lysc_node_children(parent, 0), iter) {
if (CHECK_NODE(iter, exclude, name)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPIDENT, name, "case");
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/* no reason for our parent to be choice anymore */
assert(!parent || (parent->nodetype != LYS_CHOICE));
if (parent && (parent->nodetype == LYS_CASE)) {
/* move to the first data definition parent */
parent = lysc_data_parent(parent);
}
getnext_flags = LYS_GETNEXT_NOSTATECHECK | LYS_GETNEXT_WITHCHOICE;
if (parent && (parent->nodetype & (LYS_RPC | LYS_ACTION)) && (exclude->flags & LYS_CONFIG_R)) {
getnext_flags |= LYS_GETNEXT_OUTPUT;
}
iter = NULL;
while ((iter = lys_getnext(iter, parent, ctx->mod->compiled, getnext_flags))) {
if (CHECK_NODE(iter, exclude, name)) {
goto error;
}
/* we must compare with both the choice and all its nested data-definiition nodes (but not recursively) */
if (iter->nodetype == LYS_CHOICE) {
iter2 = NULL;
while ((iter2 = lys_getnext(iter2, iter, NULL, LYS_GETNEXT_NOSTATECHECK))) {
if (CHECK_NODE(iter2, exclude, name)) {
goto error;
}
}
}
}
actions = parent ? lysc_node_actions(parent) : ctx->mod->compiled->rpcs;
LY_ARRAY_FOR(actions, u) {
if (CHECK_NODE(&actions[u], exclude, name)) {
goto error;
}
}
notifs = parent ? lysc_node_notifs(parent) : ctx->mod->compiled->notifs;
LY_ARRAY_FOR(notifs, u) {
if (CHECK_NODE(&notifs[u], exclude, name)) {
goto error;
}
}
return LY_SUCCESS;
error:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPIDENT, name, "data definition/RPC/action/notification");
return LY_EEXIST;
#undef CHECK_NODE
}
static LY_ERR lys_compile_node(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *parent,
uint16_t uses_status, struct ly_set *child_set);
static LY_ERR lys_compile_node_deviations_refines(struct lysc_ctx *ctx, const struct lysp_node *pnode,
const struct lysc_node *parent, struct lysp_node **dev_pnode, ly_bool *not_supported);
static LY_ERR lys_compile_node_augments(struct lysc_ctx *ctx, struct lysc_node *node);
static void lysp_dev_node_free(const struct ly_ctx *ctx, struct lysp_node *dev_pnode);
/**
* @brief Compile parsed RPC/action schema node information.
* @param[in] ctx Compile context
* @param[in] action_p Parsed RPC/action schema node.
* @param[in] parent Parent node of the action, NULL in case of RPC (top-level action)
* @param[in,out] action Prepared (empty) compiled action structure to fill.
* @param[in] uses_status If the RPC/action is being placed instead of uses, here we have the uses's status value (as node's flags).
* Zero means no uses, non-zero value with no status bit set mean the default status.
* @return LY_SUCCESS on success,
* @return LY_EVALID on validation error,
* @return LY_EDENIED on not-supported deviation.
*/
static LY_ERR
lys_compile_action(struct lysc_ctx *ctx, struct lysp_action *action_p,
struct lysc_node *parent, struct lysc_action *action, uint16_t uses_status)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *child_p, *dev_pnode = NULL, *dev_input_p = NULL, *dev_output_p = NULL;
struct lysp_action *orig_action_p = action_p;
struct lysp_action_inout *inout_p;
LY_ARRAY_COUNT_TYPE u;
ly_bool not_supported;
uint32_t opt_prev = ctx->options;
lysc_update_path(ctx, parent, action_p->name);
/* apply deviation on the action/RPC */
LY_CHECK_RET(lys_compile_node_deviations_refines(ctx, (struct lysp_node *)action_p, parent, &dev_pnode, &not_supported));
if (not_supported) {
lysc_update_path(ctx, NULL, NULL);
return LY_EDENIED;
} else if (dev_pnode) {
action_p = (struct lysp_action *)dev_pnode;
}
/* member needed for uniqueness check lys_getnext() */
action->nodetype = parent ? LYS_ACTION : LYS_RPC;
action->module = ctx->mod;
action->parent = parent;
LY_CHECK_RET(lys_compile_node_uniqness(ctx, parent, action_p->name, (struct lysc_node *)action));
if (ctx->options & (LYSC_OPT_RPC_MASK | LYSC_OPT_NOTIFICATION)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Action \"%s\" is placed inside %s.", action_p->name,
ctx->options & LYSC_OPT_RPC_MASK ? "another RPC/action" : "notification");
return LY_EVALID;
}
if (!(ctx->options & LYSC_OPT_FREE_SP)) {
action->sp = orig_action_p;
}
action->flags = action_p->flags & LYS_FLAGS_COMPILED_MASK;
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
LY_CHECK_RET(lys_compile_status(ctx, &action->flags, uses_status ? uses_status : (parent ? parent->flags : 0)));
DUP_STRING_GOTO(ctx->ctx, action_p->name, action->name, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, action_p->dsc, action->dsc, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, action_p->ref, action->ref, ret, cleanup);
COMPILE_ARRAY_GOTO(ctx, action_p->iffeatures, action->iffeatures, u, lys_compile_iffeature, ret, cleanup);
COMPILE_EXTS_GOTO(ctx, action_p->exts, action->exts, action, LYEXT_PAR_NODE, ret, cleanup);
/* connect any action augments */
LY_CHECK_RET(lys_compile_node_augments(ctx, (struct lysc_node *)action));
/* input */
lysc_update_path(ctx, (struct lysc_node *)action, "input");
/* apply deviations on input */
LY_CHECK_RET(lys_compile_node_deviations_refines(ctx, (struct lysp_node *)&action_p->input, (struct lysc_node *)action,
&dev_input_p, &not_supported));
if (not_supported) {
inout_p = NULL;
} else if (dev_input_p) {
inout_p = (struct lysp_action_inout *)dev_input_p;
} else {
inout_p = &action_p->input;
}
if (inout_p) {
action->input.nodetype = LYS_INPUT;
COMPILE_ARRAY_GOTO(ctx, inout_p->musts, action->input.musts, u, lys_compile_must, ret, cleanup);
COMPILE_EXTS_GOTO(ctx, inout_p->exts, action->input_exts, &action->input, LYEXT_PAR_INPUT, ret, cleanup);
ctx->options |= LYSC_OPT_RPC_INPUT;
/* connect any input augments */
LY_CHECK_RET(lys_compile_node_augments(ctx, (struct lysc_node *)&action->input));
LY_LIST_FOR(inout_p->data, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, (struct lysc_node *)action, uses_status, NULL));
}
ctx->options = opt_prev;
}
lysc_update_path(ctx, NULL, NULL);
/* output */
lysc_update_path(ctx, (struct lysc_node *)action, "output");
/* apply deviations on output */
LY_CHECK_RET(lys_compile_node_deviations_refines(ctx, (struct lysp_node *)&action_p->output, (struct lysc_node *)action,
&dev_output_p, &not_supported));
if (not_supported) {
inout_p = NULL;
} else if (dev_output_p) {
inout_p = (struct lysp_action_inout *)dev_output_p;
} else {
inout_p = &action_p->output;
}
if (inout_p) {
action->output.nodetype = LYS_OUTPUT;
COMPILE_ARRAY_GOTO(ctx, inout_p->musts, action->output.musts, u, lys_compile_must, ret, cleanup);
COMPILE_EXTS_GOTO(ctx, inout_p->exts, action->output_exts, &action->output, LYEXT_PAR_OUTPUT, ret, cleanup);
ctx->options |= LYSC_OPT_RPC_OUTPUT;
/* connect any output augments */
LY_CHECK_RET(lys_compile_node_augments(ctx, (struct lysc_node *)&action->output));
LY_LIST_FOR(inout_p->data, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, (struct lysc_node *)action, uses_status, NULL));
}
ctx->options = opt_prev;
}
lysc_update_path(ctx, NULL, NULL);
if ((action->input.musts || action->output.musts) && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, action, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
lysc_update_path(ctx, NULL, NULL);
cleanup:
lysp_dev_node_free(ctx->ctx, dev_pnode);
lysp_dev_node_free(ctx->ctx, dev_input_p);
lysp_dev_node_free(ctx->ctx, dev_output_p);
ctx->options = opt_prev;
return ret;
}
/**
* @brief Compile parsed Notification schema node information.
* @param[in] ctx Compile context
* @param[in] notif_p Parsed Notification schema node.
* @param[in] parent Parent node of the Notification, NULL in case of top-level Notification
* @param[in,out] notif Prepared (empty) compiled notification structure to fill.
* @param[in] uses_status If the Notification is being placed instead of uses, here we have the uses's status value (as node's flags).
* Zero means no uses, non-zero value with no status bit set mean the default status.
* @return LY_SUCCESS on success,
* @return LY_EVALID on validation error,
* @return LY_EDENIED on not-supported deviation.
*/
static LY_ERR
lys_compile_notif(struct lysc_ctx *ctx, struct lysp_notif *notif_p,
struct lysc_node *parent, struct lysc_notif *notif, uint16_t uses_status)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *child_p, *dev_pnode = NULL;
struct lysp_notif *orig_notif_p = notif_p;
LY_ARRAY_COUNT_TYPE u;
ly_bool not_supported;
uint32_t opt_prev = ctx->options;
lysc_update_path(ctx, parent, notif_p->name);
LY_CHECK_RET(lys_compile_node_deviations_refines(ctx, (struct lysp_node *)notif_p, parent, &dev_pnode, &not_supported));
if (not_supported) {
lysc_update_path(ctx, NULL, NULL);
return LY_EDENIED;
} else if (dev_pnode) {
notif_p = (struct lysp_notif *)dev_pnode;
}
/* member needed for uniqueness check lys_getnext() */
notif->nodetype = LYS_NOTIF;
notif->module = ctx->mod;
notif->parent = parent;
LY_CHECK_RET(lys_compile_node_uniqness(ctx, parent, notif_p->name, (struct lysc_node *)notif));
if (ctx->options & (LYSC_OPT_RPC_MASK | LYSC_OPT_NOTIFICATION)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Notification \"%s\" is placed inside %s.", notif_p->name,
ctx->options & LYSC_OPT_RPC_MASK ? "RPC/action" : "another notification");
return LY_EVALID;
}
if (!(ctx->options & LYSC_OPT_FREE_SP)) {
notif->sp = orig_notif_p;
}
notif->flags = notif_p->flags & LYS_FLAGS_COMPILED_MASK;
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
ret = lys_compile_status(ctx, &notif->flags, uses_status ? uses_status : (parent ? parent->flags : 0));
LY_CHECK_GOTO(ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, notif_p->name, notif->name, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, notif_p->dsc, notif->dsc, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, notif_p->ref, notif->ref, ret, cleanup);
COMPILE_ARRAY_GOTO(ctx, notif_p->iffeatures, notif->iffeatures, u, lys_compile_iffeature, ret, cleanup);
COMPILE_ARRAY_GOTO(ctx, notif_p->musts, notif->musts, u, lys_compile_must, ret, cleanup);
if (notif_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, notif, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
COMPILE_EXTS_GOTO(ctx, notif_p->exts, notif->exts, notif, LYEXT_PAR_NODE, ret, cleanup);
ctx->options |= LYSC_OPT_NOTIFICATION;
/* connect any notification augments */
LY_CHECK_RET(lys_compile_node_augments(ctx, (struct lysc_node *)notif));
LY_LIST_FOR(notif_p->data, child_p) {
ret = lys_compile_node(ctx, child_p, (struct lysc_node *)notif, uses_status, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
lysc_update_path(ctx, NULL, NULL);
cleanup:
lysp_dev_node_free(ctx->ctx, dev_pnode);
ctx->options = opt_prev;
return ret;
}
/**
* @brief Compile parsed container node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed container node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the container-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_container(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_container *cont_p = (struct lysp_node_container *)pnode;
struct lysc_node_container *cont = (struct lysc_node_container *)node;
struct lysp_node *child_p;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
if (cont_p->presence) {
/* explicit presence */
cont->flags |= LYS_PRESENCE;
} else if (cont_p->musts) {
/* container with a must condition */
LOGWRN(ctx->ctx, "Container \"%s\" changed to presence because it has a meaning from its \"must\" condition.", cont_p->name);
cont->flags |= LYS_PRESENCE;
} else if (cont_p->when) {
/* container with a when condition */
LOGWRN(ctx->ctx, "Container \"%s\" changed to presence because it has a meaning from its \"when\" condition.", cont_p->name);
cont->flags |= LYS_PRESENCE;
} else if (cont_p->parent) {
if (cont_p->parent->nodetype == LYS_CHOICE) {
/* container is an implicit case, so its existence decides the existence of the whole case */
LOGWRN(ctx->ctx, "Container \"%s\" changed to presence because it has a meaning as a case of choice \"%s\".",
cont_p->name, cont_p->parent->name);
cont->flags |= LYS_PRESENCE;
} else if ((cont_p->parent->nodetype == LYS_CASE)
&& (((struct lysp_node_case *)cont_p->parent)->child == pnode) && !cont_p->next) {
/* container is the only node in a case, so its existence decides the existence of the whole case */
LOGWRN(ctx->ctx, "Container \"%s\" changed to presence because it has a meaning as a case of choice \"%s\".",
cont_p->name, cont_p->parent->name);
cont->flags |= LYS_PRESENCE;
}
}
/* more cases when the container has meaning but is kept NP for convenience:
* - when condition
* - direct child action/notification
*/
LY_LIST_FOR(cont_p->child, child_p) {
ret = lys_compile_node(ctx, child_p, node, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
COMPILE_ARRAY_GOTO(ctx, cont_p->musts, cont->musts, u, lys_compile_must, ret, done);
if (cont_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, cont, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
COMPILE_OP_ARRAY_GOTO(ctx, cont_p->actions, cont->actions, node, u, lys_compile_action, 0, ret, done);
COMPILE_OP_ARRAY_GOTO(ctx, cont_p->notifs, cont->notifs, node, u, lys_compile_notif, 0, ret, done);
done:
return ret;
}
/*
* @brief Compile type in leaf/leaf-list node and do all the necessary checks.
* @param[in] ctx Compile context.
* @param[in] context_node Schema node where the type/typedef is placed to correctly find the base types.
* @param[in] type_p Parsed type to compile.
* @param[in,out] leaf Compiled leaf structure (possibly cast leaf-list) to provide node information and to store the compiled type information.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_type(struct lysc_ctx *ctx, struct lysp_node *context_node, struct lysp_type *type_p,
struct lysc_node_leaf *leaf)
{
struct lysp_qname *dflt;
LY_CHECK_RET(lys_compile_type(ctx, context_node, leaf->flags, ctx->mod_def->parsed, leaf->name, type_p, &leaf->type,
leaf->units ? NULL : &leaf->units, &dflt));
/* store default value, if any */
if (dflt && !(leaf->flags & LYS_SET_DFLT)) {
LY_CHECK_RET(lysc_unres_leaf_dflt_add(ctx, leaf, dflt));
}
if (leaf->type->basetype == LY_TYPE_LEAFREF) {
/* store to validate the path in the current context at the end of schema compiling when all the nodes are present */
LY_CHECK_RET(ly_set_add(&ctx->leafrefs, leaf, 0, NULL));
} else if (leaf->type->basetype == LY_TYPE_UNION) {
LY_ARRAY_COUNT_TYPE u;
LY_ARRAY_FOR(((struct lysc_type_union *)leaf->type)->types, u) {
if (((struct lysc_type_union *)leaf->type)->types[u]->basetype == LY_TYPE_LEAFREF) {
/* store to validate the path in the current context at the end of schema compiling when all the nodes are present */
LY_CHECK_RET(ly_set_add(&ctx->leafrefs, leaf, 0, NULL));
}
}
} else if (leaf->type->basetype == LY_TYPE_EMPTY) {
if (leaf->nodetype == LYS_LEAFLIST && ctx->mod_def->version < LYS_VERSION_1_1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leaf-list of type \"empty\" is allowed only in YANG 1.1 modules.");
return LY_EVALID;
}
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed leaf node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed leaf node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the leaf-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_leaf(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_leaf *leaf_p = (struct lysp_node_leaf *)pnode;
struct lysc_node_leaf *leaf = (struct lysc_node_leaf *)node;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, leaf_p->musts, leaf->musts, u, lys_compile_must, ret, done);
if (leaf_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, leaf, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
if (leaf_p->units) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, leaf_p->units, 0, &leaf->units), done);
leaf->flags |= LYS_SET_UNITS;
}
/* compile type */
ret = lys_compile_node_type(ctx, pnode, &leaf_p->type, leaf);
LY_CHECK_GOTO(ret, done);
/* store/update default value */
if (leaf_p->dflt.str) {
LY_CHECK_RET(lysc_unres_leaf_dflt_add(ctx, leaf, &leaf_p->dflt));
leaf->flags |= LYS_SET_DFLT;
}
/* checks */
if ((leaf->flags & LYS_SET_DFLT) && (leaf->flags & LYS_MAND_TRUE)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid mandatory leaf with a default value.");
return LY_EVALID;
}
done:
return ret;
}
/**
* @brief Compile parsed leaf-list node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed leaf-list node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the leaf-list-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_leaflist(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_leaflist *llist_p = (struct lysp_node_leaflist *)pnode;
struct lysc_node_leaflist *llist = (struct lysc_node_leaflist *)node;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, llist_p->musts, llist->musts, u, lys_compile_must, ret, done);
if (llist_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, llist, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
if (llist_p->units) {
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, llist_p->units, 0, &llist->units), done);
llist->flags |= LYS_SET_UNITS;
}
/* compile type */
ret = lys_compile_node_type(ctx, pnode, &llist_p->type, (struct lysc_node_leaf *)llist);
LY_CHECK_GOTO(ret, done);
/* store/update default values */
if (llist_p->dflts) {
if (ctx->mod_def->version < LYS_VERSION_1_1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Leaf-list default values are allowed only in YANG 1.1 modules.");
return LY_EVALID;
}
LY_CHECK_GOTO(lysc_unres_llist_dflts_add(ctx, llist, llist_p->dflts), done);
llist->flags |= LYS_SET_DFLT;
}
llist->min = llist_p->min;
if (llist->min) {
llist->flags |= LYS_MAND_TRUE;
}
llist->max = llist_p->max ? llist_p->max : (uint32_t)-1;
/* checks */
if ((llist->flags & LYS_SET_DFLT) && (llist->flags & LYS_MAND_TRUE)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid mandatory leaf-list with default value(s).");
return LY_EVALID;
}
if (llist->min > llist->max) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Leaf-list min-elements %u is bigger than max-elements %u.",
llist->min, llist->max);
return LY_EVALID;
}
done:
return ret;
}
/**
* @brief Compile information about list's uniques.
* @param[in] ctx Compile context.
* @param[in] uniques Sized array list of unique statements.
* @param[in] list Compiled list where the uniques are supposed to be resolved and stored.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_list_unique(struct lysc_ctx *ctx, struct lysp_qname *uniques, struct lysc_node_list *list)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_node_leaf **key, ***unique;
struct lysc_node *parent;
const char *keystr, *delim;
size_t len;
LY_ARRAY_COUNT_TYPE v;
int8_t config; /* -1 - not yet seen; 0 - LYS_CONFIG_R; 1 - LYS_CONFIG_W */
uint16_t flags;
LY_ARRAY_FOR(uniques, v) {
config = -1;
LY_ARRAY_NEW_RET(ctx->ctx, list->uniques, unique, LY_EMEM);
keystr = uniques[v].str;
while (keystr) {
delim = strpbrk(keystr, " \t\n");
if (delim) {
len = delim - keystr;
while (isspace(*delim)) {
++delim;
}
} else {
len = strlen(keystr);
}
/* unique node must be present */
LY_ARRAY_NEW_RET(ctx->ctx, *unique, key, LY_EMEM);
ret = lysc_resolve_schema_nodeid(ctx, keystr, len, (struct lysc_node *)list, uniques[v].mod, LYS_LEAF,
(const struct lysc_node **)key, &flags);
if (ret != LY_SUCCESS) {
if (ret == LY_EDENIED) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Unique's descendant-schema-nodeid \"%.*s\" refers to %s node instead of a leaf.",
len, keystr, lys_nodetype2str((*key)->nodetype));
}
return LY_EVALID;
} else if (flags) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Unique's descendant-schema-nodeid \"%.*s\" refers into %s node.",
len, keystr, flags & LYSC_OPT_NOTIFICATION ? "notification" : "RPC/action");
return LY_EVALID;
}
/* all referenced leafs must be of the same config type */
if (config != -1 && ((((*key)->flags & LYS_CONFIG_W) && config == 0) || (((*key)->flags & LYS_CONFIG_R) && config == 1))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Unique statement \"%s\" refers to leaves with different config type.", uniques[v].str);
return LY_EVALID;
} else if ((*key)->flags & LYS_CONFIG_W) {
config = 1;
} else { /* LYS_CONFIG_R */
config = 0;
}
/* we forbid referencing nested lists because it is unspecified what instance of such a list to use */
for (parent = (*key)->parent; parent != (struct lysc_node *)list; parent = parent->parent) {
if (parent->nodetype == LYS_LIST) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Unique statement \"%s\" refers to a leaf in nested list \"%s\".", uniques[v].str, parent->name);
return LY_EVALID;
}
}
/* check status */
LY_CHECK_RET(lysc_check_status(ctx, list->flags, list->module, list->name,
(*key)->flags, (*key)->module, (*key)->name));
/* mark leaf as unique */
(*key)->flags |= LYS_UNIQUE;
/* next unique value in line */
keystr = delim;
}
/* next unique definition */
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed list node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed list node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the list-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_list(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_list *list_p = (struct lysp_node_list *)pnode;
struct lysc_node_list *list = (struct lysc_node_list *)node;
struct lysp_node *child_p;
struct lysc_node_leaf *key, *prev_key = NULL;
size_t len;
LY_ARRAY_COUNT_TYPE u;
const char *keystr, *delim;
LY_ERR ret = LY_SUCCESS;
list->min = list_p->min;
if (list->min) {
list->flags |= LYS_MAND_TRUE;
}
list->max = list_p->max ? list_p->max : (uint32_t)-1;
LY_LIST_FOR(list_p->child, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, node, 0, NULL));
}
COMPILE_ARRAY_GOTO(ctx, list_p->musts, list->musts, u, lys_compile_must, ret, done);
if (list_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
LY_CHECK_RET(ly_set_add(&ctx->xpath, list, 0, NULL));
}
/* keys */
if ((list->flags & LYS_CONFIG_W) && (!list_p->key || !list_p->key[0])) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Missing key in list representing configuration data.");
return LY_EVALID;
}
/* find all the keys (must be direct children) */
keystr = list_p->key;
if (!keystr) {
/* keyless list */
list->flags |= LYS_KEYLESS;
}
while (keystr) {
delim = strpbrk(keystr, " \t\n");
if (delim) {
len = delim - keystr;
while (isspace(*delim)) {
++delim;
}
} else {
len = strlen(keystr);
}
/* key node must be present */
key = (struct lysc_node_leaf *)lys_find_child(node, node->module, keystr, len, LYS_LEAF, LYS_GETNEXT_NOCHOICE | LYS_GETNEXT_NOSTATECHECK);
if (!(key)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"The list's key \"%.*s\" not found.", len, keystr);
return LY_EVALID;
}
/* keys must be unique */
if (key->flags & LYS_KEY) {
/* the node was already marked as a key */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Duplicated key identifier \"%.*s\".", len, keystr);
return LY_EVALID;
}
lysc_update_path(ctx, (struct lysc_node *)list, key->name);
/* key must have the same config flag as the list itself */
if ((list->flags & LYS_CONFIG_MASK) != (key->flags & LYS_CONFIG_MASK)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Key of the configuration list must not be status leaf.");
return LY_EVALID;
}
if (ctx->mod_def->version < LYS_VERSION_1_1) {
/* YANG 1.0 denies key to be of empty type */
if (key->type->basetype == LY_TYPE_EMPTY) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"List's key cannot be of \"empty\" type until it is in YANG 1.1 module.");
return LY_EVALID;
}
} else {
/* when and if-feature are illegal on list keys */
if (key->when) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"List's key must not have any \"when\" statement.");
return LY_EVALID;
}
if (key->iffeatures) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"List's key must not have any \"if-feature\" statement.");
return LY_EVALID;
}
}
/* check status */
LY_CHECK_RET(lysc_check_status(ctx, list->flags, list->module, list->name,
key->flags, key->module, key->name));
/* ignore default values of the key */
if (key->dflt) {
key->dflt->realtype->plugin->free(ctx->ctx, key->dflt);
lysc_type_free(ctx->ctx, (struct lysc_type *)key->dflt->realtype);
free(key->dflt);
key->dflt = NULL;
}
/* mark leaf as key */
key->flags |= LYS_KEY;
/* move it to the correct position */
if ((prev_key && (struct lysc_node *)prev_key != key->prev) || (!prev_key && key->prev->next)) {
/* fix links in closest previous siblings of the key */
if (key->next) {
key->next->prev = key->prev;
} else {
/* last child */
list->child->prev = key->prev;
}
if (key->prev->next) {
key->prev->next = key->next;
}
/* fix links in the key */
if (prev_key) {
key->prev = (struct lysc_node *)prev_key;
key->next = prev_key->next;
} else {
key->prev = list->child->prev;
key->next = list->child;
}
/* fix links in closes future siblings of the key */
if (prev_key) {
if (prev_key->next) {
prev_key->next->prev = (struct lysc_node *)key;
} else {
list->child->prev = (struct lysc_node *)key;
}
prev_key->next = (struct lysc_node *)key;
} else {
list->child->prev = (struct lysc_node *)key;
}
/* fix links in parent */
if (!key->prev->next) {
list->child = (struct lysc_node *)key;
}
}
/* next key value */
prev_key = key;
keystr = delim;
lysc_update_path(ctx, NULL, NULL);
}
/* uniques */
if (list_p->uniques) {
LY_CHECK_RET(lys_compile_node_list_unique(ctx, list_p->uniques, list));
}
COMPILE_OP_ARRAY_GOTO(ctx, list_p->actions, list->actions, node, u, lys_compile_action, 0, ret, done);
COMPILE_OP_ARRAY_GOTO(ctx, list_p->notifs, list->notifs, node, u, lys_compile_notif, 0, ret, done);
/* checks */
if (list->min > list->max) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "List min-elements %u is bigger than max-elements %u.",
list->min, list->max);
return LY_EVALID;
}
done:
return ret;
}
/**
* @brief Do some checks and set the default choice's case.
*
* Selects (and stores into ::lysc_node_choice#dflt) the default case and set LYS_SET_DFLT flag on it.
*
* @param[in] ctx Compile context.
* @param[in] dflt Name of the default branch. Can even contain a prefix.
* @param[in,out] ch The compiled choice node, its dflt member is filled to point to the default case node of the choice.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_choice_dflt(struct lysc_ctx *ctx, struct lysp_qname *dflt, struct lysc_node_choice *ch)
{
struct lysc_node *iter, *node = (struct lysc_node *)ch;
const struct lys_module *mod;
const char *prefix = NULL, *name;
size_t prefix_len = 0;
/* could use lys_parse_nodeid(), but it checks syntax which is already done in this case by the parsers */
name = strchr(dflt->str, ':');
if (name) {
prefix = dflt->str;
prefix_len = name - prefix;
++name;
} else {
name = dflt->str;
}
if (prefix) {
mod = ly_resolve_prefix(ctx->ctx, prefix, prefix_len, LY_PREF_SCHEMA, (void *)dflt->mod);
if (!mod) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Default case prefix \"%.*s\" not found in imports of \"%s\".", prefix_len, prefix, dflt->mod->name);
return LY_EVALID;
}
} else {
mod = node->module;
}
ch->dflt = (struct lysc_node_case *)lys_find_child(node, mod, name, 0, LYS_CASE, LYS_GETNEXT_NOSTATECHECK | LYS_GETNEXT_WITHCASE);
if (!ch->dflt) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Default case \"%s\" not found.", dflt->str);
return LY_EVALID;
}
/* no mandatory nodes directly under the default case */
LY_LIST_FOR(ch->dflt->child, iter) {
if (iter->parent != (struct lysc_node *)ch->dflt) {
break;
}
if (iter->flags & LYS_MAND_TRUE) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Mandatory node \"%s\" under the default case \"%s\".", iter->name, dflt->str);
return LY_EVALID;
}
}
if (ch->flags & LYS_MAND_TRUE) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Invalid mandatory choice with a default case.");
return LY_EVALID;
}
ch->dflt->flags |= LYS_SET_DFLT;
return LY_SUCCESS;
}
/**
* @brief Compile choice children.
*
* @param[in] ctx Compile context
* @param[in] child_p Parsed choice children nodes.
* @param[in] node Compiled choice node to compile and add children to.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_choice_child(struct lysc_ctx *ctx, struct lysp_node *child_p, struct lysc_node *node,
struct ly_set *child_set)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *child_p_next = child_p->next;
struct lysp_node_case *cs_p;
if (child_p->nodetype == LYS_CASE) {
/* standard case under choice */
ret = lys_compile_node(ctx, child_p, node, 0, child_set);
} else {
/* we need the implicit case first, so create a fake parsed case */
cs_p = calloc(1, sizeof *cs_p);
cs_p->nodetype = LYS_CASE;
DUP_STRING_GOTO(ctx->ctx, child_p->name, cs_p->name, ret, free_fake_node);
cs_p->child = child_p;
/* make the child the only case child */
child_p->next = NULL;
/* compile it normally */
ret = lys_compile_node(ctx, (struct lysp_node *)cs_p, node, 0, child_set);
free_fake_node:
/* free the fake parsed node and correct pointers back */
cs_p->child = NULL;
lysp_node_free(ctx->ctx, (struct lysp_node *)cs_p);
child_p->next = child_p_next;
}
return ret;
}
/**
* @brief Compile parsed choice node information.
*
* @param[in] ctx Compile context
* @param[in] pnode Parsed choice node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the choice-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_choice(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_choice *ch_p = (struct lysp_node_choice *)pnode;
struct lysc_node_choice *ch = (struct lysc_node_choice *)node;
struct lysp_node *child_p;
LY_ERR ret = LY_SUCCESS;
assert(node->nodetype == LYS_CHOICE);
LY_LIST_FOR(ch_p->child, child_p) {
LY_CHECK_RET(lys_compile_node_choice_child(ctx, child_p, node, NULL));
}
/* default branch */
if (ch_p->dflt.str) {
LY_CHECK_RET(lys_compile_node_choice_dflt(ctx, &ch_p->dflt, ch));
}
return ret;
}
/**
* @brief Compile parsed anydata or anyxml node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed anydata or anyxml node.
* @param[in,out] node Pre-prepared structure from lys_compile_node() with filled generic node information
* is enriched with the any-specific information.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node_any(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node_anydata *any_p = (struct lysp_node_anydata *)pnode;
struct lysc_node_anydata *any = (struct lysc_node_anydata *)node;
LY_ARRAY_COUNT_TYPE u;
LY_ERR ret = LY_SUCCESS;
COMPILE_ARRAY_GOTO(ctx, any_p->musts, any->musts, u, lys_compile_must, ret, done);
if (any_p->musts && !(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "must" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, any, 0, NULL);
LY_CHECK_GOTO(ret, done);
}
if (any->flags & LYS_CONFIG_W) {
LOGWRN(ctx->ctx, "Use of %s to define configuration data is not recommended. %s",
ly_stmt2str(any->nodetype == LYS_ANYDATA ? LY_STMT_ANYDATA : LY_STMT_ANYXML), ctx->path);
}
done:
return ret;
}
/**
* @brief Connect the node into the siblings list and check its name uniqueness. Also,
* keep specific order of augments targetting the same node.
*
* @param[in] ctx Compile context
* @param[in] parent Parent node holding the children list, in case of node from a choice's case,
* the choice itself is expected instead of a specific case node.
* @param[in] node Schema node to connect into the list.
* @return LY_ERR value - LY_SUCCESS or LY_EEXIST.
* In case of LY_EEXIST, the node is actually kept in the tree, so do not free it directly.
*/
static LY_ERR
lys_compile_node_connect(struct lysc_ctx *ctx, struct lysc_node *parent, struct lysc_node *node)
{
struct lysc_node **children, *anchor = NULL;
int insert_after = 0;
node->parent = parent;
if (parent) {
if (parent->nodetype == LYS_CHOICE) {
assert(node->nodetype == LYS_CASE);
children = (struct lysc_node **)&((struct lysc_node_choice *)parent)->cases;
} else {
children = lysc_node_children_p(parent, ctx->options);
}
assert(children);
if (!(*children)) {
/* first child */
*children = node;
} else if (node->flags & LYS_KEY) {
/* special handling of adding keys */
assert(node->module == parent->module);
anchor = *children;
if (anchor->flags & LYS_KEY) {
while ((anchor->flags & LYS_KEY) && anchor->next) {
anchor = anchor->next;
}
/* insert after the last key */
insert_after = 1;
} /* else insert before anchor (at the beginning) */
} else if ((*children)->prev->module == node->module) {
/* last child is from the same module, keep the order and insert at the end */
anchor = (*children)->prev;
insert_after = 1;
} else if (parent->module == node->module) {
/* adding module child after some augments were connected */
for (anchor = *children; anchor->module == node->module; anchor = anchor->next) {}
} else {
/* some augments are already connected and we are connecting new ones,
* keep module name order and insert the node into the children list */
anchor = *children;
do {
anchor = anchor->prev;
/* check that we have not found the last augment node from our module or
* the first augment node from a "smaller" module or
* the first node from a local module */
if ((anchor->module == node->module) || (strcmp(anchor->module->name, node->module->name) < 0)
|| (anchor->module == parent->module)) {
/* insert after */
insert_after = 1;
break;
}
/* we have traversed all the nodes, insert before anchor (as the first node) */
} while (anchor->prev->next);
}
/* insert */
if (anchor) {
if (insert_after) {
node->next = anchor->next;
node->prev = anchor;
anchor->next = node;
if (node->next) {
/* middle node */
node->next->prev = node;
} else {
/* last node */
(*children)->prev = node;
}
} else {
node->next = anchor;
node->prev = anchor->prev;
anchor->prev = node;
if (anchor == *children) {
/* first node */
*children = node;
} else {
/* middle node */
node->prev->next = node;
}
}
}
/* check the name uniqueness (even for an only child, it may be in case) */
if (lys_compile_node_uniqness(ctx, parent, node->name, node)) {
return LY_EEXIST;
}
} else {
/* top-level element */
if (!ctx->mod->compiled->data) {
ctx->mod->compiled->data = node;
} else {
/* insert at the end of the module's top-level nodes list */
ctx->mod->compiled->data->prev->next = node;
node->prev = ctx->mod->compiled->data->prev;
ctx->mod->compiled->data->prev = node;
}
/* check the name uniqueness on top-level */
if (lys_compile_node_uniqness(ctx, NULL, node->name, node)) {
return LY_EEXIST;
}
}
return LY_SUCCESS;
}
/**
* @brief Prepare the case structure in choice node for the new data node.
*
* It is able to handle implicit as well as explicit cases and the situation when the case has multiple data nodes and the case was already
* created in the choice when the first child was processed.
*
* @param[in] ctx Compile context.
* @param[in] pnode Node image from the parsed tree. If the case is explicit, it is the LYS_CASE node, but in case of implicit case,
* it is the LYS_CHOICE, LYS_AUGMENT or LYS_GROUPING node.
* @param[in] ch The compiled choice structure where the new case structures are created (if needed).
* @param[in] child The new data node being part of a case (no matter if explicit or implicit).
* @return The case structure where the child node belongs to, NULL in case of error. Note that the child is not connected into the siblings list,
* it is linked from the case structure only in case it is its first child.
*/
static LY_ERR
lys_compile_node_case(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *node)
{
struct lysp_node *child_p;
struct lysp_node_case *cs_p = (struct lysp_node_case *)pnode;
if (pnode->nodetype & (LYS_CHOICE | LYS_AUGMENT | LYS_GROUPING)) {
/* we have to add an implicit case node into the parent choice */
} else if (pnode->nodetype == LYS_CASE) {
/* explicit parent case */
LY_LIST_FOR(cs_p->child, child_p) {
LY_CHECK_RET(lys_compile_node(ctx, child_p, node, 0, NULL));
}
} else {
LOGINT_RET(ctx->ctx);
}
return LY_SUCCESS;
}
/**
* @brief Set LYS_MAND_TRUE flag for the non-presence container parents.
*
* A non-presence container is mandatory in case it has at least one mandatory children. This function propagate
* the flag to such parents from a mandatory children.
*
* @param[in] parent A schema node to be examined if the mandatory child make it also mandatory.
* @param[in] add Flag to distinguish adding the mandatory flag (new mandatory children appeared) or removing the flag
* (mandatory children was removed).
*/
static void
lys_compile_mandatory_parents(struct lysc_node *parent, ly_bool add)
{
struct lysc_node *iter;
if (add) { /* set flag */
for ( ; parent && parent->nodetype == LYS_CONTAINER && !(parent->flags & LYS_MAND_TRUE) && !(parent->flags & LYS_PRESENCE);
parent = parent->parent) {
parent->flags |= LYS_MAND_TRUE;
}
} else { /* unset flag */
for ( ; parent && parent->nodetype == LYS_CONTAINER && (parent->flags & LYS_MAND_TRUE); parent = parent->parent) {
for (iter = (struct lysc_node *)lysc_node_children(parent, 0); iter; iter = iter->next) {
if (iter->flags & LYS_MAND_TRUE) {
/* there is another mandatory node */
return;
}
}
/* unset mandatory flag - there is no mandatory children in the non-presence container */
parent->flags &= ~LYS_MAND_TRUE;
}
}
}
/**
* @brief Compile the parsed augment connecting it into its target.
*
* It is expected that all the data referenced in path are present - augments are ordered so that augment B
* targeting data from augment A is being compiled after augment A. Also the modules referenced in the path
* are already implemented and compiled.
*
* @param[in] ctx Compile context.
* @param[in] aug_p Parsed augment to compile.
* @param[in] target Target node of the augment.
* @return LY_SUCCESS on success.
* @return LY_EVALID on failure.
*/
static LY_ERR
lys_compile_augment(struct lysc_ctx *ctx, struct lysp_augment *aug_p, struct lysc_node *target)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node *pnode;
struct lysc_node *node;
struct lysc_when **when, *when_shared;
ly_bool allow_mandatory = 0;
LY_ARRAY_COUNT_TYPE u;
struct ly_set child_set = {0};
uint32_t i;
if (!(target->nodetype & (LYS_CONTAINER | LYS_LIST | LYS_CHOICE | LYS_CASE | LYS_INPUT | LYS_OUTPUT | LYS_NOTIF))) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Augment's %s-schema-nodeid \"%s\" refers to a %s node which is not an allowed augment's target.",
aug_p->nodeid[0] == '/' ? "absolute" : "descendant", aug_p->nodeid, lys_nodetype2str(target->nodetype));
ret = LY_EVALID;
goto cleanup;
}
/* check for mandatory nodes
* - new cases augmenting some choice can have mandatory nodes
* - mandatory nodes are allowed only in case the augmentation is made conditional with a when statement
*/
if (aug_p->when || target->nodetype == LYS_CHOICE || ctx->mod == target->module) {
allow_mandatory = 1;
}
when_shared = NULL;
LY_LIST_FOR(aug_p->child, pnode) {
/* check if the subnode can be connected to the found target (e.g. case cannot be inserted into container) */
if ((pnode->nodetype == LYS_CASE && target->nodetype != LYS_CHOICE)
|| ((pnode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)) && !(target->nodetype & (LYS_CONTAINER | LYS_LIST)))
|| (pnode->nodetype == LYS_USES && target->nodetype == LYS_CHOICE)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid augment of %s node which is not allowed to contain %s node \"%s\".",
lys_nodetype2str(target->nodetype), lys_nodetype2str(pnode->nodetype), pnode->name);
ret = LY_EVALID;
goto cleanup;
}
/* compile the children */
if (target->nodetype == LYS_CHOICE) {
LY_CHECK_GOTO(ret = lys_compile_node_choice_child(ctx, pnode, target, &child_set), cleanup);
} else {
LY_CHECK_GOTO(ret = lys_compile_node(ctx, pnode, target, 0, &child_set), cleanup);
}
/* since the augment node is not present in the compiled tree, we need to pass some of its
* statements to all its children */
for (i = 0; i < child_set.count; ++i) {
node = child_set.snodes[i];
if (!allow_mandatory && (node->flags & LYS_CONFIG_W) && (node->flags & LYS_MAND_TRUE)) {
node->flags &= ~LYS_MAND_TRUE;
lys_compile_mandatory_parents(target, 0);
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid augment adding mandatory node \"%s\" without making it conditional via when statement.", node->name);
ret = LY_EVALID;
goto cleanup;
}
/* pass augment's when to all the children TODO this way even action and notif should have "when" (code below) */
if (aug_p->when) {
LY_ARRAY_NEW_GOTO(ctx->ctx, node->when, when, ret, cleanup);
if (!when_shared) {
LY_CHECK_GOTO(ret = lys_compile_when(ctx, aug_p->when, aug_p->flags, target, when), cleanup);
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "when" semantics in a grouping */
LY_CHECK_GOTO(ret = ly_set_add(&ctx->xpath, node, 0, NULL), cleanup);
}
when_shared = *when;
} else {
++when_shared->refcount;
(*when) = when_shared;
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* in this case check "when" again for all children because of dummy node check */
LY_CHECK_GOTO(ret = ly_set_add(&ctx->xpath, node, 0, NULL), cleanup);
}
}
}
}
ly_set_erase(&child_set, NULL);
}
switch (target->nodetype) {
case LYS_CONTAINER:
COMPILE_OP_ARRAY_GOTO(ctx, aug_p->actions, ((struct lysc_node_container *)target)->actions, target,
u, lys_compile_action, 0, ret, cleanup);
COMPILE_OP_ARRAY_GOTO(ctx, aug_p->notifs, ((struct lysc_node_container *)target)->notifs, target,
u, lys_compile_notif, 0, ret, cleanup);
break;
case LYS_LIST:
COMPILE_OP_ARRAY_GOTO(ctx, aug_p->actions, ((struct lysc_node_list *)target)->actions, target,
u, lys_compile_action, 0, ret, cleanup);
COMPILE_OP_ARRAY_GOTO(ctx, aug_p->notifs, ((struct lysc_node_list *)target)->notifs, target,
u, lys_compile_notif, 0, ret, cleanup);
break;
default:
if (aug_p->actions) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid augment of %s node which is not allowed to contain RPC/action node \"%s\".",
lys_nodetype2str(target->nodetype), aug_p->actions[0].name);
ret = LY_EVALID;
goto cleanup;
}
if (aug_p->notifs) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid augment of %s node which is not allowed to contain notification node \"%s\".",
lys_nodetype2str(target->nodetype), aug_p->notifs[0].name);
ret = LY_EVALID;
goto cleanup;
}
}
cleanup:
ly_set_erase(&child_set, NULL);
return ret;
}
/**
* @brief Find grouping for a uses.
*
* @param[in] ctx Compile context.
* @param[in] uses_p Parsed uses node.
* @param[out] gpr_p Found grouping on success.
* @param[out] grp_mod Module of @p grp_p on success.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_uses_find_grouping(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, struct lysp_grp **grp_p,
struct lys_module **grp_mod)
{
struct lysp_node *pnode;
struct lysp_grp *grp;
LY_ARRAY_COUNT_TYPE u, v;
ly_bool found = 0;
const char *id, *name, *prefix;
size_t prefix_len, name_len;
struct lys_module *mod;
*grp_p = NULL;
*grp_mod = NULL;
/* search for the grouping definition */
id = uses_p->name;
LY_CHECK_RET(ly_parse_nodeid(&id, &prefix, &prefix_len, &name, &name_len), LY_EVALID);
if (prefix) {
mod = lys_module_find_prefix(ctx->mod_def, prefix, prefix_len);
if (!mod) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid prefix used for grouping reference.", uses_p->name);
return LY_EVALID;
}
} else {
mod = ctx->mod_def;
}
if (mod == ctx->mod_def) {
for (pnode = uses_p->parent; !found && pnode; pnode = pnode->parent) {
grp = (struct lysp_grp *)lysp_node_groupings(pnode);
LY_ARRAY_FOR(grp, u) {
if (!strcmp(grp[u].name, name)) {
grp = &grp[u];
found = 1;
break;
}
}
}
}
if (!found) {
/* search in top-level groupings of the main module ... */
grp = mod->parsed->groupings;
LY_ARRAY_FOR(grp, u) {
if (!strcmp(grp[u].name, name)) {
grp = &grp[u];
found = 1;
break;
}
}
if (!found) {
/* ... and all the submodules */
LY_ARRAY_FOR(mod->parsed->includes, u) {
grp = mod->parsed->includes[u].submodule->groupings;
LY_ARRAY_FOR(grp, v) {
if (!strcmp(grp[v].name, name)) {
grp = &grp[v];
found = 1;
break;
}
}
if (found) {
break;
}
}
}
}
if (!found) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Grouping \"%s\" referenced by a uses statement not found.", uses_p->name);
return LY_EVALID;
}
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* remember that the grouping is instantiated to avoid its standalone validation */
grp->flags |= LYS_USED_GRP;
}
*grp_p = grp;
*grp_mod = mod;
return LY_SUCCESS;
}
static const struct lys_module *lys_schema_node_get_module(const struct ly_ctx *ctx, const char *nametest,
size_t nametest_len, const struct lys_module *local_mod, const char **name, size_t *name_len);
static LY_ERR
lys_nodeid_check(struct lysc_ctx *ctx, const char *nodeid, ly_bool abs, struct lys_module **target_mod,
struct lyxp_expr **expr)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_expr *e = NULL;
struct lys_module *tmod = NULL, *mod;
const char *nodeid_type = abs ? "absolute-schema-nodeid" : "descendant-schema-nodeid";
uint32_t i;
/* parse */
ret = lyxp_expr_parse(ctx->ctx, nodeid, strlen(nodeid), 0, &e);
if (ret) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid %s value \"%s\" - invalid syntax.",
nodeid_type, nodeid);
ret = LY_EVALID;
goto cleanup;
}
if (abs) {
/* absolute schema nodeid */
i = 0;
} else {
/* descendant schema nodeid */
if (e->tokens[0] != LYXP_TOKEN_NAMETEST) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, "Invalid %s value \"%s\" - name test expected instead of \"%.*s\".",
nodeid_type, nodeid, e->tok_len[0], e->expr + e->tok_pos[0]);
ret = LY_EVALID;
goto cleanup;
}
i = 1;
}
/* check all the tokens */
for ( ; i < e->used; i += 2) {
if (e->tokens[i] != LYXP_TOKEN_OPER_PATH) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, "Invalid %s value \"%s\" - \"/\" expected instead of \"%.*s\".",
nodeid_type, nodeid, e->tok_len[i], e->expr + e->tok_pos[i]);
ret = LY_EVALID;
goto cleanup;
} else if (e->used == i + 1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid %s value \"%s\" - unexpected end of expression.", nodeid_type, e->expr);
ret = LY_EVALID;
goto cleanup;
} else if (e->tokens[i + 1] != LYXP_TOKEN_NAMETEST) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, "Invalid %s value \"%s\" - name test expected instead of \"%.*s\".",
nodeid_type, nodeid, e->tok_len[i + 1], e->expr + e->tok_pos[i + 1]);
ret = LY_EVALID;
goto cleanup;
} else if (abs) {
mod = (struct lys_module *)lys_schema_node_get_module(ctx->ctx, e->expr + e->tok_pos[i + 1],
e->tok_len[i + 1], ctx->mod_def, NULL, NULL);
LY_CHECK_ERR_GOTO(!mod, ret = LY_EVALID, cleanup);
/* only keep the first module */
if (!tmod) {
tmod = mod;
}
/* all the modules must be implemented */
if (!mod->implemented) {
ret = lys_set_implemented(mod);
LY_CHECK_GOTO(ret, cleanup);
}
}
}
cleanup:
if (ret || !expr) {
lyxp_expr_free(ctx->ctx, e);
e = NULL;
}
if (expr) {
*expr = ret ? NULL : e;
}
if (target_mod) {
*target_mod = ret ? NULL : tmod;
}
return ret;
}
/**
* @brief Check whether 2 schema nodeids match.
*
* @param[in] ctx libyang context.
* @param[in] exp1 First schema nodeid.
* @param[in] exp1_mod Module of @p exp1 nodes without any prefix.
* @param[in] exp2 Second schema nodeid.
* @param[in] exp2_mod Module of @p exp2 nodes without any prefix.
* @return Whether the schema nodeids match or not.
*/
static ly_bool
lys_abs_schema_nodeid_match(const struct ly_ctx *ctx, const struct lyxp_expr *exp1, const struct lys_module *exp1_mod,
const struct lyxp_expr *exp2, const struct lys_module *exp2_mod)
{
uint32_t i;
const struct lys_module *mod1, *mod2;
const char *name1, *name2;
size_t name1_len, name2_len;
if (exp1->used != exp2->used) {
return 0;
}
for (i = 0; i < exp1->used; ++i) {
assert(exp1->tokens[i] == exp2->tokens[i]);
if (exp1->tokens[i] == LYXP_TOKEN_NAMETEST) {
/* check modules of all the nodes in the node ID */
mod1 = lys_schema_node_get_module(ctx, exp1->expr + exp1->tok_pos[i], exp1->tok_len[i], exp1_mod,
&name1, &name1_len);
assert(mod1);
mod2 = lys_schema_node_get_module(ctx, exp2->expr + exp2->tok_pos[i], exp2->tok_len[i], exp2_mod,
&name2, &name2_len);
assert(mod2);
/* compare modules */
if (mod1 != mod2) {
return 0;
}
/* compare names */
if ((name1_len != name2_len) || strncmp(name1, name2, name1_len)) {
return 0;
}
}
}
return 1;
}
/**
* @brief Prepare any uses augments and refines in the context to be applied during uses descendant node compilation.
*
* @param[in] ctx Compile context.
* @param[in] uses_p Parsed uses structure with augments and refines.
* @param[in] ctx_node Context node of @p uses_p meaning its first data definiition parent.
* @return LY_ERR value.
*/
static LY_ERR
lys_precompile_uses_augments_refines(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, const struct lysc_node *ctx_node)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u;
struct lyxp_expr *exp = NULL;
struct lysc_augment *aug;
struct lysc_refine *rfn;
struct lysp_refine **new_rfn;
uint32_t i;
LY_ARRAY_FOR(uses_p->augments, u) {
lysc_update_path(ctx, NULL, "{augment}");
lysc_update_path(ctx, NULL, uses_p->augments[u].nodeid);
/* parse the nodeid */
LY_CHECK_GOTO(ret = lys_nodeid_check(ctx, uses_p->augments[u].nodeid, 0, NULL, &exp), cleanup);
/* allocate new compiled augment and store it in the set */
aug = calloc(1, sizeof *aug);
LY_CHECK_ERR_GOTO(!aug, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = ly_set_add(&ctx->uses_augs, aug, LY_SET_OPT_USEASLIST, NULL), cleanup);
aug->nodeid = exp;
exp = NULL;
aug->nodeid_ctx_node = ctx_node;
aug->aug_p = &uses_p->augments[u];
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
}
LY_ARRAY_FOR(uses_p->refines, u) {
lysc_update_path(ctx, NULL, "{refine}");
lysc_update_path(ctx, NULL, uses_p->refines[u].nodeid);
/* parse the nodeid */
LY_CHECK_GOTO(ret = lys_nodeid_check(ctx, uses_p->refines[u].nodeid, 0, NULL, &exp), cleanup);
/* try to find the node in already compiled refines */
rfn = NULL;
for (i = 0; i < ctx->uses_rfns.count; ++i) {
if (lys_abs_schema_nodeid_match(ctx->ctx, exp, ctx->mod_def, ((struct lysc_refine *)ctx->uses_rfns.objs[i])->nodeid,
ctx->mod_def)) {
rfn = ctx->uses_rfns.objs[i];
break;
}
}
if (!rfn) {
/* allocate new compiled refine */
rfn = calloc(1, sizeof *rfn);
LY_CHECK_ERR_GOTO(!rfn, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = ly_set_add(&ctx->uses_rfns, rfn, LY_SET_OPT_USEASLIST, NULL), cleanup);
rfn->nodeid = exp;
exp = NULL;
rfn->nodeid_ctx_node = ctx_node;
} else {
/* just free exp */
lyxp_expr_free(ctx->ctx, exp);
exp = NULL;
}
/* add new parsed refine structure */
LY_ARRAY_NEW_GOTO(ctx->ctx, rfn->rfns, new_rfn, ret, cleanup);
*new_rfn = &uses_p->refines[u];
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
}
cleanup:
lyxp_expr_free(ctx->ctx, exp);
return ret;
}
/**
* @brief Compile parsed uses statement - resolve target grouping and connect its content into parent.
* If present, also apply uses's modificators.
*
* @param[in] ctx Compile context
* @param[in] uses_p Parsed uses schema node.
* @param[in] parent Compiled parent node where the content of the referenced grouping is supposed to be connected. It is
* NULL for top-level nodes, in such a case the module where the node will be connected is taken from
* the compile context.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_uses(struct lysc_ctx *ctx, struct lysp_node_uses *uses_p, struct lysc_node *parent, struct ly_set *child_set)
{
struct lysp_node *pnode;
struct lysc_node *child;
struct lysp_grp *grp = NULL;
uint32_t i, grp_stack_count;
struct lys_module *grp_mod, *mod_old = ctx->mod_def;
LY_ERR ret = LY_SUCCESS;
struct lysc_when **when, *when_shared;
LY_ARRAY_COUNT_TYPE u;
struct lysc_notif **notifs = NULL;
struct lysc_action **actions = NULL;
struct ly_set uses_child_set = {0};
/* find the referenced grouping */
LY_CHECK_RET(lys_compile_uses_find_grouping(ctx, uses_p, &grp, &grp_mod));
/* grouping must not reference themselves - stack in ctx maintains list of groupings currently being applied */
grp_stack_count = ctx->groupings.count;
LY_CHECK_RET(ly_set_add(&ctx->groupings, (void *)grp, 0, NULL));
if (grp_stack_count == ctx->groupings.count) {
/* the target grouping is already in the stack, so we are already inside it -> circular dependency */
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Grouping \"%s\" references itself through a uses statement.", grp->name);
return LY_EVALID;
}
/* check status */
ret = lysc_check_status(ctx, uses_p->flags, ctx->mod_def, uses_p->name, grp->flags, grp_mod, grp->name);
LY_CHECK_GOTO(ret, cleanup);
/* compile any augments and refines so they can be applied during the grouping nodes compilation */
ret = lys_precompile_uses_augments_refines(ctx, uses_p, parent);
LY_CHECK_GOTO(ret, cleanup);
/* switch context's mod_def */
ctx->mod_def = grp_mod;
/* compile data nodes */
LY_LIST_FOR(grp->data, pnode) {
/* 0x3 in uses_status is a special bits combination to be able to detect status flags from uses */
ret = lys_compile_node(ctx, pnode, parent, (uses_p->flags & LYS_STATUS_MASK) | 0x3, &uses_child_set);
LY_CHECK_GOTO(ret, cleanup);
}
if (child_set) {
/* add these children to our compiled child_set as well since uses is a schema-only node */
LY_CHECK_GOTO(ret = ly_set_merge(child_set, &uses_child_set, LY_SET_OPT_USEASLIST, NULL), cleanup);
}
if (uses_p->when) {
/* pass uses's when to all the data children, actions and notifications are ignored */
when_shared = NULL;
for (i = 0; i < uses_child_set.count; ++i) {
child = uses_child_set.snodes[i];
LY_ARRAY_NEW_GOTO(ctx->ctx, child->when, when, ret, cleanup);
if (!when_shared) {
ret = lys_compile_when(ctx, uses_p->when, uses_p->flags, parent, when);
LY_CHECK_GOTO(ret, cleanup);
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "when" semantics in a grouping */
ret = ly_set_add(&ctx->xpath, child, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
when_shared = *when;
} else {
++when_shared->refcount;
(*when) = when_shared;
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* in this case check "when" again for all children because of dummy node check */
ret = ly_set_add(&ctx->xpath, child, 0, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
}
}
}
/* compile actions */
if (grp->actions) {
actions = parent ? lysc_node_actions_p(parent) : &ctx->mod->compiled->rpcs;
if (!actions) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, "Invalid child %s \"%s\" of uses parent %s \"%s\" node.",
grp->actions[0].name, lys_nodetype2str(grp->actions[0].nodetype), parent->name,
lys_nodetype2str(parent->nodetype));
ret = LY_EVALID;
goto cleanup;
}
COMPILE_OP_ARRAY_GOTO(ctx, grp->actions, *actions, parent, u, lys_compile_action, 0, ret, cleanup);
}
/* compile notifications */
if (grp->notifs) {
notifs = parent ? lysc_node_notifs_p(parent) : &ctx->mod->compiled->notifs;
if (!notifs) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, "Invalid child %s \"%s\" of uses parent %s \"%s\" node.",
grp->notifs[0].name, lys_nodetype2str(grp->notifs[0].nodetype), parent->name,
lys_nodetype2str(parent->nodetype));
ret = LY_EVALID;
goto cleanup;
}
COMPILE_OP_ARRAY_GOTO(ctx, grp->notifs, *notifs, parent, u, lys_compile_notif, 0, ret, cleanup);
}
/* check that all augments were applied */
for (i = 0; i < ctx->uses_augs.count; ++i) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Augment target node \"%s\" in grouping \"%s\" was not found.",
((struct lysc_augment *)ctx->uses_augs.objs[i])->nodeid->expr, grp->name);
ret = LY_ENOTFOUND;
}
LY_CHECK_GOTO(ret, cleanup);
/* check that all refines were applied */
for (i = 0; i < ctx->uses_rfns.count; ++i) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Refine(s) target node \"%s\" in grouping \"%s\" was not found.",
((struct lysc_refine *)ctx->uses_rfns.objs[i])->nodeid->expr, grp->name);
ret = LY_ENOTFOUND;
}
LY_CHECK_GOTO(ret, cleanup);
cleanup:
/* reload previous context's mod_def */
ctx->mod_def = mod_old;
/* remove the grouping from the stack for circular groupings dependency check */
ly_set_rm_index(&ctx->groupings, ctx->groupings.count - 1, NULL);
assert(ctx->groupings.count == grp_stack_count);
ly_set_erase(&uses_child_set, NULL);
return ret;
}
static int
lys_compile_grouping_pathlog(struct lysc_ctx *ctx, struct lysp_node *node, char **path)
{
struct lysp_node *iter;
int len = 0;
*path = NULL;
for (iter = node; iter && len >= 0; iter = iter->parent) {
char *s = *path;
char *id;
switch (iter->nodetype) {
case LYS_USES:
LY_CHECK_RET(asprintf(&id, "{uses='%s'}", iter->name) == -1, -1);
break;
case LYS_GROUPING:
LY_CHECK_RET(asprintf(&id, "{grouping='%s'}", iter->name) == -1, -1);
break;
case LYS_AUGMENT:
LY_CHECK_RET(asprintf(&id, "{augment='%s'}", iter->name) == -1, -1);
break;
default:
id = strdup(iter->name);
break;
}
if (!iter->parent) {
/* print prefix */
len = asprintf(path, "/%s:%s%s", ctx->mod->name, id, s ? s : "");
} else {
/* prefix is the same as in parent */
len = asprintf(path, "/%s%s", id, s ? s : "");
}
free(s);
free(id);
}
if (len < 0) {
free(*path);
*path = NULL;
} else if (len == 0) {
*path = strdup("/");
len = 1;
}
return len;
}
/**
* @brief Validate groupings that were defined but not directly used in the schema itself.
*
* The grouping does not need to be compiled (and it is compiled here, but the result is forgotten immediately),
* but to have the complete result of the schema validity, even such groupings are supposed to be checked.
*/
static LY_ERR
lys_compile_grouping(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysp_grp *grp)
{
LY_ERR ret;
char *path;
int len;
struct lysp_node_uses fake_uses = {
.parent = pnode,
.nodetype = LYS_USES,
.flags = 0, .next = NULL,
.name = grp->name,
.dsc = NULL, .ref = NULL, .when = NULL, .iffeatures = NULL, .exts = NULL,
.refines = NULL, .augments = NULL
};
struct lysc_node_container fake_container = {
.nodetype = LYS_CONTAINER,
.flags = pnode ? (pnode->flags & LYS_FLAGS_COMPILED_MASK) : 0,
.module = ctx->mod,
.sp = NULL, .parent = NULL, .next = NULL,
.prev = (struct lysc_node *)&fake_container,
.name = "fake",
.dsc = NULL, .ref = NULL, .exts = NULL, .iffeatures = NULL, .when = NULL,
.child = NULL, .musts = NULL, .actions = NULL, .notifs = NULL
};
if (grp->parent) {
LOGWRN(ctx->ctx, "Locally scoped grouping \"%s\" not used.", grp->name);
}
len = lys_compile_grouping_pathlog(ctx, grp->parent, &path);
if (len < 0) {
LOGMEM(ctx->ctx);
return LY_EMEM;
}
strncpy(ctx->path, path, LYSC_CTX_BUFSIZE - 1);
ctx->path_len = (uint32_t)len;
free(path);
lysc_update_path(ctx, NULL, "{grouping}");
lysc_update_path(ctx, NULL, grp->name);
ret = lys_compile_uses(ctx, &fake_uses, (struct lysc_node *)&fake_container, NULL);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
ctx->path_len = 1;
ctx->path[1] = '\0';
/* cleanup */
lysc_node_container_free(ctx->ctx, &fake_container);
return ret;
}
/**
* @brief Set config flags for a node.
*
* @param[in] ctx Compile context.
* @param[in] node Compiled node config to set.
* @param[in] parent Parent of @p node.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_config(struct lysc_ctx *ctx, struct lysc_node *node, struct lysc_node *parent)
{
if (node->nodetype == LYS_CASE) {
/* case never has any config */
assert(!(node->flags & LYS_CONFIG_MASK));
return LY_SUCCESS;
}
/* adjust parent to always get the ancestor with config */
if (parent && (parent->nodetype == LYS_CASE)) {
parent = parent->parent;
assert(parent);
}
if (ctx->options & (LYSC_OPT_RPC_INPUT | LYSC_OPT_RPC_OUTPUT)) {
/* ignore config statements inside RPC/action data */
node->flags &= ~LYS_CONFIG_MASK;
node->flags |= (ctx->options & LYSC_OPT_RPC_INPUT) ? LYS_CONFIG_W : LYS_CONFIG_R;
} else if (ctx->options & LYSC_OPT_NOTIFICATION) {
/* ignore config statements inside Notification data */
node->flags &= ~LYS_CONFIG_MASK;
node->flags |= LYS_CONFIG_R;
} else if (!(node->flags & LYS_CONFIG_MASK)) {
/* config not explicitely set, inherit it from parent */
if (parent) {
node->flags |= parent->flags & LYS_CONFIG_MASK;
} else {
/* default is config true */
node->flags |= LYS_CONFIG_W;
}
} else {
/* config set explicitely */
node->flags |= LYS_SET_CONFIG;
}
if (parent && (parent->flags & LYS_CONFIG_R) && (node->flags & LYS_CONFIG_W)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Configuration node cannot be child of any state data node.");
return LY_EVALID;
}
return LY_SUCCESS;
}
static LY_ERR
lysp_ext_dup(const struct ly_ctx *ctx, struct lysp_ext_instance *ext, const struct lysp_ext_instance *orig_ext)
{
LY_ERR ret = LY_SUCCESS;
*ext = *orig_ext;
DUP_STRING(ctx, orig_ext->name, ext->name, ret);
DUP_STRING(ctx, orig_ext->argument, ext->argument, ret);
return ret;
}
static LY_ERR
lysp_restr_dup(const struct ly_ctx *ctx, struct lysp_restr *restr, const struct lysp_restr *orig_restr)
{
LY_ERR ret = LY_SUCCESS;
if (orig_restr) {
DUP_STRING(ctx, orig_restr->arg.str, restr->arg.str, ret);
restr->arg.mod = orig_restr->arg.mod;
DUP_STRING(ctx, orig_restr->emsg, restr->emsg, ret);
DUP_STRING(ctx, orig_restr->eapptag, restr->eapptag, ret);
DUP_STRING(ctx, orig_restr->dsc, restr->dsc, ret);
DUP_STRING(ctx, orig_restr->ref, restr->ref, ret);
DUP_ARRAY(ctx, orig_restr->exts, restr->exts, lysp_ext_dup);
}
return ret;
}
static LY_ERR
lysp_string_dup(const struct ly_ctx *ctx, const char **str, const char **orig_str)
{
LY_ERR ret = LY_SUCCESS;
DUP_STRING(ctx, *orig_str, *str, ret);
return ret;
}
static LY_ERR
lysp_qname_dup(const struct ly_ctx *ctx, struct lysp_qname *qname, const struct lysp_qname *orig_qname)
{
LY_ERR ret = LY_SUCCESS;
if (!orig_qname->str) {
return LY_SUCCESS;
}
DUP_STRING(ctx, orig_qname->str, qname->str, ret);
assert(orig_qname->mod);
qname->mod = orig_qname->mod;
return ret;
}
static LY_ERR
lysp_type_enum_dup(const struct ly_ctx *ctx, struct lysp_type_enum *enm, const struct lysp_type_enum *orig_enm)
{
LY_ERR ret = LY_SUCCESS;
DUP_STRING(ctx, orig_enm->name, enm->name, ret);
DUP_STRING(ctx, orig_enm->dsc, enm->dsc, ret);
DUP_STRING(ctx, orig_enm->ref, enm->ref, ret);
enm->value = orig_enm->value;
DUP_ARRAY(ctx, orig_enm->iffeatures, enm->iffeatures, lysp_qname_dup);
DUP_ARRAY(ctx, orig_enm->exts, enm->exts, lysp_ext_dup);
enm->flags = orig_enm->flags;
return ret;
}
static LY_ERR
lysp_type_dup(const struct ly_ctx *ctx, struct lysp_type *type, const struct lysp_type *orig_type)
{
LY_ERR ret = LY_SUCCESS;
DUP_STRING_GOTO(ctx, orig_type->name, type->name, ret, done);
if (orig_type->range) {
type->range = calloc(1, sizeof *type->range);
LY_CHECK_ERR_RET(!type->range, LOGMEM(ctx), LY_EMEM);
LY_CHECK_RET(lysp_restr_dup(ctx, type->range, orig_type->range));
}
if (orig_type->length) {
type->length = calloc(1, sizeof *type->length);
LY_CHECK_ERR_RET(!type->length, LOGMEM(ctx), LY_EMEM);
LY_CHECK_RET(lysp_restr_dup(ctx, type->length, orig_type->length));
}
DUP_ARRAY(ctx, orig_type->patterns, type->patterns, lysp_restr_dup);
DUP_ARRAY(ctx, orig_type->enums, type->enums, lysp_type_enum_dup);
DUP_ARRAY(ctx, orig_type->bits, type->bits, lysp_type_enum_dup);
LY_CHECK_GOTO(ret = lyxp_expr_dup(ctx, orig_type->path, &type->path), done);
DUP_ARRAY(ctx, orig_type->bases, type->bases, lysp_string_dup);
DUP_ARRAY(ctx, orig_type->types, type->types, lysp_type_dup);
DUP_ARRAY(ctx, orig_type->exts, type->exts, lysp_ext_dup);
type->mod = orig_type->mod;
type->compiled = orig_type->compiled;
type->fraction_digits = orig_type->fraction_digits;
type->require_instance = orig_type->require_instance;
type->flags = orig_type->flags;
done:
return ret;
}
static LY_ERR
lysp_when_dup(const struct ly_ctx *ctx, struct lysp_when *when, const struct lysp_when *orig_when)
{
LY_ERR ret = LY_SUCCESS;
DUP_STRING(ctx, orig_when->cond, when->cond, ret);
DUP_STRING(ctx, orig_when->dsc, when->dsc, ret);
DUP_STRING(ctx, orig_when->ref, when->ref, ret);
DUP_ARRAY(ctx, orig_when->exts, when->exts, lysp_ext_dup);
return ret;
}
static LY_ERR
lysp_node_common_dup(const struct ly_ctx *ctx, struct lysp_node *node, const struct lysp_node *orig)
{
LY_ERR ret = LY_SUCCESS;
node->parent = NULL;
node->nodetype = orig->nodetype;
node->flags = orig->flags;
node->next = NULL;
DUP_STRING(ctx, orig->name, node->name, ret);
DUP_STRING(ctx, orig->dsc, node->dsc, ret);
DUP_STRING(ctx, orig->ref, node->ref, ret);
if (orig->when) {
node->when = calloc(1, sizeof *node->when);
LY_CHECK_ERR_RET(!node->when, LOGMEM(ctx), LY_EMEM);
LY_CHECK_RET(lysp_when_dup(ctx, node->when, orig->when));
}
DUP_ARRAY(ctx, orig->iffeatures, node->iffeatures, lysp_qname_dup);
DUP_ARRAY(ctx, orig->exts, node->exts, lysp_ext_dup);
return ret;
}
static LY_ERR
lysp_node_dup(const struct ly_ctx *ctx, struct lysp_node *node, const struct lysp_node *orig)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_node_container *cont;
const struct lysp_node_container *orig_cont;
struct lysp_node_leaf *leaf;
const struct lysp_node_leaf *orig_leaf;
struct lysp_node_leaflist *llist;
const struct lysp_node_leaflist *orig_llist;
struct lysp_node_list *list;
const struct lysp_node_list *orig_list;
struct lysp_node_choice *choice;
const struct lysp_node_choice *orig_choice;
struct lysp_node_case *cas;
const struct lysp_node_case *orig_cas;
struct lysp_node_anydata *any;
const struct lysp_node_anydata *orig_any;
assert(orig->nodetype & (LYS_CONTAINER | LYS_LEAF | LYS_LEAFLIST | LYS_LIST | LYS_CHOICE | LYS_CASE | LYS_ANYDATA));
/* common part */
LY_CHECK_RET(lysp_node_common_dup(ctx, node, orig));
/* specific part */
switch (node->nodetype) {
case LYS_CONTAINER:
cont = (struct lysp_node_container *)node;
orig_cont = (const struct lysp_node_container *)orig;
DUP_ARRAY(ctx, orig_cont->musts, cont->musts, lysp_restr_dup);
DUP_STRING(ctx, orig_cont->presence, cont->presence, ret);
/* we do not need the rest */
break;
case LYS_LEAF:
leaf = (struct lysp_node_leaf *)node;
orig_leaf = (const struct lysp_node_leaf *)orig;
DUP_ARRAY(ctx, orig_leaf->musts, leaf->musts, lysp_restr_dup);
LY_CHECK_RET(lysp_type_dup(ctx, &leaf->type, &orig_leaf->type));
DUP_STRING(ctx, orig_leaf->units, leaf->units, ret);
LY_CHECK_RET(lysp_qname_dup(ctx, &leaf->dflt, &orig_leaf->dflt));
break;
case LYS_LEAFLIST:
llist = (struct lysp_node_leaflist *)node;
orig_llist = (const struct lysp_node_leaflist *)orig;
DUP_ARRAY(ctx, orig_llist->musts, llist->musts, lysp_restr_dup);
LY_CHECK_RET(lysp_type_dup(ctx, &llist->type, &orig_llist->type));
DUP_STRING(ctx, orig_llist->units, llist->units, ret);
DUP_ARRAY(ctx, orig_llist->dflts, llist->dflts, lysp_qname_dup);
llist->min = orig_llist->min;
llist->max = orig_llist->max;
break;
case LYS_LIST:
list = (struct lysp_node_list *)node;
orig_list = (const struct lysp_node_list *)orig;
DUP_ARRAY(ctx, orig_list->musts, list->musts, lysp_restr_dup);
DUP_STRING(ctx, orig_list->key, list->key, ret);
/* we do not need these arrays */
DUP_ARRAY(ctx, orig_list->uniques, list->uniques, lysp_qname_dup);
list->min = orig_list->min;
list->max = orig_list->max;
break;
case LYS_CHOICE:
choice = (struct lysp_node_choice *)node;
orig_choice = (const struct lysp_node_choice *)orig;
/* we do not need children */
LY_CHECK_RET(lysp_qname_dup(ctx, &choice->dflt, &orig_choice->dflt));
break;
case LYS_CASE:
cas = (struct lysp_node_case *)node;
orig_cas = (const struct lysp_node_case *)orig;
/* we do not need children */
(void)cas;
(void)orig_cas;
break;
case LYS_ANYDATA:
case LYS_ANYXML:
any = (struct lysp_node_anydata *)node;
orig_any = (const struct lysp_node_anydata *)orig;
DUP_ARRAY(ctx, orig_any->musts, any->musts, lysp_restr_dup);
break;
default:
LOGINT_RET(ctx);
}
return ret;
}
static LY_ERR
lysp_action_inout_dup(const struct ly_ctx *ctx, struct lysp_action_inout *inout, const struct lysp_action_inout *orig)
{
inout->parent = NULL;
inout->nodetype = orig->nodetype;
DUP_ARRAY(ctx, orig->musts, inout->musts, lysp_restr_dup);
/* we dot need these arrays */
DUP_ARRAY(ctx, orig->exts, inout->exts, lysp_ext_dup);
return LY_SUCCESS;
}
static LY_ERR
lysp_action_dup(const struct ly_ctx *ctx, struct lysp_action *act, const struct lysp_action *orig)
{
LY_ERR ret = LY_SUCCESS;
act->parent = NULL;
act->nodetype = orig->nodetype;
act->flags = orig->flags;
DUP_STRING(ctx, orig->name, act->name, ret);
DUP_STRING(ctx, orig->dsc, act->dsc, ret);
DUP_STRING(ctx, orig->ref, act->ref, ret);
DUP_ARRAY(ctx, orig->iffeatures, act->iffeatures, lysp_qname_dup);
act->input.nodetype = orig->input.nodetype;
act->output.nodetype = orig->output.nodetype;
/* we do not need choldren of in/out */
DUP_ARRAY(ctx, orig->exts, act->exts, lysp_ext_dup);
return ret;
}
static LY_ERR
lysp_notif_dup(const struct ly_ctx *ctx, struct lysp_notif *notif, const struct lysp_notif *orig)
{
LY_ERR ret = LY_SUCCESS;
notif->parent = NULL;
notif->nodetype = orig->nodetype;
notif->flags = orig->flags;
DUP_STRING(ctx, orig->name, notif->name, ret);
DUP_STRING(ctx, orig->dsc, notif->dsc, ret);
DUP_STRING(ctx, orig->ref, notif->ref, ret);
DUP_ARRAY(ctx, orig->iffeatures, notif->iffeatures, lysp_qname_dup);
DUP_ARRAY(ctx, orig->musts, notif->musts, lysp_restr_dup);
/* we do not need these arrays */
DUP_ARRAY(ctx, orig->exts, notif->exts, lysp_ext_dup);
return ret;
}
/**
* @brief Duplicate a single parsed node. Only attributes that are used in compilation are copied.
*
* @param[in] ctx libyang context.
* @param[in] pnode Node to duplicate.
* @param[in] with_links Whether to also copy any links (child, parent pointers).
* @param[out] dup_p Duplicated parsed node.
* @return LY_ERR value.
*/
static LY_ERR
lysp_dup_single(const struct ly_ctx *ctx, const struct lysp_node *pnode, ly_bool with_links, struct lysp_node **dup_p)
{
LY_ERR ret = LY_SUCCESS;
void *mem = NULL;
if (!pnode) {
*dup_p = NULL;
return LY_SUCCESS;
}
switch (pnode->nodetype) {
case LYS_CONTAINER:
mem = calloc(1, sizeof(struct lysp_node_container));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_node_dup(ctx, mem, pnode), cleanup);
break;
case LYS_LEAF:
mem = calloc(1, sizeof(struct lysp_node_leaf));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_node_dup(ctx, mem, pnode), cleanup);
break;
case LYS_LEAFLIST:
mem = calloc(1, sizeof(struct lysp_node_leaflist));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_node_dup(ctx, mem, pnode), cleanup);
break;
case LYS_LIST:
mem = calloc(1, sizeof(struct lysp_node_list));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_node_dup(ctx, mem, pnode), cleanup);
break;
case LYS_CHOICE:
mem = calloc(1, sizeof(struct lysp_node_choice));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_node_dup(ctx, mem, pnode), cleanup);
break;
case LYS_CASE:
mem = calloc(1, sizeof(struct lysp_node_case));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_node_dup(ctx, mem, pnode), cleanup);
break;
case LYS_ANYDATA:
case LYS_ANYXML:
mem = calloc(1, sizeof(struct lysp_node_anydata));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_node_dup(ctx, mem, pnode), cleanup);
break;
case LYS_INPUT:
case LYS_OUTPUT:
mem = calloc(1, sizeof(struct lysp_action_inout));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_action_inout_dup(ctx, mem, (struct lysp_action_inout *)pnode), cleanup);
break;
case LYS_ACTION:
case LYS_RPC:
mem = calloc(1, sizeof(struct lysp_action));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_action_dup(ctx, mem, (struct lysp_action *)pnode), cleanup);
break;
case LYS_NOTIF:
mem = calloc(1, sizeof(struct lysp_notif));
LY_CHECK_ERR_GOTO(!mem, LOGMEM(ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lysp_notif_dup(ctx, mem, (struct lysp_notif *)pnode), cleanup);
break;
default:
LOGINT_RET(ctx);
}
if (with_links) {
/* copy also parent and child pointers */
((struct lysp_node *)mem)->parent = pnode->parent;
switch (pnode->nodetype) {
case LYS_CONTAINER:
((struct lysp_node_container *)mem)->child = ((struct lysp_node_container *)pnode)->child;
break;
case LYS_LIST:
((struct lysp_node_list *)mem)->child = ((struct lysp_node_list *)pnode)->child;
break;
case LYS_CHOICE:
((struct lysp_node_choice *)mem)->child = ((struct lysp_node_choice *)pnode)->child;
break;
case LYS_CASE:
((struct lysp_node_case *)mem)->child = ((struct lysp_node_case *)pnode)->child;
break;
default:
break;
}
}
cleanup:
if (ret) {
free(mem);
} else {
*dup_p = mem;
}
return ret;
}
#define AMEND_WRONG_NODETYPE(AMEND_STR, OP_STR, PROPERTY) \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, "Invalid %s of %s node - it is not possible to %s \"%s\" property.", \
AMEND_STR, lys_nodetype2str(target->nodetype), OP_STR, PROPERTY);\
ret = LY_EVALID; \
goto cleanup;
#define AMEND_CHECK_CARDINALITY(ARRAY, MAX, AMEND_STR, PROPERTY) \
if (LY_ARRAY_COUNT(ARRAY) > MAX) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS, "Invalid %s of %s with too many (%"LY_PRI_ARRAY_COUNT_TYPE") %s properties.", \
AMEND_STR, lys_nodetype2str(target->nodetype), LY_ARRAY_COUNT(ARRAY), PROPERTY); \
ret = LY_EVALID; \
goto cleanup; \
}
/**
* @brief Apply refine.
*
* @param[in] ctx Compile context.
* @param[in] rfn Refine to apply.
* @param[in,out] target Refine target.
* @return LY_ERR value.
*/
static LY_ERR
lys_apply_refine(struct lysc_ctx *ctx, struct lysp_refine *rfn, struct lysp_node *target)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u;
struct lysp_qname *qname;
struct lysp_restr **musts, *must;
uint32_t *num;
/* default value */
if (rfn->dflts) {
switch (target->nodetype) {
case LYS_LEAF:
AMEND_CHECK_CARDINALITY(rfn->dflts, 1, "refine", "default");
FREE_STRING(ctx->ctx, ((struct lysp_node_leaf *)target)->dflt.str);
DUP_STRING_GOTO(ctx->ctx, rfn->dflts[0], ((struct lysp_node_leaf *)target)->dflt.str, ret, cleanup);
((struct lysp_node_leaf *)target)->dflt.mod = ctx->mod;
break;
case LYS_LEAFLIST:
if (ctx->mod->version < LYS_VERSION_1_1) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid refine of default in leaf-list - the default statement is allowed only in YANG 1.1 modules.");
ret = LY_EVALID;
goto cleanup;
}
FREE_ARRAY(ctx->ctx, ((struct lysp_node_leaflist *)target)->dflts, lysp_qname_free);
((struct lysp_node_leaflist *)target)->dflts = NULL;
LY_ARRAY_FOR(rfn->dflts, u) {
LY_ARRAY_NEW_GOTO(ctx->ctx, ((struct lysp_node_leaflist *)target)->dflts, qname, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, rfn->dflts[u], qname->str, ret, cleanup);
qname->mod = ctx->mod;
}
break;
case LYS_CHOICE:
AMEND_CHECK_CARDINALITY(rfn->dflts, 1, "refine", "default");
FREE_STRING(ctx->ctx, ((struct lysp_node_choice *)target)->dflt.str);
DUP_STRING_GOTO(ctx->ctx, rfn->dflts[0], ((struct lysp_node_choice *)target)->dflt.str, ret, cleanup);
((struct lysp_node_choice *)target)->dflt.mod = ctx->mod;
break;
default:
AMEND_WRONG_NODETYPE("refine", "replace", "default");
}
}
/* description */
if (rfn->dsc) {
FREE_STRING(ctx->ctx, target->dsc);
DUP_STRING_GOTO(ctx->ctx, rfn->dsc, target->dsc, ret, cleanup);
}
/* reference */
if (rfn->ref) {
FREE_STRING(ctx->ctx, target->ref);
DUP_STRING_GOTO(ctx->ctx, rfn->ref, target->ref, ret, cleanup);
}
/* config */
if (rfn->flags & LYS_CONFIG_MASK) {
if (ctx->options & (LYSC_OPT_NOTIFICATION | LYSC_OPT_RPC_INPUT | LYSC_OPT_RPC_OUTPUT)) {
LOGWRN(ctx->ctx, "Refining config inside %s has no effect (%s).",
ctx->options & LYSC_OPT_NOTIFICATION ? "notification" : "RPC/action", ctx->path);
} else {
target->flags &= ~LYS_CONFIG_MASK;
target->flags |= rfn->flags & LYS_CONFIG_MASK;
}
}
/* mandatory */
if (rfn->flags & LYS_MAND_MASK) {
switch (target->nodetype) {
case LYS_LEAF:
case LYS_CHOICE:
case LYS_ANYDATA:
case LYS_ANYXML:
break;
default:
AMEND_WRONG_NODETYPE("refine", "replace", "mandatory");
}
target->flags &= ~LYS_MAND_MASK;
target->flags |= rfn->flags & LYS_MAND_MASK;
}
/* presence */
if (rfn->presence) {
switch (target->nodetype) {
case LYS_CONTAINER:
break;
default:
AMEND_WRONG_NODETYPE("refine", "replace", "presence");
}
FREE_STRING(ctx->ctx, ((struct lysp_node_container *)target)->presence);
DUP_STRING_GOTO(ctx->ctx, rfn->presence, ((struct lysp_node_container *)target)->presence, ret, cleanup);
}
/* must */
if (rfn->musts) {
switch (target->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_ANYDATA:
case LYS_ANYXML:
musts = &((struct lysp_node_container *)target)->musts;
break;
default:
AMEND_WRONG_NODETYPE("refine", "add", "must");
}
LY_ARRAY_FOR(rfn->musts, u) {
LY_ARRAY_NEW_GOTO(ctx->ctx, *musts, must, ret, cleanup);
LY_CHECK_GOTO(ret = lysp_restr_dup(ctx->ctx, must, &rfn->musts[u]), cleanup);
}
}
/* min-elements */
if (rfn->flags & LYS_SET_MIN) {
switch (target->nodetype) {
case LYS_LEAFLIST:
num = &((struct lysp_node_leaflist *)target)->min;
break;
case LYS_LIST:
num = &((struct lysp_node_list *)target)->min;
break;
default:
AMEND_WRONG_NODETYPE("refine", "replace", "min-elements");
}
*num = rfn->min;
}
/* max-elements */
if (rfn->flags & LYS_SET_MAX) {
switch (target->nodetype) {
case LYS_LEAFLIST:
num = &((struct lysp_node_leaflist *)target)->max;
break;
case LYS_LIST:
num = &((struct lysp_node_list *)target)->max;
break;
default:
AMEND_WRONG_NODETYPE("refine", "replace", "max-elements");
}
*num = rfn->max;
}
/* if-feature */
if (rfn->iffeatures) {
switch (target->nodetype) {
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_LIST:
case LYS_CONTAINER:
case LYS_CHOICE:
case LYS_CASE:
case LYS_ANYDATA:
case LYS_ANYXML:
break;
default:
AMEND_WRONG_NODETYPE("refine", "add", "if-feature");
}
LY_ARRAY_FOR(rfn->iffeatures, u) {
LY_ARRAY_NEW_GOTO(ctx->ctx, target->iffeatures, qname, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, rfn->iffeatures[u].str, qname->str, ret, cleanup);
qname->mod = ctx->mod;
}
}
/* extension */
/* TODO refine extensions */
cleanup:
return ret;
}
/**
* @brief Apply deviate add.
*
* @param[in] ctx Compile context.
* @param[in] d Deviate add to apply.
* @param[in,out] target Deviation target.
* @return LY_ERR value.
*/
static LY_ERR
lys_apply_deviate_add(struct lysc_ctx *ctx, struct lysp_deviate_add *d, struct lysp_node *target)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u;
struct lysp_qname *qname;
uint32_t *num;
struct lysp_restr **musts, *must;
#define DEV_CHECK_NONPRESENCE(TYPE, MEMBER, PROPERTY, VALUEMEMBER) \
if (((TYPE)target)->MEMBER) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation adding \"%s\" property which already exists (with value \"%s\").", \
PROPERTY, ((TYPE)target)->VALUEMEMBER); \
ret = LY_EVALID; \
goto cleanup; \
}
/* [units-stmt] */
if (d->units) {
switch (target->nodetype) {
case LYS_LEAF:
case LYS_LEAFLIST:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "add", "units");
}
DEV_CHECK_NONPRESENCE(struct lysp_node_leaf *, units, "units", units);
DUP_STRING_GOTO(ctx->ctx, d->units, ((struct lysp_node_leaf *)target)->units, ret, cleanup);
}
/* *must-stmt */
if (d->musts) {
switch (target->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_ANYDATA:
case LYS_ANYXML:
musts = &((struct lysp_node_container *)target)->musts;
break;
case LYS_NOTIF:
musts = &((struct lysp_notif *)target)->musts;
break;
case LYS_INPUT:
case LYS_OUTPUT:
musts = &((struct lysp_action_inout *)target)->musts;
break;
default:
AMEND_WRONG_NODETYPE("deviation", "add", "must");
}
LY_ARRAY_FOR(d->musts, u) {
LY_ARRAY_NEW_GOTO(ctx->ctx, *musts, must, ret, cleanup);
LY_CHECK_GOTO(ret = lysp_restr_dup(ctx->ctx, must, &d->musts[u]), cleanup);
}
}
/* *unique-stmt */
if (d->uniques) {
switch (target->nodetype) {
case LYS_LIST:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "add", "unique");
}
LY_ARRAY_FOR(d->uniques, u) {
LY_ARRAY_NEW_GOTO(ctx->ctx, ((struct lysp_node_list *)target)->uniques, qname, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, d->uniques[u], qname->str, ret, cleanup);
qname->mod = ctx->mod;
}
}
/* *default-stmt */
if (d->dflts) {
switch (target->nodetype) {
case LYS_LEAF:
AMEND_CHECK_CARDINALITY(d->dflts, 1, "deviation", "default");
DEV_CHECK_NONPRESENCE(struct lysp_node_leaf *, dflt.str, "default", dflt.str);
DUP_STRING_GOTO(ctx->ctx, d->dflts[0], ((struct lysp_node_leaf *)target)->dflt.str, ret, cleanup);
((struct lysp_node_leaf *)target)->dflt.mod = ctx->mod;
break;
case LYS_LEAFLIST:
LY_ARRAY_FOR(d->dflts, u) {
LY_ARRAY_NEW_GOTO(ctx->ctx, ((struct lysp_node_leaflist *)target)->dflts, qname, ret, cleanup);
DUP_STRING_GOTO(ctx->ctx, d->dflts[u], qname->str, ret, cleanup);
qname->mod = ctx->mod;
}
break;
case LYS_CHOICE:
AMEND_CHECK_CARDINALITY(d->dflts, 1, "deviation", "default");
DEV_CHECK_NONPRESENCE(struct lysp_node_choice *, dflt.str, "default", dflt.str);
DUP_STRING_GOTO(ctx->ctx, d->dflts[0], ((struct lysp_node_choice *)target)->dflt.str, ret, cleanup);
((struct lysp_node_choice *)target)->dflt.mod = ctx->mod;
break;
default:
AMEND_WRONG_NODETYPE("deviation", "add", "default");
}
}
/* [config-stmt] */
if (d->flags & LYS_CONFIG_MASK) {
switch (target->nodetype) {
case LYS_CONTAINER:
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_LIST:
case LYS_CHOICE:
case LYS_ANYDATA:
case LYS_ANYXML:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "add", "config");
}
if (target->flags & LYS_CONFIG_MASK) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation adding \"config\" property which already exists (with value \"config %s\").",
target->flags & LYS_CONFIG_W ? "true" : "false");
ret = LY_EVALID;
goto cleanup;
}
target->flags |= d->flags & LYS_CONFIG_MASK;
}
/* [mandatory-stmt] */
if (d->flags & LYS_MAND_MASK) {
switch (target->nodetype) {
case LYS_LEAF:
case LYS_CHOICE:
case LYS_ANYDATA:
case LYS_ANYXML:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "add", "mandatory");
}
if (target->flags & LYS_MAND_MASK) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation adding \"mandatory\" property which already exists (with value \"mandatory %s\").",
target->flags & LYS_MAND_TRUE ? "true" : "false");
ret = LY_EVALID;
goto cleanup;
}
target->flags |= d->flags & LYS_MAND_MASK;
}
/* [min-elements-stmt] */
if (d->flags & LYS_SET_MIN) {
switch (target->nodetype) {
case LYS_LEAFLIST:
num = &((struct lysp_node_leaflist *)target)->min;
break;
case LYS_LIST:
num = &((struct lysp_node_list *)target)->min;
break;
default:
AMEND_WRONG_NODETYPE("deviation", "add", "min-elements");
}
if (target->flags & LYS_SET_MIN) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation adding \"min-elements\" property which already exists (with value \"%u\").", *num);
ret = LY_EVALID;
goto cleanup;
}
*num = d->min;
}
/* [max-elements-stmt] */
if (d->flags & LYS_SET_MAX) {
switch (target->nodetype) {
case LYS_LEAFLIST:
num = &((struct lysp_node_leaflist *)target)->max;
break;
case LYS_LIST:
num = &((struct lysp_node_list *)target)->max;
break;
default:
AMEND_WRONG_NODETYPE("deviation", "add", "max-elements");
}
if (target->flags & LYS_SET_MAX) {
if (*num) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation adding \"max-elements\" property which already exists (with value \"%u\").",
*num);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation adding \"max-elements\" property which already exists (with value \"unbounded\").");
}
ret = LY_EVALID;
goto cleanup;
}
*num = d->max;
}
cleanup:
return ret;
}
/**
* @brief Apply deviate delete.
*
* @param[in] ctx Compile context.
* @param[in] d Deviate delete to apply.
* @param[in,out] target Deviation target.
* @return LY_ERR value.
*/
static LY_ERR
lys_apply_deviate_delete(struct lysc_ctx *ctx, struct lysp_deviate_del *d, struct lysp_node *target)
{
LY_ERR ret = LY_SUCCESS;
struct lysp_restr **musts;
LY_ARRAY_COUNT_TYPE u, v;
struct lysp_qname **uniques, **dflts;
#define DEV_DEL_ARRAY(DEV_ARRAY, ORIG_ARRAY, DEV_MEMBER, ORIG_MEMBER, FREE_FUNC, PROPERTY) \
LY_ARRAY_FOR(d->DEV_ARRAY, u) { \
int found = 0; \
LY_ARRAY_FOR(ORIG_ARRAY, v) { \
if (!strcmp(d->DEV_ARRAY[u]DEV_MEMBER, (ORIG_ARRAY)[v]ORIG_MEMBER)) { \
found = 1; \
break; \
} \
} \
if (!found) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation deleting \"%s\" property \"%s\" which does not match any of the target's property values.", \
PROPERTY, d->DEV_ARRAY[u]DEV_MEMBER); \
ret = LY_EVALID; \
goto cleanup; \
} \
LY_ARRAY_DECREMENT(ORIG_ARRAY); \
FREE_FUNC(ctx->ctx, &(ORIG_ARRAY)[v]); \
memmove(&(ORIG_ARRAY)[v], &(ORIG_ARRAY)[v + 1], (LY_ARRAY_COUNT(ORIG_ARRAY) - v) * sizeof *(ORIG_ARRAY)); \
} \
if (!LY_ARRAY_COUNT(ORIG_ARRAY)) { \
LY_ARRAY_FREE(ORIG_ARRAY); \
ORIG_ARRAY = NULL; \
}
#define DEV_CHECK_PRESENCE_VALUE(TYPE, MEMBER, DEVTYPE, PROPERTY, VALUE) \
if (!((TYPE)target)->MEMBER) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT, DEVTYPE, PROPERTY, VALUE); \
ret = LY_EVALID; \
goto cleanup; \
} else if (strcmp(((TYPE)target)->MEMBER, VALUE)) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE, \
"Invalid deviation deleting \"%s\" property \"%s\" which does not match the target's property value \"%s\".", \
PROPERTY, VALUE, ((TYPE)target)->MEMBER); \
ret = LY_EVALID; \
goto cleanup; \
}
/* [units-stmt] */
if (d->units) {
switch (target->nodetype) {
case LYS_LEAF:
case LYS_LEAFLIST:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "delete", "units");
}
DEV_CHECK_PRESENCE_VALUE(struct lysp_node_leaf *, units, "deleting", "units", d->units);
FREE_STRING(ctx->ctx, ((struct lysp_node_leaf *)target)->units);
((struct lysp_node_leaf *)target)->units = NULL;
}
/* *must-stmt */
if (d->musts) {
switch (target->nodetype) {
case LYS_CONTAINER:
case LYS_LIST:
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_ANYDATA:
case LYS_ANYXML:
musts = &((struct lysp_node_container *)target)->musts;
break;
case LYS_NOTIF:
musts = &((struct lysp_notif *)target)->musts;
break;
case LYS_INPUT:
case LYS_OUTPUT:
musts = &((struct lysp_action_inout *)target)->musts;
break;
default:
AMEND_WRONG_NODETYPE("deviation", "delete", "must");
}
DEV_DEL_ARRAY(musts, *musts, .arg.str, .arg.str, lysp_restr_free, "must");
}
/* *unique-stmt */
if (d->uniques) {
switch (target->nodetype) {
case LYS_LIST:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "delete", "unique");
}
uniques = &((struct lysp_node_list *)target)->uniques;
DEV_DEL_ARRAY(uniques, *uniques, , .str, lysp_qname_free, "unique");
}
/* *default-stmt */
if (d->dflts) {
switch (target->nodetype) {
case LYS_LEAF:
AMEND_CHECK_CARDINALITY(d->dflts, 1, "deviation", "default");
DEV_CHECK_PRESENCE_VALUE(struct lysp_node_leaf *, dflt.str, "deleting", "default", d->dflts[0]);
FREE_STRING(ctx->ctx, ((struct lysp_node_leaf *)target)->dflt.str);
((struct lysp_node_leaf *)target)->dflt.str = NULL;
break;
case LYS_LEAFLIST:
dflts = &((struct lysp_node_leaflist *)target)->dflts;
DEV_DEL_ARRAY(dflts, *dflts, , .str, lysp_qname_free, "default");
break;
case LYS_CHOICE:
AMEND_CHECK_CARDINALITY(d->dflts, 1, "deviation", "default");
DEV_CHECK_PRESENCE_VALUE(struct lysp_node_choice *, dflt.str, "deleting", "default", d->dflts[0]);
FREE_STRING(ctx->ctx, ((struct lysp_node_choice *)target)->dflt.str);
((struct lysp_node_choice *)target)->dflt.str = NULL;
break;
default:
AMEND_WRONG_NODETYPE("deviation", "delete", "default");
}
}
cleanup:
return ret;
}
/**
* @brief Apply deviate replace.
*
* @param[in] ctx Compile context.
* @param[in] d Deviate replace to apply.
* @param[in,out] target Deviation target.
* @return LY_ERR value.
*/
static LY_ERR
lys_apply_deviate_replace(struct lysc_ctx *ctx, struct lysp_deviate_rpl *d, struct lysp_node *target)
{
LY_ERR ret = LY_SUCCESS;
uint32_t *num;
#define DEV_CHECK_PRESENCE(TYPE, MEMBER, DEVTYPE, PROPERTY, VALUE) \
if (!((TYPE)target)->MEMBER) { \
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT, DEVTYPE, PROPERTY, VALUE); \
ret = LY_EVALID; \
goto cleanup; \
}
/* [type-stmt] */
if (d->type) {
switch (target->nodetype) {
case LYS_LEAF:
case LYS_LEAFLIST:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "replace", "type");
}
lysp_type_free(ctx->ctx, &((struct lysp_node_leaf *)target)->type);
lysp_type_dup(ctx->ctx, &((struct lysp_node_leaf *)target)->type, d->type);
}
/* [units-stmt] */
if (d->units) {
switch (target->nodetype) {
case LYS_LEAF:
case LYS_LEAFLIST:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "replace", "units");
}
DEV_CHECK_PRESENCE(struct lysp_node_leaf *, units, "replacing", "units", d->units);
FREE_STRING(ctx->ctx, ((struct lysp_node_leaf *)target)->units);
DUP_STRING_GOTO(ctx->ctx, d->units, ((struct lysp_node_leaf *)target)->units, ret, cleanup);
}
/* [default-stmt] */
if (d->dflt) {
switch (target->nodetype) {
case LYS_LEAF:
DEV_CHECK_PRESENCE(struct lysp_node_leaf *, dflt.str, "replacing", "default", d->dflt);
FREE_STRING(ctx->ctx, ((struct lysp_node_leaf *)target)->dflt.str);
DUP_STRING_GOTO(ctx->ctx, d->dflt, ((struct lysp_node_leaf *)target)->dflt.str, ret, cleanup);
((struct lysp_node_leaf *)target)->dflt.mod = ctx->mod;
break;
case LYS_CHOICE:
DEV_CHECK_PRESENCE(struct lysp_node_choice *, dflt.str, "replacing", "default", d->dflt);
FREE_STRING(ctx->ctx, ((struct lysp_node_choice *)target)->dflt.str);
DUP_STRING_GOTO(ctx->ctx, d->dflt, ((struct lysp_node_choice *)target)->dflt.str, ret, cleanup);
((struct lysp_node_choice *)target)->dflt.mod = ctx->mod;
break;
default:
AMEND_WRONG_NODETYPE("deviation", "replace", "default");
}
}
/* [config-stmt] */
if (d->flags & LYS_CONFIG_MASK) {
switch (target->nodetype) {
case LYS_CONTAINER:
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_LIST:
case LYS_CHOICE:
case LYS_ANYDATA:
case LYS_ANYXML:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "replace", "config");
}
if (!(target->flags & LYS_CONFIG_MASK)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT,
"replacing", "config", d->flags & LYS_CONFIG_W ? "config true" : "config false");
ret = LY_EVALID;
goto cleanup;
}
target->flags &= ~LYS_CONFIG_MASK;
target->flags |= d->flags & LYS_CONFIG_MASK;
}
/* [mandatory-stmt] */
if (d->flags & LYS_MAND_MASK) {
switch (target->nodetype) {
case LYS_LEAF:
case LYS_CHOICE:
case LYS_ANYDATA:
case LYS_ANYXML:
break;
default:
AMEND_WRONG_NODETYPE("deviation", "replace", "mandatory");
}
if (!(target->flags & LYS_MAND_MASK)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DEV_NOT_PRESENT,
"replacing", "mandatory", d->flags & LYS_MAND_TRUE ? "mandatory true" : "mandatory false");
ret = LY_EVALID;
goto cleanup;
}
target->flags &= ~LYS_MAND_MASK;
target->flags |= d->flags & LYS_MAND_MASK;
}
/* [min-elements-stmt] */
if (d->flags & LYS_SET_MIN) {
switch (target->nodetype) {
case LYS_LEAFLIST:
num = &((struct lysp_node_leaflist *)target)->min;
break;
case LYS_LIST:
num = &((struct lysp_node_list *)target)->min;
break;
default:
AMEND_WRONG_NODETYPE("deviation", "replace", "min-elements");
}
if (!(target->flags & LYS_SET_MIN)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation replacing \"min-elements\" property which is not present.");
ret = LY_EVALID;
goto cleanup;
}
*num = d->min;
}
/* [max-elements-stmt] */
if (d->flags & LYS_SET_MAX) {
switch (target->nodetype) {
case LYS_LEAFLIST:
num = &((struct lysp_node_leaflist *)target)->max;
break;
case LYS_LIST:
num = &((struct lysp_node_list *)target)->max;
break;
default:
AMEND_WRONG_NODETYPE("deviation", "replace", "max-elements");
}
if (!(target->flags & LYS_SET_MAX)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_REFERENCE,
"Invalid deviation replacing \"max-elements\" property which is not present.");
ret = LY_EVALID;
goto cleanup;
}
*num = d->max;
}
cleanup:
return ret;
}
/**
* @brief Get module of a single nodeid node name test.
*
* @param[in] ctx libyang context.
* @param[in] nametest Nametest with an optional prefix.
* @param[in] nametest_len Length of @p nametest.
* @param[in] local_mod Module to return in case of no prefix.
* @param[out] name Optional pointer to the name test without the prefix.
* @param[out] name_len Length of @p name.
* @return Resolved module.
*/
static const struct lys_module *
lys_schema_node_get_module(const struct ly_ctx *ctx, const char *nametest, size_t nametest_len,
const struct lys_module *local_mod, const char **name, size_t *name_len)
{
const struct lys_module *target_mod;
const char *ptr;
ptr = ly_strnchr(nametest, ':', nametest_len);
if (ptr) {
target_mod = ly_resolve_prefix(ctx, nametest, ptr - nametest, LY_PREF_SCHEMA, (void *)local_mod);
if (!target_mod) {
LOGVAL(ctx, LY_VLOG_NONE, NULL, LYVE_REFERENCE,
"Invalid absolute-schema-nodeid nametest \"%.*s\" - prefix \"%.*s\" not defined in module \"%s\".",
nametest_len, nametest, ptr - nametest, nametest, local_mod->name);
return NULL;
}
if (name) {
*name = ptr + 1;
*name_len = nametest_len - ((ptr - nametest) + 1);
}
} else {
target_mod = local_mod;
if (name) {
*name = nametest;
*name_len = nametest_len;
}
}
return target_mod;
}
/**
* @brief Check whether a parsed node matches a single schema nodeid name test.
*
* @param[in] pnode Parsed node to consider.
* @param[in] pnode_mod Compiled @p pnode to-be module.
* @param[in] mod Expected module.
* @param[in] name Expected name.
* @param[in] name_len Length of @p name.
* @return Whether it is a match or not.
*/
static ly_bool
lysp_schema_nodeid_match_pnode(const struct lysp_node *pnode, const struct lys_module *pnode_mod,
const struct lys_module *mod, const char *name, size_t name_len)
{
const char *pname;
/* compare with the module of the node */
if (pnode_mod != mod) {
return 0;
}
/* compare names */
if (pnode->nodetype & (LYS_ACTION | LYS_RPC)) {
pname = ((struct lysp_action *)pnode)->name;
} else if (pnode->nodetype & (LYS_INPUT | LYS_OUTPUT)) {
pname = (pnode->nodetype & LYS_INPUT) ? "input" : "output";
} else {
pname = pnode->name;
}
if (ly_strncmp(pname, name, name_len)) {
return 0;
}
return 1;
}
/**
* @brief Check whether a compiled node matches a single schema nodeid name test.
*
* @param[in,out] node Compiled node to consider. On a match it is moved to its parent.
* @param[in] mod Expected module.
* @param[in] name Expected name.
* @param[in] name_len Length of @p name.
* @return Whether it is a match or not.
*/
static ly_bool
lysp_schema_nodeid_match_node(const struct lysc_node **node, const struct lys_module *mod, const char *name,
size_t name_len)
{
const struct lys_module *node_mod;
const char *node_name;
/* compare with the module of the node */
if ((*node)->nodetype == LYS_INPUT) {
node_mod = ((struct lysc_node *)(((char *)*node) - offsetof(struct lysc_action, input)))->module;
} else if ((*node)->nodetype == LYS_OUTPUT) {
node_mod = ((struct lysc_node *)(((char *)*node) - offsetof(struct lysc_action, output)))->module;
} else {
node_mod = (*node)->module;
}
if (node_mod != mod) {
return 0;
}
/* compare names */
if ((*node)->nodetype == LYS_INPUT) {
node_name = "input";
} else if ((*node)->nodetype == LYS_OUTPUT) {
node_name = "output";
} else {
node_name = (*node)->name;
}
if (ly_strncmp(node_name, name, name_len)) {
return 0;
}
if ((*node)->nodetype & (LYS_INPUT | LYS_OUTPUT)) {
/* move up from input/output */
if ((*node)->nodetype == LYS_INPUT) {
(*node) = (struct lysc_node *)(((char *)*node) - offsetof(struct lysc_action, input));
} else {
(*node) = (struct lysc_node *)(((char *)*node) - offsetof(struct lysc_action, output));
}
} else if ((*node)->parent && ((*node)->parent->nodetype & (LYS_RPC | LYS_ACTION))) {
/* move to the input/output */
if ((*node)->flags & LYS_CONFIG_W) {
*node = (struct lysc_node *)&((struct lysc_action *)(*node)->parent)->input;
} else {
*node = (struct lysc_node *)&((struct lysc_action *)(*node)->parent)->output;
}
} else {
/* move to next parent */
*node = (*node)->parent;
}
return 1;
}
/**
* @brief Check whether a node matches specific schema nodeid.
*
* @param[in] exp Parsed nodeid to match.
* @param[in] exp_mod Module to use for nodes in @p exp without a prefix.
* @param[in] ctx_node Initial context node that should match, only for descendant paths.
* @param[in] parent First compiled parent to consider. If @p pnode is NULL, it is condered the node to be matched.
* @param[in] pnode Parsed node to be matched. May be NULL if the target node was already compiled.
* @param[in] pnode_mod Compiled @p pnode to-be module.
* @return Whether it is a match or not.
*/
static ly_bool
lysp_schema_nodeid_match(const struct lyxp_expr *exp, const struct lys_module *exp_mod, const struct lysc_node *ctx_node,
const struct lysc_node *parent, const struct lysp_node *pnode, const struct lys_module *pnode_mod)
{
uint32_t i;
const struct lys_module *mod;
const char *name;
size_t name_len;
/* compare last node in the node ID */
i = exp->used - 1;
/* get exp node ID module */
mod = lys_schema_node_get_module(exp_mod->ctx, exp->expr + exp->tok_pos[i], exp->tok_len[i], exp_mod, &name, &name_len);
assert(mod);
if (pnode) {
/* compare on the last parsed-only node */
if (!lysp_schema_nodeid_match_pnode(pnode, pnode_mod, mod, name, name_len)) {
return 0;
}
} else {
/* using parent directly */
if (!lysp_schema_nodeid_match_node(&parent, mod, name, name_len)) {
return 0;
}
}
/* now compare all the compiled parents */
while (i > 1) {
i -= 2;
assert(exp->tokens[i] == LYXP_TOKEN_NAMETEST);
if (!parent) {
/* no more parents but path continues */
return 0;
}
/* get exp node ID module */
mod = lys_schema_node_get_module(exp_mod->ctx, exp->expr + exp->tok_pos[i], exp->tok_len[i], exp_mod, &name,
&name_len);
assert(mod);
/* compare with the parent */
if (!lysp_schema_nodeid_match_node(&parent, mod, name, name_len)) {
return 0;
}
}
if (ctx_node && (ctx_node != parent)) {
/* descendant path has not finished in the context node */
return 0;
} else if (!ctx_node && parent) {
/* some parent was not matched */
return 0;
}
return 1;
}
static void
lysc_augment_free(const struct ly_ctx *ctx, struct lysc_augment *aug)
{
if (aug) {
lyxp_expr_free(ctx, aug->nodeid);
free(aug);
}
}
static void
lysc_deviation_free(const struct ly_ctx *ctx, struct lysc_deviation *dev)
{
if (dev) {
lyxp_expr_free(ctx, dev->nodeid);
LY_ARRAY_FREE(dev->devs);
LY_ARRAY_FREE(dev->dev_mods);
free(dev);
}
}
static void
lysc_refine_free(const struct ly_ctx *ctx, struct lysc_refine *rfn)
{
if (rfn) {
lyxp_expr_free(ctx, rfn->nodeid);
LY_ARRAY_FREE(rfn->rfns);
free(rfn);
}
}
static void
lysp_dev_node_free(const struct ly_ctx *ctx, struct lysp_node *dev_pnode)
{
if (!dev_pnode) {
return;
}
switch (dev_pnode->nodetype) {
case LYS_CONTAINER:
((struct lysp_node_container *)dev_pnode)->child = NULL;
break;
case LYS_LIST:
((struct lysp_node_list *)dev_pnode)->child = NULL;
break;
case LYS_CHOICE:
((struct lysp_node_choice *)dev_pnode)->child = NULL;
break;
case LYS_CASE:
((struct lysp_node_case *)dev_pnode)->child = NULL;
break;
case LYS_LEAF:
case LYS_LEAFLIST:
case LYS_ANYXML:
case LYS_ANYDATA:
/* no children */
break;
case LYS_NOTIF:
((struct lysp_notif *)dev_pnode)->data = NULL;
lysp_notif_free((struct ly_ctx *)ctx, (struct lysp_notif *)dev_pnode);
free(dev_pnode);
return;
case LYS_RPC:
case LYS_ACTION:
((struct lysp_action *)dev_pnode)->input.data = NULL;
((struct lysp_action *)dev_pnode)->output.data = NULL;
lysp_action_free((struct ly_ctx *)ctx, (struct lysp_action *)dev_pnode);
free(dev_pnode);
return;
case LYS_INPUT:
case LYS_OUTPUT:
((struct lysp_action_inout *)dev_pnode)->data = NULL;
lysp_action_inout_free((struct ly_ctx *)ctx, (struct lysp_action_inout *)dev_pnode);
free(dev_pnode);
return;
default:
LOGINT(ctx);
return;
}
lysp_node_free((struct ly_ctx *)ctx, dev_pnode);
}
/**
* @brief Compile and apply any precompiled deviations and refines targetting a node.
*
* @param[in] ctx Compile context.
* @param[in] pnode Parsed node to consider.
* @param[in] parent First compiled parent of @p pnode.
* @param[out] dev_pnode Copy of parsed node @p pnode with deviations and refines, if any. NULL if there are none.
* @param[out] no_supported Whether a not-supported deviation is defined for the node.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_deviations_refines(struct lysc_ctx *ctx, const struct lysp_node *pnode, const struct lysc_node *parent,
struct lysp_node **dev_pnode, ly_bool *not_supported)
{
LY_ERR ret = LY_SUCCESS;
uint32_t i;
LY_ARRAY_COUNT_TYPE u;
struct lys_module *orig_mod = ctx->mod, *orig_mod_def = ctx->mod_def;
char orig_path[LYSC_CTX_BUFSIZE];
struct lysc_refine *rfn;
struct lysc_deviation *dev;
struct lysp_deviation *dev_p;
struct lysp_deviate *d;
*dev_pnode = NULL;
*not_supported = 0;
for (i = 0; i < ctx->uses_rfns.count; ++i) {
rfn = ctx->uses_rfns.objs[i];
if (!lysp_schema_nodeid_match(rfn->nodeid, ctx->mod, rfn->nodeid_ctx_node, parent, pnode, ctx->mod)) {
/* not our target node */
continue;
}
if (!*dev_pnode) {
/* first refine on this node, create a copy first */
LY_CHECK_GOTO(ret = lysp_dup_single(ctx->ctx, pnode, 1, dev_pnode), cleanup);
}
/* apply all the refines by changing (the copy of) the parsed node */
LY_ARRAY_FOR(rfn->rfns, u) {
/* apply refine, keep the current path and add to it */
lysc_update_path(ctx, NULL, "{refine}");
lysc_update_path(ctx, NULL, rfn->rfns[u]->nodeid);
ret = lys_apply_refine(ctx, rfn->rfns[u], *dev_pnode);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
LY_CHECK_GOTO(ret, cleanup);
}
/* refine was applied, remove it */
lysc_refine_free(ctx->ctx, rfn);
ly_set_rm_index(&ctx->uses_rfns, i, NULL);
/* all the refines for one target node are in one structure, we are done */
break;
}
for (i = 0; i < ctx->devs.count; ++i) {
dev = ctx->devs.objs[i];
if (!lysp_schema_nodeid_match(dev->nodeid, dev->nodeid_mod, NULL, parent, pnode, ctx->mod_def)) {
/* not our target node */
continue;
}
if (dev->not_supported) {
/* it is not supported, no more deviations */
*not_supported = 1;
goto dev_applied;
}
if (!*dev_pnode) {
/* first deviation on this node, create a copy first */
LY_CHECK_GOTO(ret = lysp_dup_single(ctx->ctx, pnode, 1, dev_pnode), cleanup);
}
/* apply all the deviates by changing (the copy of) the parsed node */
LY_ARRAY_FOR(dev->devs, u) {
dev_p = dev->devs[u];
LY_LIST_FOR(dev_p->deviates, d) {
/* generate correct path */
strcpy(orig_path, ctx->path);
ctx->path_len = 1;
ctx->mod = (struct lys_module *)dev->dev_mods[u];
ctx->mod_def = (struct lys_module *)dev->dev_mods[u];
lysc_update_path(ctx, NULL, "{deviation}");
lysc_update_path(ctx, NULL, dev_p->nodeid);
switch (d->mod) {
case LYS_DEV_ADD:
ret = lys_apply_deviate_add(ctx, (struct lysp_deviate_add *)d, *dev_pnode);
break;
case LYS_DEV_DELETE:
ret = lys_apply_deviate_delete(ctx, (struct lysp_deviate_del *)d, *dev_pnode);
break;
case LYS_DEV_REPLACE:
ret = lys_apply_deviate_replace(ctx, (struct lysp_deviate_rpl *)d, *dev_pnode);
break;
default:
LOGINT(ctx->ctx);
ret = LY_EINT;
}
/* restore previous path */
strcpy(ctx->path, orig_path);
ctx->path_len = strlen(ctx->path);
ctx->mod = orig_mod;
ctx->mod_def = orig_mod_def;
LY_CHECK_GOTO(ret, cleanup);
}
}
dev_applied:
/* deviation was applied, remove it */
lysc_deviation_free(ctx->ctx, dev);
ly_set_rm_index(&ctx->devs, i, NULL);
/* all the deviations for one target node are in one structure, we are done */
break;
}
cleanup:
if (ret) {
lysp_dev_node_free(ctx->ctx, *dev_pnode);
*dev_pnode = NULL;
*not_supported = 0;
}
return ret;
}
/**
* @brief Compile and apply any precompiled top-level or uses augments targetting a node.
*
* @param[in] ctx Compile context.
* @param[in] node Compiled node to consider.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_node_augments(struct lysc_ctx *ctx, struct lysc_node *node)
{
LY_ERR ret = LY_SUCCESS;
struct lys_module *orig_mod = ctx->mod, *orig_mod_def = ctx->mod_def;
uint32_t i;
char orig_path[LYSC_CTX_BUFSIZE];
struct lysc_augment *aug;
/* uses augments */
for (i = 0; i < ctx->uses_augs.count; ) {
aug = ctx->uses_augs.objs[i];
if (!lysp_schema_nodeid_match(aug->nodeid, ctx->mod, aug->nodeid_ctx_node, node, NULL, NULL)) {
/* not our target node */
++i;
continue;
}
/* apply augment, keep the current path and add to it */
lysc_update_path(ctx, NULL, "{augment}");
lysc_update_path(ctx, NULL, aug->aug_p->nodeid);
ret = lys_compile_augment(ctx, aug->aug_p, node);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
LY_CHECK_GOTO(ret, cleanup);
/* augment was applied, remove it (index may have changed because other augments could have been applied) */
ly_set_rm(&ctx->uses_augs, aug, NULL);
lysc_augment_free(ctx->ctx, aug);
}
/* top-level augments */
for (i = 0; i < ctx->augs.count; ) {
aug = ctx->augs.objs[i];
if (!lysp_schema_nodeid_match(aug->nodeid, aug->nodeid_mod, NULL, node, NULL, NULL)) {
/* not our target node */
++i;
continue;
}
/* apply augment, use the path and modules from the augment */
strcpy(orig_path, ctx->path);
ctx->path_len = 1;
lysc_update_path(ctx, NULL, "{augment}");
lysc_update_path(ctx, NULL, aug->aug_p->nodeid);
ctx->mod = (struct lys_module *)aug->nodeid_mod;
ctx->mod_def = (struct lys_module *)aug->nodeid_mod;
ret = lys_compile_augment(ctx, aug->aug_p, node);
strcpy(ctx->path, orig_path);
ctx->path_len = strlen(ctx->path);
LY_CHECK_GOTO(ret, cleanup);
/* augment was applied, remove it */
ly_set_rm(&ctx->augs, aug, NULL);
lysc_augment_free(ctx->ctx, aug);
}
cleanup:
ctx->mod = orig_mod;
ctx->mod_def = orig_mod_def;
return ret;
}
/**
* @brief Prepare a top-level augment to be applied during data nodes compilation.
*
* @param[in] ctx Compile context.
* @param[in] aug_p Parsed augment to be applied.
* @param[in] mod_def Local module for @p aug_p.
* @return LY_ERR value.
*/
static LY_ERR
lys_precompile_own_augment(struct lysc_ctx *ctx, struct lysp_augment *aug_p, const struct lys_module *mod_def)
{
LY_ERR ret = LY_SUCCESS;
struct lyxp_expr *exp = NULL;
struct lysc_augment *aug;
const struct lys_module *mod;
/* parse its target, it was already parsed and fully checked (except for the existence of the nodes) */
ret = lyxp_expr_parse(ctx->ctx, aug_p->nodeid, strlen(aug_p->nodeid), 0, &exp);
LY_CHECK_GOTO(ret, cleanup);
mod = lys_schema_node_get_module(ctx->ctx, exp->expr + exp->tok_pos[1], exp->tok_len[1], mod_def, NULL, NULL);
LY_CHECK_ERR_GOTO(!mod, LOGINT(ctx->ctx); ret = LY_EINT, cleanup);
if (mod != ctx->mod) {
/* augment for another module, ignore */
goto cleanup;
}
/* allocate new compiled augment and store it in the set */
aug = calloc(1, sizeof *aug);
LY_CHECK_ERR_GOTO(!aug, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = ly_set_add(&ctx->augs, aug, LY_SET_OPT_USEASLIST, NULL), cleanup);
aug->nodeid = exp;
exp = NULL;
aug->nodeid_mod = mod_def;
aug->aug_p = aug_p;
cleanup:
lyxp_expr_free(ctx->ctx, exp);
return ret;
}
/**
* @brief Prepare all top-level augments for the current module to be applied during data nodes compilation.
*
* @param[in] ctx Compile context.
* @return LY_ERR value.
*/
static LY_ERR
lys_precompile_own_augments(struct lysc_ctx *ctx)
{
LY_ARRAY_COUNT_TYPE u, v, w;
const struct lys_module *aug_mod;
LY_ARRAY_FOR(ctx->mod->augmented_by, u) {
aug_mod = ctx->mod->augmented_by[u];
/* collect all module augments */
LY_ARRAY_FOR(aug_mod->parsed->augments, v) {
LY_CHECK_RET(lys_precompile_own_augment(ctx, &aug_mod->parsed->augments[v], aug_mod));
}
/* collect all submodules augments */
LY_ARRAY_FOR(aug_mod->parsed->includes, v) {
LY_ARRAY_FOR(aug_mod->parsed->includes[v].submodule->augments, w) {
LY_CHECK_RET(lys_precompile_own_augment(ctx, &aug_mod->parsed->includes[v].submodule->augments[w], aug_mod));
}
}
}
return LY_SUCCESS;
}
/**
* @brief Prepare a deviation to be applied during data nodes compilation.
*
* @param[in] ctx Compile context.
* @param[in] dev_p Parsed deviation to be applied.
* @param[in] mod_def Local module for @p dev_p.
* @return LY_ERR value.
*/
static LY_ERR
lys_precompile_own_deviation(struct lysc_ctx *ctx, struct lysp_deviation *dev_p, const struct lys_module *mod_def)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_deviation *dev = NULL;
struct lyxp_expr *exp = NULL;
struct lysp_deviation **new_dev;
const struct lys_module *mod, **new_dev_mod;
uint32_t i;
/* parse its target, it was already parsed and fully checked (except for the existence of the nodes) */
ret = lyxp_expr_parse(ctx->ctx, dev_p->nodeid, strlen(dev_p->nodeid), 0, &exp);
LY_CHECK_GOTO(ret, cleanup);
mod = lys_schema_node_get_module(ctx->ctx, exp->expr + exp->tok_pos[1], exp->tok_len[1], mod_def, NULL, NULL);
LY_CHECK_ERR_GOTO(!mod, LOGINT(ctx->ctx); ret = LY_EINT, cleanup);
if (mod != ctx->mod) {
/* deviation for another module, ignore */
goto cleanup;
}
/* try to find the node in already compiled deviations */
for (i = 0; i < ctx->devs.count; ++i) {
if (lys_abs_schema_nodeid_match(ctx->ctx, exp, mod_def, ((struct lysc_deviation *)ctx->devs.objs[i])->nodeid,
((struct lysc_deviation *)ctx->devs.objs[i])->nodeid_mod)) {
dev = ctx->devs.objs[i];
break;
}
}
if (!dev) {
/* allocate new compiled deviation */
dev = calloc(1, sizeof *dev);
LY_CHECK_ERR_GOTO(!dev, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = ly_set_add(&ctx->devs, dev, LY_SET_OPT_USEASLIST, NULL), cleanup);
dev->nodeid = exp;
exp = NULL;
dev->nodeid_mod = mod_def;
}
/* add new parsed deviation structure */
LY_ARRAY_NEW_GOTO(ctx->ctx, dev->devs, new_dev, ret, cleanup);
*new_dev = dev_p;
LY_ARRAY_NEW_GOTO(ctx->ctx, dev->dev_mods, new_dev_mod, ret, cleanup);
*new_dev_mod = mod_def;
cleanup:
lyxp_expr_free(ctx->ctx, exp);
return ret;
}
/**
* @brief Prepare all deviations for the current module to be applied during data nodes compilation.
*
* @param[in] ctx Compile context.
* @return LY_ERR value.
*/
static LY_ERR
lys_precompile_own_deviations(struct lysc_ctx *ctx)
{
LY_ARRAY_COUNT_TYPE u, v, w;
const struct lys_module *dev_mod;
struct lysc_deviation *dev;
struct lysp_deviate *d;
int not_supported;
uint32_t i;
LY_ARRAY_FOR(ctx->mod->deviated_by, u) {
dev_mod = ctx->mod->deviated_by[u];
/* compile all module deviations */
LY_ARRAY_FOR(dev_mod->parsed->deviations, v) {
LY_CHECK_RET(lys_precompile_own_deviation(ctx, &dev_mod->parsed->deviations[v], dev_mod));
}
/* compile all submodules deviations */
LY_ARRAY_FOR(dev_mod->parsed->includes, v) {
LY_ARRAY_FOR(dev_mod->parsed->includes[v].submodule->deviations, w) {
LY_CHECK_RET(lys_precompile_own_deviation(ctx, &dev_mod->parsed->includes[v].submodule->deviations[w], dev_mod));
}
}
}
/* set not-supported flags for all the deviations */
for (i = 0; i < ctx->devs.count; ++i) {
dev = ctx->devs.objs[i];
not_supported = 0;
LY_ARRAY_FOR(dev->devs, u) {
LY_LIST_FOR(dev->devs[u]->deviates, d) {
if (d->mod == LYS_DEV_NOT_SUPPORTED) {
not_supported = 1;
break;
}
}
if (not_supported) {
break;
}
}
if (not_supported && (LY_ARRAY_COUNT(dev->devs) > 1)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Multiple deviations of \"%s\" with one of them being \"not-supported\".", dev->nodeid->expr);
return LY_EVALID;
}
dev->not_supported = not_supported;
}
return LY_SUCCESS;
}
/**
* @brief Compile parsed schema node information.
* @param[in] ctx Compile context
* @param[in] pnode Parsed schema node.
* @param[in] parent Compiled parent node where the current node is supposed to be connected. It is
* NULL for top-level nodes, in such a case the module where the node will be connected is taken from
* the compile context.
* @param[in] uses_status If the node is being placed instead of uses, here we have the uses's status value (as node's flags).
* Zero means no uses, non-zero value with no status bit set mean the default status.
* @return LY_ERR value - LY_SUCCESS or LY_EVALID.
*/
static LY_ERR
lys_compile_node(struct lysc_ctx *ctx, struct lysp_node *pnode, struct lysc_node *parent, uint16_t uses_status,
struct ly_set *child_set)
{
LY_ERR ret = LY_SUCCESS;
struct lysc_node *node = NULL;
struct lysc_when **when;
struct lysp_node *dev_pnode = NULL, *orig_pnode = pnode;
LY_ARRAY_COUNT_TYPE u;
ly_bool not_supported;
LY_ERR (*node_compile_spec)(struct lysc_ctx *, struct lysp_node *, struct lysc_node *);
if (pnode->nodetype != LYS_USES) {
lysc_update_path(ctx, parent, pnode->name);
} else {
lysc_update_path(ctx, NULL, "{uses}");
lysc_update_path(ctx, NULL, pnode->name);
}
switch (pnode->nodetype) {
case LYS_CONTAINER:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_container));
node_compile_spec = lys_compile_node_container;
break;
case LYS_LEAF:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_leaf));
node_compile_spec = lys_compile_node_leaf;
break;
case LYS_LIST:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_list));
node_compile_spec = lys_compile_node_list;
break;
case LYS_LEAFLIST:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_leaflist));
node_compile_spec = lys_compile_node_leaflist;
break;
case LYS_CHOICE:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_choice));
node_compile_spec = lys_compile_node_choice;
break;
case LYS_CASE:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_case));
node_compile_spec = lys_compile_node_case;
break;
case LYS_ANYXML:
case LYS_ANYDATA:
node = (struct lysc_node *)calloc(1, sizeof(struct lysc_node_anydata));
node_compile_spec = lys_compile_node_any;
break;
case LYS_USES:
ret = lys_compile_uses(ctx, (struct lysp_node_uses *)pnode, parent, child_set);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
return ret;
default:
LOGINT(ctx->ctx);
return LY_EINT;
}
LY_CHECK_ERR_RET(!node, LOGMEM(ctx->ctx), LY_EMEM);
/* compile any deviations for this node */
LY_CHECK_ERR_RET(ret = lys_compile_node_deviations_refines(ctx, pnode, parent, &dev_pnode, &not_supported),
free(node), ret);
if (not_supported) {
free(node);
lysc_update_path(ctx, NULL, NULL);
return LY_SUCCESS;
} else if (dev_pnode) {
pnode = dev_pnode;
}
node->nodetype = pnode->nodetype;
node->module = ctx->mod;
node->prev = node;
node->flags = pnode->flags & LYS_FLAGS_COMPILED_MASK;
/* config */
ret = lys_compile_config(ctx, node, parent);
LY_CHECK_GOTO(ret, error);
/* list ordering */
if (node->nodetype & (LYS_LIST | LYS_LEAFLIST)) {
if ((node->flags & LYS_CONFIG_R) && (node->flags & LYS_ORDBY_MASK)) {
LOGWRN(ctx->ctx, "The ordered-by statement is ignored in lists representing %s (%s).",
(ctx->options & LYSC_OPT_RPC_OUTPUT) ? "RPC/action output parameters" :
(ctx->options & LYSC_OPT_NOTIFICATION) ? "notification content" : "state data", ctx->path);
node->flags &= ~LYS_ORDBY_MASK;
node->flags |= LYS_ORDBY_SYSTEM;
} else if (!(node->flags & LYS_ORDBY_MASK)) {
/* default ordering is system */
node->flags |= LYS_ORDBY_SYSTEM;
}
}
/* status - it is not inherited by specification, but it does not make sense to have
* current in deprecated or deprecated in obsolete, so we do print warning and inherit status */
LY_CHECK_GOTO(ret = lys_compile_status(ctx, &node->flags, uses_status ? uses_status : (parent ? parent->flags : 0)), error);
if (!(ctx->options & LYSC_OPT_FREE_SP)) {
node->sp = orig_pnode;
}
DUP_STRING_GOTO(ctx->ctx, pnode->name, node->name, ret, error);
DUP_STRING_GOTO(ctx->ctx, pnode->dsc, node->dsc, ret, error);
DUP_STRING_GOTO(ctx->ctx, pnode->ref, node->ref, ret, error);
if (pnode->when) {
LY_ARRAY_NEW_GOTO(ctx->ctx, node->when, when, ret, error);
LY_CHECK_GOTO(ret = lys_compile_when(ctx, pnode->when, pnode->flags, node, when), error);
if (!(ctx->options & LYSC_OPT_GROUPING)) {
/* do not check "when" semantics in a grouping */
LY_CHECK_GOTO(ret = ly_set_add(&ctx->xpath, node, 0, NULL), error);
}
}
COMPILE_ARRAY_GOTO(ctx, pnode->iffeatures, node->iffeatures, u, lys_compile_iffeature, ret, error);
/* insert into parent's children/compiled module (we can no longer free the node separately on error) */
LY_CHECK_GOTO(ret = lys_compile_node_connect(ctx, parent, node), cleanup);
/* connect any augments */
LY_CHECK_GOTO(ret = lys_compile_node_augments(ctx, node), cleanup);
/* nodetype-specific part */
LY_CHECK_GOTO(ret = node_compile_spec(ctx, pnode, node), cleanup);
/* final compilation tasks that require the node to be connected */
COMPILE_EXTS_GOTO(ctx, pnode->exts, node->exts, node, LYEXT_PAR_NODE, ret, cleanup);
if (node->flags & LYS_MAND_TRUE) {
/* inherit LYS_MAND_TRUE in parent containers */
lys_compile_mandatory_parents(parent, 1);
}
if (child_set) {
/* add the new node into set */
LY_CHECK_GOTO(ret = ly_set_add(child_set, node, LY_SET_OPT_USEASLIST, NULL), cleanup);
}
lysc_update_path(ctx, NULL, NULL);
lysp_dev_node_free(ctx->ctx, dev_pnode);
return LY_SUCCESS;
error:
lysc_node_free(ctx->ctx, node);
cleanup:
if (dev_pnode) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_OTHER, "Compilation of a deviated and/or refined node failed.");
lysp_dev_node_free(ctx->ctx, dev_pnode);
}
return ret;
}
/**
* @brief Add a module reference into an array, checks for duplicities.
*
* @param[in] ctx Compile context.
* @param[in] mod Module reference to add.
* @param[in,out] mod_array Module sized array to add to.
* @return LY_ERR value.
*/
static LY_ERR
lys_array_add_mod_ref(struct lysc_ctx *ctx, struct lys_module *mod, struct lys_module ***mod_array)
{
LY_ARRAY_COUNT_TYPE u;
struct lys_module **new_mod;
LY_ARRAY_FOR(*mod_array, u) {
if ((*mod_array)[u] == mod) {
/* already there */
return LY_EEXIST;
}
}
/* add the new module ref */
LY_ARRAY_NEW_RET(ctx->ctx, *mod_array, new_mod, LY_EMEM);
*new_mod = mod;
return LY_SUCCESS;
}
/**
* @brief Compile top-level augments and deviations defined in the current module.
* Generally, just add the module refence to the target modules. But in case
* of foreign augments, they are directly applied.
*
* @param[in] ctx Compile context.
* @return LY_ERR value.
*/
static LY_ERR
lys_precompile_augments_deviations(struct lysc_ctx *ctx)
{
LY_ERR ret = LY_SUCCESS;
LY_ARRAY_COUNT_TYPE u, v;
const struct lysp_module *mod_p;
const struct lysc_node *target;
struct lys_module *mod;
struct lysp_submodule *submod;
ly_bool has_dev = 0;
uint16_t flags;
uint32_t idx, opt_prev = ctx->options;
for (idx = 0; idx < ctx->ctx->implementing.count; ++idx) {
if (ctx->mod == ctx->ctx->implementing.objs[idx]) {
break;
}
}
if (idx == ctx->ctx->implementing.count) {
/* it was already implemented and all the augments and deviations fully applied */
return LY_SUCCESS;
}
mod_p = ctx->mod->parsed;
LY_ARRAY_FOR(mod_p->augments, u) {
lysc_update_path(ctx, NULL, "{augment}");
lysc_update_path(ctx, NULL, mod_p->augments[u].nodeid);
/* get target module */
ret = lys_nodeid_check(ctx, mod_p->augments[u].nodeid, 1, &mod, NULL);
LY_CHECK_RET(ret);
/* add this module into the target module augmented_by, if not there already from previous augments */
lys_array_add_mod_ref(ctx, ctx->mod, &mod->augmented_by);
/* if we are compiling this module, we cannot add augments to it yet */
if (mod != ctx->mod) {
/* apply the augment, find the target node first */
flags = 0;
ret = lysc_resolve_schema_nodeid(ctx, mod_p->augments[u].nodeid, 0, NULL, ctx->mod_def, 0, &target, &flags);
LY_CHECK_RET(ret);
/* apply the augment */
ctx->options |= flags;
ret = lys_compile_augment(ctx, &mod_p->augments[u], (struct lysc_node *)target);
ctx->options = opt_prev;
LY_CHECK_RET(ret);
}
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
}
LY_ARRAY_FOR(mod_p->deviations, u) {
/* get target module */
lysc_update_path(ctx, NULL, "{deviation}");
lysc_update_path(ctx, NULL, mod_p->deviations[u].nodeid);
ret = lys_nodeid_check(ctx, mod_p->deviations[u].nodeid, 1, &mod, NULL);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
LY_CHECK_RET(ret);
/* add this module into the target module deviated_by, if not there already from previous deviations */
lys_array_add_mod_ref(ctx, ctx->mod, &mod->deviated_by);
/* new deviation added to the target module */
has_dev = 1;
}
/* the same for augments and deviations in submodules */
LY_ARRAY_FOR(mod_p->includes, v) {
submod = mod_p->includes[v].submodule;
LY_ARRAY_FOR(submod->augments, u) {
lysc_update_path(ctx, NULL, "{augment}");
lysc_update_path(ctx, NULL, submod->augments[u].nodeid);
ret = lys_nodeid_check(ctx, submod->augments[u].nodeid, 1, &mod, NULL);
LY_CHECK_RET(ret);
lys_array_add_mod_ref(ctx, ctx->mod, &mod->augmented_by);
if (mod != ctx->mod) {
flags = 0;
ret = lysc_resolve_schema_nodeid(ctx, mod_p->augments[u].nodeid, 0, NULL, ctx->mod_def, 0, &target, &flags);
LY_CHECK_RET(ret);
ctx->options |= flags;
ret = lys_compile_augment(ctx, &submod->augments[u], (struct lysc_node *)target);
ctx->options = opt_prev;
LY_CHECK_RET(ret);
}
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
}
LY_ARRAY_FOR(submod->deviations, u) {
lysc_update_path(ctx, NULL, "{deviation}");
lysc_update_path(ctx, NULL, submod->deviations[u].nodeid);
ret = lys_nodeid_check(ctx, submod->deviations[u].nodeid, 1, &mod, NULL);
lysc_update_path(ctx, NULL, NULL);
lysc_update_path(ctx, NULL, NULL);
LY_CHECK_RET(ret);
lys_array_add_mod_ref(ctx, ctx->mod, &mod->deviated_by);
has_dev = 1;
}
}
if (!has_dev) {
/* no need to recompile any modules */
return LY_SUCCESS;
}
/* free all the modules in descending order */
idx = ctx->ctx->list.count;
do {
--idx;
mod = ctx->ctx->list.objs[idx];
/* skip this module */
if (mod == mod_p->mod) {
continue;
}
if (mod->implemented && mod->compiled) {
/* keep information about features state in the module */
lys_feature_precompile_revert(ctx, mod);
/* free the module */
lysc_module_free(mod->compiled, NULL);
mod->compiled = NULL;
}
} while (idx);
/* recompile all the modules in ascending order */
for (idx = 0; idx < ctx->ctx->list.count; ++idx) {
mod = ctx->ctx->list.objs[idx];
/* skip this module */
if (mod == mod_p->mod) {
continue;
}
if (mod->implemented) {
/* compile */
LY_CHECK_GOTO(ret = lys_compile(mod, 0), cleanup);
}
}
cleanup:
return ret;
}
static void *
lys_compile_extension_instance_storage(enum ly_stmt stmt, struct lysc_ext_substmt *substmts)
{
for (LY_ARRAY_COUNT_TYPE u = 0; substmts[u].stmt; ++u) {
if (substmts[u].stmt == stmt) {
return substmts[u].storage;
}
}
return NULL;
}
LY_ERR
lys_compile_extension_instance(struct lysc_ctx *ctx, const struct lysp_ext_instance *ext, struct lysc_ext_substmt *substmts)
{
LY_ERR ret = LY_EVALID, r;
LY_ARRAY_COUNT_TYPE u;
struct lysp_stmt *stmt;
struct lysp_qname qname;
void *parsed = NULL, **compiled = NULL;
/* check for invalid substatements */
for (stmt = ext->child; stmt; stmt = stmt->next) {
if (stmt->flags & (LYS_YIN_ATTR | LYS_YIN_ARGUMENT)) {
continue;
}
for (u = 0; substmts[u].stmt; ++u) {
if (substmts[u].stmt == stmt->kw) {
break;
}
}
if (!substmts[u].stmt) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Invalid keyword \"%s\" as a child of \"%s%s%s\" extension instance.",
stmt->stmt, ext->name, ext->argument ? " " : "", ext->argument ? ext->argument : "");
goto cleanup;
}
}
/* TODO store inherited data, e.g. status first, but mark them somehow to allow to overwrite them and not detect duplicity */
/* keep order of the processing the same as the order in the defined substmts,
* the order is important for some of the statements depending on others (e.g. type needs status and units) */
for (u = 0; substmts[u].stmt; ++u) {
ly_bool stmt_present = 0;
for (stmt = ext->child; stmt; stmt = stmt->next) {
if (substmts[u].stmt != stmt->kw) {
continue;
}
stmt_present = 1;
if (substmts[u].storage) {
switch (stmt->kw) {
case LY_STMT_STATUS:
assert(substmts[u].cardinality < LY_STMT_CARD_SOME);
LY_CHECK_ERR_GOTO(r = lysp_stmt_parse(ctx, stmt, stmt->kw, &substmts[u].storage, /* TODO */ NULL), ret = r, cleanup);
break;
case LY_STMT_UNITS: {
const char **units;
if (substmts[u].cardinality < LY_STMT_CARD_SOME) {
/* single item */
if (*((const char **)substmts[u].storage)) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPSTMT, stmt->stmt);
goto cleanup;
}
units = (const char **)substmts[u].storage;
} else {
/* sized array */
const char ***units_array = (const char ***)substmts[u].storage;
LY_ARRAY_NEW_GOTO(ctx->ctx, *units_array, units, ret, cleanup);
}
r = lydict_insert(ctx->ctx, stmt->arg, 0, units);
LY_CHECK_ERR_GOTO(r, ret = r, cleanup);
break;
}
case LY_STMT_TYPE: {
uint16_t *flags = lys_compile_extension_instance_storage(LY_STMT_STATUS, substmts);
const char **units = lys_compile_extension_instance_storage(LY_STMT_UNITS, substmts);
if (substmts[u].cardinality < LY_STMT_CARD_SOME) {
/* single item */
if (*(struct lysc_type **)substmts[u].storage) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPSTMT, stmt->stmt);
goto cleanup;
}
compiled = substmts[u].storage;
} else {
/* sized array */
struct lysc_type ***types = (struct lysc_type ***)substmts[u].storage, **type = NULL;
LY_ARRAY_NEW_GOTO(ctx->ctx, *types, type, ret, cleanup);
compiled = (void *)type;
}
LY_CHECK_ERR_GOTO(r = lysp_stmt_parse(ctx, stmt, stmt->kw, &parsed, NULL), ret = r, cleanup);
LY_CHECK_ERR_GOTO(r = lys_compile_type(ctx, ext->parent_type == LYEXT_PAR_NODE ? ((struct lysc_node *)ext->parent)->sp : NULL,
flags ? *flags : 0, ctx->mod_def->parsed, ext->name, parsed, (struct lysc_type **)compiled,
units && !*units ? units : NULL, NULL), lysp_type_free(ctx->ctx, parsed); free(parsed); ret = r, cleanup);
lysp_type_free(ctx->ctx, parsed);
free(parsed);
break;
}
case LY_STMT_IF_FEATURE: {
struct lysc_iffeature *iff = NULL;
if (substmts[u].cardinality < LY_STMT_CARD_SOME) {
/* single item */
if (((struct lysc_iffeature *)substmts[u].storage)->features) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LY_VCODE_DUPSTMT, stmt->stmt);
goto cleanup;
}
iff = (struct lysc_iffeature *)substmts[u].storage;
} else {
/* sized array */
struct lysc_iffeature **iffs = (struct lysc_iffeature **)substmts[u].storage;
LY_ARRAY_NEW_GOTO(ctx->ctx, *iffs, iff, ret, cleanup);
}
qname.str = stmt->arg;
qname.mod = ctx->mod_def;
LY_CHECK_ERR_GOTO(r = lys_compile_iffeature(ctx, &qname, iff), ret = r, cleanup);
break;
}
/* TODO support other substatements (parse stmt to lysp and then compile lysp to lysc),
* also note that in many statements their extensions are not taken into account */
default:
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Statement \"%s\" is not supported as an extension (found in \"%s%s%s\") substatement.",
stmt->stmt, ext->name, ext->argument ? " " : "", ext->argument ? ext->argument : "");
goto cleanup;
}
}
}
if ((substmts[u].cardinality == LY_STMT_CARD_MAND || substmts[u].cardinality == LY_STMT_CARD_SOME) && !stmt_present) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SYNTAX_YANG, "Missing mandatory keyword \"%s\" as a child of \"%s%s%s\".",
ly_stmt2str(substmts[u].stmt), ext->name, ext->argument ? " " : "", ext->argument ? ext->argument : "");
goto cleanup;
}
}
ret = LY_SUCCESS;
cleanup:
return ret;
}
/**
* @brief Check when for cyclic dependencies.
*
* @param[in] set Set with all the referenced nodes.
* @param[in] node Node whose "when" referenced nodes are in @p set.
* @return LY_ERR value
*/
static LY_ERR
lys_compile_unres_when_cyclic(struct lyxp_set *set, const struct lysc_node *node)
{
struct lyxp_set tmp_set;
struct lyxp_set_scnode *xp_scnode;
uint32_t i, j;
LY_ARRAY_COUNT_TYPE u;
struct lysc_when *when;
LY_ERR ret = LY_SUCCESS;
memset(&tmp_set, 0, sizeof tmp_set);
/* prepare in_ctx of the set */
for (i = 0; i < set->used; ++i) {
xp_scnode = &set->val.scnodes[i];
if (xp_scnode->in_ctx != -1) {
/* check node when, skip the context node (it was just checked) */
xp_scnode->in_ctx = 1;
}
}
for (i = 0; i < set->used; ++i) {
xp_scnode = &set->val.scnodes[i];
if (xp_scnode->in_ctx != 1) {
/* already checked */
continue;
}
if ((xp_scnode->type != LYXP_NODE_ELEM) || (xp_scnode->scnode->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF))
|| !xp_scnode->scnode->when) {
/* no when to check */
xp_scnode->in_ctx = 0;
continue;
}
node = xp_scnode->scnode;
do {
LY_ARRAY_FOR(node->when, u) {
when = node->when[u];
ret = lyxp_atomize(when->cond, LY_PREF_SCHEMA, when->module, when->context,
when->context ? LYXP_NODE_ELEM : LYXP_NODE_ROOT_CONFIG, &tmp_set, LYXP_SCNODE_SCHEMA);
if (ret != LY_SUCCESS) {
LOGVAL(set->ctx, LY_VLOG_LYSC, node, LYVE_SEMANTICS, "Invalid when condition \"%s\".", when->cond->expr);
goto cleanup;
}
for (j = 0; j < tmp_set.used; ++j) {
/* skip roots'n'stuff */
if (tmp_set.val.scnodes[j].type == LYXP_NODE_ELEM) {
/* try to find this node in our set */
uint32_t idx;
if (lyxp_set_scnode_contains(set, tmp_set.val.scnodes[j].scnode, LYXP_NODE_ELEM, -1, &idx) && (set->val.scnodes[idx].in_ctx == -1)) {
LOGVAL(set->ctx, LY_VLOG_LYSC, node, LY_VCODE_CIRC_WHEN, node->name, set->val.scnodes[idx].scnode->name);
ret = LY_EVALID;
goto cleanup;
}
/* needs to be checked, if in both sets, will be ignored */
tmp_set.val.scnodes[j].in_ctx = 1;
} else {
/* no when, nothing to check */
tmp_set.val.scnodes[j].in_ctx = 0;
}
}
/* merge this set into the global when set */
lyxp_set_scnode_merge(set, &tmp_set);
}
/* check when of non-data parents as well */
node = node->parent;
} while (node && (node->nodetype & (LYS_CASE | LYS_CHOICE)));
/* this node when was checked (xp_scnode could have been reallocd) */
set->val.scnodes[i].in_ctx = -1;
}
cleanup:
lyxp_set_free_content(&tmp_set);
return ret;
}
/**
* @brief Check when/must expressions of a node on a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] node Node to check.
* @return LY_ERR value
*/
static LY_ERR
lys_compile_unres_xpath(struct lysc_ctx *ctx, const struct lysc_node *node)
{
struct lyxp_set tmp_set;
uint32_t i;
LY_ARRAY_COUNT_TYPE u;
uint32_t opts;
ly_bool input_done = 0;
struct lysc_when **when = NULL;
struct lysc_must *musts = NULL;
LY_ERR ret = LY_SUCCESS;
const struct lysc_node *op;
memset(&tmp_set, 0, sizeof tmp_set);
opts = LYXP_SCNODE_SCHEMA;
if (node->flags & LYS_CONFIG_R) {
for (op = node->parent; op && !(op->nodetype & (LYS_RPC | LYS_ACTION)); op = op->parent);
if (op) {
/* we are actually in output */
opts = LYXP_SCNODE_OUTPUT;
}
}
switch (node->nodetype) {
case LYS_CONTAINER:
when = ((struct lysc_node_container *)node)->when;
musts = ((struct lysc_node_container *)node)->musts;
break;
case LYS_CHOICE:
when = ((struct lysc_node_choice *)node)->when;
break;
case LYS_LEAF:
when = ((struct lysc_node_leaf *)node)->when;
musts = ((struct lysc_node_leaf *)node)->musts;
break;
case LYS_LEAFLIST:
when = ((struct lysc_node_leaflist *)node)->when;
musts = ((struct lysc_node_leaflist *)node)->musts;
break;
case LYS_LIST:
when = ((struct lysc_node_list *)node)->when;
musts = ((struct lysc_node_list *)node)->musts;
break;
case LYS_ANYXML:
case LYS_ANYDATA:
when = ((struct lysc_node_anydata *)node)->when;
musts = ((struct lysc_node_anydata *)node)->musts;
break;
case LYS_CASE:
when = ((struct lysc_node_case *)node)->when;
break;
case LYS_NOTIF:
musts = ((struct lysc_notif *)node)->musts;
break;
case LYS_RPC:
case LYS_ACTION:
/* first process input musts */
musts = ((struct lysc_action *)node)->input.musts;
break;
default:
/* nothing to check */
break;
}
/* check "when" */
LY_ARRAY_FOR(when, u) {
ret = lyxp_atomize(when[u]->cond, LY_PREF_SCHEMA, when[u]->module, when[u]->context ? when[u]->context : node,
when[u]->context ? LYXP_NODE_ELEM : LYXP_NODE_ROOT_CONFIG, &tmp_set, opts);
if (ret != LY_SUCCESS) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_SEMANTICS, "Invalid when condition \"%s\".", when[u]->cond->expr);
goto cleanup;
}
ctx->path[0] = '\0';
lysc_path((struct lysc_node *)node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
for (i = 0; i < tmp_set.used; ++i) {
/* skip roots'n'stuff */
if ((tmp_set.val.scnodes[i].type == LYXP_NODE_ELEM) && (tmp_set.val.scnodes[i].in_ctx != -1)) {
struct lysc_node *schema = tmp_set.val.scnodes[i].scnode;
/* XPath expression cannot reference "lower" status than the node that has the definition */
ret = lysc_check_status(ctx, when[u]->flags, when[u]->module, node->name, schema->flags, schema->module,
schema->name);
LY_CHECK_GOTO(ret, cleanup);
/* check dummy node accessing */
if (schema == node) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LY_VCODE_DUMMY_WHEN, node->name);
ret = LY_EVALID;
goto cleanup;
}
}
}
/* check cyclic dependencies */
ret = lys_compile_unres_when_cyclic(&tmp_set, node);
LY_CHECK_GOTO(ret, cleanup);
lyxp_set_free_content(&tmp_set);
}
check_musts:
/* check "must" */
LY_ARRAY_FOR(musts, u) {
ret = lyxp_atomize(musts[u].cond, LY_PREF_SCHEMA, musts[u].module, node, LYXP_NODE_ELEM, &tmp_set, opts);
if (ret != LY_SUCCESS) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_SEMANTICS, "Invalid must restriction \"%s\".", musts[u].cond->expr);
goto cleanup;
}
ctx->path[0] = '\0';
lysc_path((struct lysc_node *)node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
for (i = 0; i < tmp_set.used; ++i) {
/* skip roots'n'stuff */
if (tmp_set.val.scnodes[i].type == LYXP_NODE_ELEM) {
/* XPath expression cannot reference "lower" status than the node that has the definition */
ret = lysc_check_status(ctx, node->flags, musts[u].module, node->name, tmp_set.val.scnodes[i].scnode->flags,
tmp_set.val.scnodes[i].scnode->module, tmp_set.val.scnodes[i].scnode->name);
LY_CHECK_GOTO(ret, cleanup);
}
}
lyxp_set_free_content(&tmp_set);
}
if ((node->nodetype & (LYS_RPC | LYS_ACTION)) && !input_done) {
/* now check output musts */
input_done = 1;
musts = ((struct lysc_action *)node)->output.musts;
opts = LYXP_SCNODE_OUTPUT;
goto check_musts;
}
cleanup:
lyxp_set_free_content(&tmp_set);
return ret;
}
/**
* @brief Check leafref for its target existence on a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] node Context node for the leafref.
* @param[in] lref Leafref to resolve.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres_leafref(struct lysc_ctx *ctx, const struct lysc_node *node, struct lysc_type_leafref *lref)
{
const struct lysc_node *target = NULL, *siter;
struct ly_path *p;
struct lysc_type *type;
assert(node->nodetype & (LYS_LEAF | LYS_LEAFLIST));
/* try to find the target */
LY_CHECK_RET(ly_path_compile(ctx->ctx, node->module, node, lref->path, LY_PATH_LREF_TRUE,
lysc_is_output(node) ? LY_PATH_OPER_OUTPUT : LY_PATH_OPER_INPUT, LY_PATH_TARGET_MANY,
LY_PREF_SCHEMA, lref->path_context, &p));
/* get the target node */
target = p[LY_ARRAY_COUNT(p) - 1].node;
ly_path_free(node->module->ctx, p);
if (!(target->nodetype & (LYS_LEAF | LYS_LEAFLIST))) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - target node is %s instead of leaf or leaf-list.",
lref->path->expr, lys_nodetype2str(target->nodetype));
return LY_EVALID;
}
/* check status */
ctx->path[0] = '\0';
lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
ctx->path_len = strlen(ctx->path);
if (lysc_check_status(ctx, node->flags, node->module, node->name, target->flags, target->module, target->name)) {
return LY_EVALID;
}
ctx->path_len = 1;
ctx->path[1] = '\0';
/* check config */
if (lref->require_instance) {
for (siter = node->parent; siter && !(siter->nodetype & (LYS_RPC | LYS_ACTION | LYS_NOTIF)); siter = siter->parent) {}
if (!siter && (node->flags & LYS_CONFIG_W) && (target->flags & LYS_CONFIG_R)) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE, "Invalid leafref path \"%s\" - target is supposed"
" to represent configuration data (as the leafref does), but it does not.", lref->path->expr);
return LY_EVALID;
}
}
/* store the target's type and check for circular chain of leafrefs */
lref->realtype = ((struct lysc_node_leaf *)target)->type;
for (type = lref->realtype; type && type->basetype == LY_TYPE_LEAFREF; type = ((struct lysc_type_leafref *)type)->realtype) {
if (type == (struct lysc_type *)lref) {
/* circular chain detected */
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - circular chain of leafrefs detected.", lref->path->expr);
return LY_EVALID;
}
}
/* check if leafref and its target are under common if-features */
if (lys_compile_leafref_features_validate(node, target)) {
LOGVAL(ctx->ctx, LY_VLOG_LYSC, node, LYVE_REFERENCE,
"Invalid leafref path \"%s\" - set of features applicable to the leafref target is not a subset of"
" features applicable to the leafref itself.", lref->path->expr);
return LY_EVALID;
}
return LY_SUCCESS;
}
static LY_ERR
lys_compile_ietf_netconf_wd_annotation(struct lysc_ctx *ctx, struct lys_module *mod)
{
struct lysc_ext_instance *ext;
struct lysp_ext_instance *ext_p = NULL;
struct lysp_stmt *stmt;
const struct lys_module *ext_mod;
LY_ERR ret = LY_SUCCESS;
/* create the parsed extension instance manually */
ext_p = calloc(1, sizeof *ext_p);
LY_CHECK_ERR_GOTO(!ext_p, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "md:annotation", 0, &ext_p->name), cleanup);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "default", 0, &ext_p->argument), cleanup);
ext_p->insubstmt = LYEXT_SUBSTMT_SELF;
ext_p->insubstmt_index = 0;
ext_p->child = stmt = calloc(1, sizeof *ext_p->child);
LY_CHECK_ERR_GOTO(!stmt, LOGMEM(ctx->ctx); ret = LY_EMEM, cleanup);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "type", 0, &stmt->stmt), cleanup);
LY_CHECK_GOTO(ret = lydict_insert(ctx->ctx, "boolean", 0, &stmt->arg), cleanup);
stmt->kw = LY_STMT_TYPE;
/* allocate new extension instance */
LY_ARRAY_NEW_GOTO(mod->ctx, mod->compiled->exts, ext, ret, cleanup);
/* manually get extension definition module */
ext_mod = ly_ctx_get_module_latest(ctx->ctx, "ietf-yang-metadata");
/* compile the extension instance */
LY_CHECK_GOTO(ret = lys_compile_ext(ctx, ext_p, ext, mod->compiled, LYEXT_PAR_MODULE, ext_mod), cleanup);
cleanup:
lysp_ext_instance_free(ctx->ctx, ext_p);
free(ext_p);
return ret;
}
/**
* @brief Compile default value(s) for leaf or leaf-list expecting a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] node Leaf or leaf-list to compile the default value(s) for.
* @param[in] type Type of the default value.
* @param[in] dflt Default value.
* @param[in] dflt_mod Local module for @p dflt.
* @param[in,out] storage Storage for the compiled default value.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres_dflt(struct lysc_ctx *ctx, struct lysc_node *node, struct lysc_type *type, const char *dflt,
const struct lys_module *dflt_mod, struct lyd_value *storage)
{
LY_ERR ret;
struct ly_err_item *err = NULL;
ret = type->plugin->store(ctx->ctx, type, dflt, strlen(dflt), 0, LY_PREF_SCHEMA, (void *)dflt_mod, LYD_HINT_SCHEMA,
node, storage, &err);
if (ret == LY_EINCOMPLETE) {
/* we have no data so we will not be resolving it */
ret = LY_SUCCESS;
}
if (ret) {
ctx->path[0] = '\0';
lysc_path(node, LYSC_PATH_LOG, ctx->path, LYSC_CTX_BUFSIZE);
if (err) {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid default - value does not fit the type (%s).", err->msg);
ly_err_free(err);
} else {
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Invalid default - value does not fit the type.");
}
return ret;
}
++((struct lysc_type *)storage->realtype)->refcount;
return LY_SUCCESS;
}
/**
* @brief Compile default value of a leaf expecting a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] leaf Leaf that the default value is for.
* @param[in] dflt Default value to compile.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres_leaf_dlft(struct lysc_ctx *ctx, struct lysc_node_leaf *leaf, struct lysp_qname *dflt)
{
LY_ERR ret;
assert(!leaf->dflt);
if (leaf->flags & (LYS_MAND_TRUE | LYS_KEY)) {
/* ignore default values for keys and mandatory leaves */
return LY_SUCCESS;
}
/* allocate the default value */
leaf->dflt = calloc(1, sizeof *leaf->dflt);
LY_CHECK_ERR_RET(!leaf->dflt, LOGMEM(ctx->ctx), LY_EMEM);
/* store the default value */
ret = lys_compile_unres_dflt(ctx, (struct lysc_node *)leaf, leaf->type, dflt->str, dflt->mod, leaf->dflt);
if (ret) {
free(leaf->dflt);
leaf->dflt = NULL;
}
return ret;
}
/**
* @brief Compile default values of a leaf-list expecting a complete compiled schema tree.
*
* @param[in] ctx Compile context.
* @param[in] llist Leaf-list that the default value(s) are for.
* @param[in] dflt Default value to compile, in case of a single value.
* @param[in] dflts Sized array of default values, in case of more values.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres_llist_dflts(struct lysc_ctx *ctx, struct lysc_node_leaflist *llist, struct lysp_qname *dflt,
struct lysp_qname *dflts)
{
LY_ERR ret;
LY_ARRAY_COUNT_TYPE orig_count, u, v;
assert(dflt || dflts);
if (llist->dflts) {
/* there were already some defaults and we are adding new by deviations */
assert(dflts);
orig_count = LY_ARRAY_COUNT(llist->dflts);
} else {
orig_count = 0;
}
/* allocate new items */
if (dflts) {
LY_ARRAY_CREATE_RET(ctx->ctx, llist->dflts, orig_count + LY_ARRAY_COUNT(dflts), LY_EMEM);
} else {
LY_ARRAY_CREATE_RET(ctx->ctx, llist->dflts, orig_count + 1, LY_EMEM);
}
/* fill each new default value */
if (dflts) {
LY_ARRAY_FOR(dflts, u) {
llist->dflts[orig_count + u] = calloc(1, sizeof **llist->dflts);
ret = lys_compile_unres_dflt(ctx, (struct lysc_node *)llist, llist->type, dflts[u].str, dflts[u].mod,
llist->dflts[orig_count + u]);
LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count + u]), ret);
LY_ARRAY_INCREMENT(llist->dflts);
}
} else {
llist->dflts[orig_count] = calloc(1, sizeof **llist->dflts);
ret = lys_compile_unres_dflt(ctx, (struct lysc_node *)llist, llist->type, dflt->str, dflt->mod,
llist->dflts[orig_count]);
LY_CHECK_ERR_RET(ret, free(llist->dflts[orig_count]), ret);
LY_ARRAY_INCREMENT(llist->dflts);
}
/* check default value uniqueness */
if (llist->flags & LYS_CONFIG_W) {
/* configuration data values must be unique - so check the default values */
for (u = orig_count; u < LY_ARRAY_COUNT(llist->dflts); ++u) {
for (v = 0; v < u; ++v) {
if (!llist->dflts[u]->realtype->plugin->compare(llist->dflts[u], llist->dflts[v])) {
lysc_update_path(ctx, llist->parent, llist->name);
LOGVAL(ctx->ctx, LY_VLOG_STR, ctx->path, LYVE_SEMANTICS,
"Configuration leaf-list has multiple defaults of the same value \"%s\".",
llist->dflts[u]->canonical);
lysc_update_path(ctx, NULL, NULL);
return LY_EVALID;
}
}
}
}
return LY_SUCCESS;
}
/**
* @brief Finish compilation of all the unres sets of a compile context.
*
* @param[in] ctx Compile context with unres sets.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_unres(struct lysc_ctx *ctx)
{
struct lysc_node *node;
struct lysc_type *type, *typeiter;
struct lysc_type_leafref *lref;
struct lysc_augment *aug;
struct lysc_deviation *dev;
LY_ARRAY_COUNT_TYPE v;
uint32_t i;
/* for leafref, we need 2 rounds - first detects circular chain by storing the first referred type (which
* can be also leafref, in case it is already resolved, go through the chain and check that it does not
* point to the starting leafref type). The second round stores the first non-leafref type for later data validation. */
for (i = 0; i < ctx->leafrefs.count; ++i) {
node = ctx->leafrefs.objs[i];
assert(node->nodetype & (LYS_LEAF | LYS_LEAFLIST));
type = ((struct lysc_node_leaf *)node)->type;
if (type->basetype == LY_TYPE_LEAFREF) {
LY_CHECK_RET(lys_compile_unres_leafref(ctx, node, (struct lysc_type_leafref *)type));
} else if (type->basetype == LY_TYPE_UNION) {
LY_ARRAY_FOR(((struct lysc_type_union *)type)->types, v) {
if (((struct lysc_type_union *)type)->types[v]->basetype == LY_TYPE_LEAFREF) {
lref = (struct lysc_type_leafref *)((struct lysc_type_union *)type)->types[v];
LY_CHECK_RET(lys_compile_unres_leafref(ctx, node, lref));
}
}
}
}
for (i = 0; i < ctx->leafrefs.count; ++i) {
/* store pointer to the real type */
type = ((struct lysc_node_leaf *)ctx->leafrefs.objs[i])->type;
if (type->basetype == LY_TYPE_LEAFREF) {
for (typeiter = ((struct lysc_type_leafref *)type)->realtype;
typeiter->basetype == LY_TYPE_LEAFREF;
typeiter = ((struct lysc_type_leafref *)typeiter)->realtype) {}
((struct lysc_type_leafref *)type)->realtype = typeiter;
} else if (type->basetype == LY_TYPE_UNION) {
LY_ARRAY_FOR(((struct lysc_type_union *)type)->types, v) {
if (((struct lysc_type_union *)type)->types[v]->basetype == LY_TYPE_LEAFREF) {
for (typeiter = ((struct lysc_type_leafref *)((struct lysc_type_union *)type)->types[v])->realtype;
typeiter->basetype == LY_TYPE_LEAFREF;
typeiter = ((struct lysc_type_leafref *)typeiter)->realtype) {}
((struct lysc_type_leafref *)((struct lysc_type_union *)type)->types[v])->realtype = typeiter;
}
}
}
}
/* check xpath */
for (i = 0; i < ctx->xpath.count; ++i) {
LY_CHECK_RET(lys_compile_unres_xpath(ctx, ctx->xpath.objs[i]));
}
/* finish incomplete default values compilation */
for (i = 0; i < ctx->dflts.count; ++i) {
struct lysc_unres_dflt *r = ctx->dflts.objs[i];
if (r->leaf->nodetype == LYS_LEAF) {
LY_CHECK_RET(lys_compile_unres_leaf_dlft(ctx, r->leaf, r->dflt));
} else {
LY_CHECK_RET(lys_compile_unres_llist_dflts(ctx, r->llist, r->dflt, r->dflts));
}
}
/* check that all augments were applied */
for (i = 0; i < ctx->augs.count; ++i) {
aug = ctx->augs.objs[i];
LOGVAL(ctx->ctx, LY_VLOG_NONE, NULL, LYVE_REFERENCE,
"Augment target node \"%s\" from module \"%s\" was not found.", aug->nodeid->expr,
aug->nodeid_mod->name);
}
if (ctx->augs.count) {
return LY_ENOTFOUND;
}
/* check that all deviations were applied */
for (i = 0; i < ctx->devs.count; ++i) {
dev = ctx->devs.objs[i];
LOGVAL(ctx->ctx, LY_VLOG_NONE, NULL, LYVE_REFERENCE,
"Deviation(s) target node \"%s\" from module \"%s\" was not found.", dev->nodeid->expr,
dev->nodeid_mod->name);
}
if (ctx->devs.count) {
return LY_ENOTFOUND;
}
return LY_SUCCESS;
}
void
lys_precompile_augments_deviations_revert(struct ly_ctx *ctx, const struct lys_module *mod)
{
uint32_t i;
LY_ARRAY_COUNT_TYPE u, count;
struct lys_module *m;
for (i = 0; i < ctx->list.count; ++i) {
m = ctx->list.objs[i];
if (m->augmented_by) {
count = LY_ARRAY_COUNT(m->augmented_by);
for (u = 0; u < count; ++u) {
if (m->augmented_by[u] == mod) {
/* keep the order */
if (u < count - 1) {
memmove(m->augmented_by + u, m->augmented_by + u + 1, (count - u) * sizeof *m->augmented_by);
}
LY_ARRAY_DECREMENT(m->augmented_by);
break;
}
}
if (!LY_ARRAY_COUNT(m->augmented_by)) {
LY_ARRAY_FREE(m->augmented_by);
m->augmented_by = NULL;
}
}
if (m->deviated_by) {
count = LY_ARRAY_COUNT(m->deviated_by);
for (u = 0; u < count; ++u) {
if (m->deviated_by[u] == mod) {
/* keep the order */
if (u < count - 1) {
memmove(m->deviated_by + u, m->deviated_by + u + 1, (count - u) * sizeof *m->deviated_by);
}
LY_ARRAY_DECREMENT(m->deviated_by);
break;
}
}
if (!LY_ARRAY_COUNT(m->deviated_by)) {
LY_ARRAY_FREE(m->deviated_by);
m->deviated_by = NULL;
}
}
}
}
/**
* @brief Compile features in the current module and all its submodules.
*
* @param[in] ctx Compile context.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_features(struct lysc_ctx *ctx)
{
struct lysp_submodule *submod;
LY_ARRAY_COUNT_TYPE u, v;
if (!ctx->mod->features) {
/* features are compiled directly into the module structure,
* but it must be done in two steps to allow forward references (via if-feature) between the features themselves */
LY_CHECK_RET(lys_feature_precompile(ctx, NULL, NULL, ctx->mod->parsed->features, &ctx->mod->features));
LY_ARRAY_FOR(ctx->mod->parsed->includes, v) {
submod = ctx->mod->parsed->includes[v].submodule;
LY_CHECK_RET(lys_feature_precompile(ctx, NULL, NULL, submod->features, &ctx->mod->features));
}
}
/* finish feature compilation, not only for the main module, but also for the submodules.
* Due to possible forward references, it must be done when all the features (including submodules)
* are present. */
LY_ARRAY_FOR(ctx->mod->parsed->features, u) {
LY_CHECK_RET(lys_feature_precompile_finish(ctx, &ctx->mod->parsed->features[u], ctx->mod->features));
}
lysc_update_path(ctx, NULL, "{submodule}");
LY_ARRAY_FOR(ctx->mod->parsed->includes, v) {
submod = ctx->mod->parsed->includes[v].submodule;
lysc_update_path(ctx, NULL, submod->name);
LY_ARRAY_FOR(submod->features, u) {
LY_CHECK_RET(lys_feature_precompile_finish(ctx, &submod->features[u], ctx->mod->features));
}
lysc_update_path(ctx, NULL, NULL);
}
lysc_update_path(ctx, NULL, NULL);
return LY_SUCCESS;
}
/**
* @brief Compile identites in the current module and all its submodules.
*
* @param[in] ctx Compile context.
* @return LY_ERR value.
*/
static LY_ERR
lys_compile_identities(struct lysc_ctx *ctx)
{
struct lysp_submodule *submod;
LY_ARRAY_COUNT_TYPE u;
if (!ctx->mod->identities) {
LY_CHECK_RET(lys_identity_precompile(ctx, NULL, NULL, ctx->mod->parsed->identities, &ctx->mod->identities));
LY_ARRAY_FOR(ctx->mod->parsed->includes, u) {
submod = ctx->mod->parsed->includes[u].submodule;
LY_CHECK_RET(lys_identity_precompile(ctx, NULL, NULL, submod->identities, &ctx->mod->identities));
}
}
if (ctx->mod->parsed->identities) {
LY_CHECK_RET(lys_compile_identities_derived(ctx, ctx->mod->parsed->identities, ctx->mod->identities));
}
lysc_update_path(ctx, NULL, "{submodule}");
LY_ARRAY_FOR(ctx->mod->parsed->includes, u) {
submod = ctx->mod->parsed->includes[u].submodule;
if (submod->identities) {
lysc_update_path(ctx, NULL, submod->name);
LY_CHECK_RET(lys_compile_identities_derived(ctx, submod->identities, ctx->mod->identities));
lysc_update_path(ctx, NULL, NULL);
}
}
lysc_update_path(ctx, NULL, NULL);
return LY_SUCCESS;
}
LY_ERR
lys_compile(struct lys_module *mod, uint32_t options)
{
struct lysc_ctx ctx = {0};
struct lysc_module *mod_c;
struct lysp_module *sp;
struct lysp_submodule *submod;
struct lysp_node *pnode;
struct lysp_grp *grps;
LY_ARRAY_COUNT_TYPE u, v;
uint32_t i;
LY_ERR ret = LY_SUCCESS;
LY_CHECK_ARG_RET(NULL, mod, mod->parsed, !mod->compiled, mod->ctx, LY_EINVAL);
if (!mod->implemented) {
/* just imported modules are not compiled */
return LY_SUCCESS;
}
/* context will be changed */
++mod->ctx->module_set_id;
sp = mod->parsed;
ctx.ctx = mod->ctx;
ctx.mod = mod;
ctx.mod_def = mod;
ctx.options = options;
ctx.path_len = 1;
ctx.path[0] = '/';
mod->compiled = mod_c = calloc(1, sizeof *mod_c);
LY_CHECK_ERR_RET(!mod_c, LOGMEM(mod->ctx), LY_EMEM);
mod_c->mod = mod;
/* process imports */
LY_ARRAY_FOR(sp->imports, u) {
LY_CHECK_GOTO(ret = lys_compile_import(&ctx, &sp->imports[u]), error);
}
/* features */
LY_CHECK_GOTO(ret = lys_compile_features(&ctx), error);
/* identities, work similarly to features with the precompilation */
LY_CHECK_GOTO(ret = lys_compile_identities(&ctx), error);
/* augments and deviations */
LY_CHECK_GOTO(ret = lys_precompile_augments_deviations(&ctx), error);
/* compile augments and deviations of our module from other modules so they can be applied during compilation */
LY_CHECK_GOTO(ret = lys_precompile_own_augments(&ctx), error);
LY_CHECK_GOTO(ret = lys_precompile_own_deviations(&ctx), error);
/* data nodes */
LY_LIST_FOR(sp->data, pnode) {
LY_CHECK_GOTO(ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL), error);
}
/* top-level RPCs and notifications */
COMPILE_OP_ARRAY_GOTO(&ctx, sp->rpcs, mod_c->rpcs, NULL, u, lys_compile_action, 0, ret, error);
COMPILE_OP_ARRAY_GOTO(&ctx, sp->notifs, mod_c->notifs, NULL, u, lys_compile_notif, 0, ret, error);
/* extension instances */
COMPILE_EXTS_GOTO(&ctx, sp->exts, mod_c->exts, mod_c, LYEXT_PAR_MODULE, ret, error);
/* the same for submodules */
LY_ARRAY_FOR(sp->includes, u) {
submod = sp->includes[u].submodule;
LY_LIST_FOR(submod->data, pnode) {
ret = lys_compile_node(&ctx, pnode, NULL, 0, NULL);
LY_CHECK_GOTO(ret, error);
}
COMPILE_OP_ARRAY_GOTO(&ctx, submod->rpcs, mod_c->rpcs, NULL, v, lys_compile_action, 0, ret, error);
COMPILE_OP_ARRAY_GOTO(&ctx, submod->notifs, mod_c->notifs, NULL, v, lys_compile_notif, 0, ret, error);
COMPILE_EXTS_GOTO(&ctx, submod->exts, mod_c->exts, mod_c, LYEXT_PAR_MODULE, ret, error);
}
/* finish compilation for all unresolved items in the context */
LY_CHECK_GOTO(ret = lys_compile_unres(&ctx), error);
/* validate non-instantiated groupings from the parsed schema,
* without it we would accept even the schemas with invalid grouping specification */
ctx.options |= LYSC_OPT_GROUPING;
LY_ARRAY_FOR(sp->groupings, u) {
if (!(sp->groupings[u].flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, &sp->groupings[u]), error);
}
}
LY_LIST_FOR(sp->data, pnode) {
grps = (struct lysp_grp *)lysp_node_groupings(pnode);
LY_ARRAY_FOR(grps, u) {
if (!(grps[u].flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, &grps[u]), error);
}
}
}
LY_ARRAY_FOR(sp->includes, u) {
submod = sp->includes[u].submodule;
LY_ARRAY_FOR(submod->groupings, u) {
if (!(submod->groupings[u].flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, &submod->groupings[u]), error);
}
}
LY_LIST_FOR(submod->data, pnode) {
grps = (struct lysp_grp *)lysp_node_groupings(pnode);
LY_ARRAY_FOR(grps, u) {
if (!(grps[u].flags & LYS_USED_GRP)) {
LY_CHECK_GOTO(ret = lys_compile_grouping(&ctx, pnode, &grps[u]), error);
}
}
}
}
#if 0
/* hack for NETCONF's edit-config's operation attribute. It is not defined in the schema, but since libyang
* implements YANG metadata (annotations), we need its definition. Because the ietf-netconf schema is not the
* internal part of libyang, we cannot add the annotation into the schema source, but we do it here to have
* the anotation definitions available in the internal schema structure. */
if (ly_strequal(mod->name, "ietf-netconf", 0)) {
if (lyp_add_ietf_netconf_annotations(mod)) {
lys_free(mod, NULL, 1, 1);
return NULL;
}
}
#endif
/* add ietf-netconf-with-defaults "default" metadata to the compiled module */
if (!strcmp(mod->name, "ietf-netconf-with-defaults")) {
LY_CHECK_GOTO(ret = lys_compile_ietf_netconf_wd_annotation(&ctx, mod), error);
}
/* there can be no leftover deviations */
LY_CHECK_ERR_GOTO(ctx.devs.count, LOGINT(ctx.ctx); ret = LY_EINT, error);
for (i = 0; i < ctx.dflts.count; ++i) {
lysc_unres_dflt_free(ctx.ctx, ctx.dflts.objs[i]);
}
ly_set_erase(&ctx.dflts, NULL);
ly_set_erase(&ctx.xpath, NULL);
ly_set_erase(&ctx.leafrefs, NULL);
ly_set_erase(&ctx.groupings, NULL);
ly_set_erase(&ctx.tpdf_chain, NULL);
ly_set_erase(&ctx.augs, NULL);
ly_set_erase(&ctx.devs, NULL);
ly_set_erase(&ctx.uses_augs, NULL);
ly_set_erase(&ctx.uses_rfns, NULL);
if (ctx.options & LYSC_OPT_FREE_SP) {
lysp_module_free(mod->parsed);
mod->parsed = NULL;
}
return LY_SUCCESS;
error:
lys_precompile_augments_deviations_revert(ctx.ctx, mod);
lys_feature_precompile_revert(&ctx, mod);
for (i = 0; i < ctx.dflts.count; ++i) {
lysc_unres_dflt_free(ctx.ctx, ctx.dflts.objs[i]);
}
ly_set_erase(&ctx.dflts, NULL);
ly_set_erase(&ctx.xpath, NULL);
ly_set_erase(&ctx.leafrefs, NULL);
ly_set_erase(&ctx.groupings, NULL);
ly_set_erase(&ctx.tpdf_chain, NULL);
for (i = 0; i < ctx.augs.count; ++i) {
lysc_augment_free(ctx.ctx, ctx.augs.objs[i]);
}
ly_set_erase(&ctx.augs, NULL);
for (i = 0; i < ctx.devs.count; ++i) {
lysc_deviation_free(ctx.ctx, ctx.devs.objs[i]);
}
ly_set_erase(&ctx.devs, NULL);
for (i = 0; i < ctx.uses_augs.count; ++i) {
lysc_augment_free(ctx.ctx, ctx.uses_augs.objs[i]);
}
ly_set_erase(&ctx.uses_augs, NULL);
for (i = 0; i < ctx.uses_rfns.count; ++i) {
lysc_refine_free(ctx.ctx, ctx.uses_rfns.objs[i]);
}
ly_set_erase(&ctx.uses_rfns, NULL);
lysc_module_free(mod_c, NULL);
mod->compiled = NULL;
return ret;
}